集合导学案

合集下载

新人教版数学三年级上集合课堂同步导学案

新人教版数学三年级上集合课堂同步导学案

《数学广角——集合》导学案
学习目标:
1、我要在具体情境中感受集合的思想,感知集合图的产生过程。

2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使自己在解决问题的过程中进一步体会集合的思想,进而形成策略。

3、渗透多种方法解决重叠问题的意识,培养自己善于观察、勤于思考的学习习惯。

自主学习:
脑筋急转弯
小明数手指,从左数起中指排第三,从右数起中指也排第三,你说小明一只手有六根手指头吗?为什么?
两个爸爸和两个儿子一起去看电影,他们只买了3张票就顺利进了电影院。

这是为什么呢?
互动探究:
青蛙龙虾小狗章鱼瓢虫
金鱼兔子蜗牛海马乌龟
为了证明在陆地上生活还是在水里生活好,小动物们开始了一场激烈的辩论赛。

这些动物有些能在水里生活,有些能在陆地上生活,还有些既可以在陆地上生活也可以在水里生活,你能帮他们找到自己的家吗?
1、先和同桌说说这里表示什么?
2、把动物放到合适的位置。

中职一轮复习集合单元导学案

中职一轮复习集合单元导学案
考点预测
本章知识点主要有集合与集合,元素与集合的关系,集合的运算、常用逻辑用语、充要条件,每年的高考会在其中的两个或三个知识点命题.以选择题和填空题作为主要的考查形式,占9分左右;主要考查的内容有以下几个方面:
1.集合元素的特征:确定性、互异性、无序性;
2.两类关系:元素与集合之间的关系,集合与集合之间的关系;
复习
一单元
《集合与常用逻辑用语》
1.理解集合的概念,掌握集合的表示方法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算.
2.能正确地区分充分、必要、充要条件.
3.理解符号的含义.
4.了解命题的有关概念,能判断一个命题的真假.
5.理解全称量词和存在量词,理解全称命题和存在性命题.
6.理解逻辑联结词“且、或、非”的含义,能判断复合命题的真值.
7.理解符号∧、V、一、V、3的含义.
考情分析
本章主要内容包括集合的有关概念及集合的运算和常用逻辑用语,是每年春考考试的必考部分,本章的试题都比较简单,考生得分率较高.每年高考对这部分知识考查的重点基本不变,试题难度、试题数量变化不大.复习时要重视基础,力求基本概念清楚、基本运算熟练,避免解过难、过繁的题目.
3.集合的交、并、补运算;
4.逻辑联结词的含义,命题真假值的判断;
5.与不等式相联系,考查对集合的概念和运算知识的把握及数形结合的能力;
6.以集合为载体考查方程、函数、几何等新概念知识,体现集合的工具性;
7.以函数、不等式、三角函数、解析几何等知识为载体,考查充要条件,起到了对数学思想、数学方法和数学能力进行综合考查的作用.
思维导图
学习课时
4课时
课时分配
课题
课时
《集合及其表示方法》《集合的源自系及基本运算》《常用逻辑用语》

《集合的概念》课件与导学案

《集合的概念》课件与导学案


若 = ,则 = ,由 + = 得 = = ,不符合题意;
综上, = −, = , + =
《1.1 集合的概念》导学案
第1课时 集合的概念
学习目标
核心素养
1.通过实例了解集合的含义.(难点)
1.通过集合概念的学习,逐步
2.掌握集合中元素的三个特性Байду номын сангаас(重点)
对于B,当 = 3 , = 4时,3 = 3,则 = 2; 4 = 4,则 = 3,不满足题意

对于C,当 = 3, = 4时,3 = 3,则 = 9;


4
对于D,当 = 4, = 3时,3 = 4,则 = 12;
= 4,则 = 16,不满足题意

4
= 3,则 = 12,满足题意
(3)不正确,方程的解只有 3 和-1,集合中有 2 个元素.
类型二:元素与集合的关系
【例 2】
(1)下列所给关系正确的个数是(
)
①π∉Q;② 2∈R;③0∈N;④|-3|∉N*.
A.1
B.2
C.3
D.4
(2)已知集合 B 含有三个元素 2,4,6,且当 a∈B,有 6-a∈B,那么 a
温馨提示:有时也用冒号或者分号代替竖线,写成
{ x ∈A:P(x)}或{ x ∈A;P(x)}
集合的3种表示方法之描述法
问题:用描述法表示集合需要注意什么问题?
(1)竖线前面表示的是集合的元素,{ x | = − 1},
{ | = − 1}, { , | = − 1}分别是三个不同的集合.
我看到的、听到的、想到的、触摸到的事物和抽象的符号
等等,都可以看做对象。比如数、点、图形、多项式、方

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

1.1《集合(复习)》导学案【学习目标】1.承植橐合6勺交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2.能使用数轴分析、仏/加图表达集合的运算,体会直观图示对理解抽象概念的作用.【知识链接】(复习教材/广凡,找出疑惑之处)复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?AHB = _________________________ :A UB = _________________________ :q A二 _______________________ •复习2:交、并、补有如下性质.AC\A= ________ ;AH 0 = _________ ;AUA= __________ ;AU 0=. ;人门((7异)= __ ; AU(C u A)= _________5 (Q, A) = ______ .你还能写出一些吗?【学习过程】探典型例题例1 设庐R, A = {x\-5<x<5}, ^ = {x|0<x<7}.求AC B、AU B、C(j A、久B、(%) Q Q、(CuA)U(Cu®、5 (AU 3、GUM.小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得岀什么结论吗?例 2 已知全集1/ = {1,2,3,4,5},若AU3二",ARBH0, A (1(0 = {1,2},求集合力、B.小结:列举法表示的数集问题用仏/加图示法、观察法.例 3 -4x+3 = 0j,Z?=|x|x2 -ar+ty-l = oj, C = |x x2 -nu4-1 = oj .fi.A\J B = A,AC}C = C ,求实数臼、刃的值或取值范围.变式:设y4 = {x|r-8x+15 = 0}, B = {x\ax-\ = 0},若BJ,求实数日组成的集合、.探动手试试练 1.设A = {x\x2-ax + 6 = 0}, B = {x\^-x+c = 0}f且〃门〃={2},求AU B.练2.已知用{刘攻-2或兀>3},伊{刘仆+/水0},当A^B时,求实数刃的取值范围。

人教版高中数学必修1:11 集合 必修一导学案

人教版高中数学必修1:11 集合 必修一导学案

1 / 9第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示(1课时)【学习目标】1. 学习重点:了解集合、元素与集合的关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2. 学习难点:列举法、描述法.3. 学习意义:了解集合在现代数学中的基础作用,初步体会集合思想在数学中的应用.【预习导学】(一)新课导入:我们在初中接触了一些集合,请你尝试用合适的方法表示下列集合:1. 自然数的集合 ;2. 不等式73x -<的解的集合 ;3. 圆 .(二)自主预习(预习教材P2―P5)完成该下列问题,不明白的做记号.1.集合的含义与特性阅读下列几个例子,理解其含义,能否构成集合?(1)1到20以内的所有素数 ;(2)身材较高的人 ;(3)方程2320x x +-=所有的实数根 ;(4)广美附中高一所有的学生 ;一般地,我们把研究对象统称为 ;把一些元素组成的总体叫 ;集合具有三大特性: 、 、 ,这是判断语句是否确定一个集合的依据;构成两个集合的元素是一样的,我们称之为两个集合 .2.元素与集合的关系(1). 集合通常用大写字母,,,A B C 表示,元素通常用 表示,如果a 是集合A 的元2 / 9素,就说a 属于集合A ,记作: ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作: .(2). 数的集合称之为 ;常用的数集的记法:自然数集(非负整数集)记作 ;正整数集记作 ;整数集记作 ;有理数集记作 ;实数集记作 ;3.集合的表示如何表示一个集合?上面我们表示数集可以采用自然语言描述一个集合,除此以外,还能用什么方法表示集合?(1). 列举法把集合的元素一一列举出来,并用花括号“{}”括起来,这种表示集合的方法叫做 . 请用列举法表示方程2x x =的实数解 ;问题探究:你能不能用列举法表示不等式73x -<的解集?为什么?(2). 描述法如果集合中的元素无法列举,用集合所含元素的共同特征表示集合的方法称为 , 一般形式为 ,其中x 代表元素,P 是确定条件. 用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈; {|0}x x >. 请用描述法表示不等式73x -<的解集 ;【例题精析】题型一: 集合的性质理解例1.下列语句是否能构成一个集合?如果是请指出集合的元素,不是说明理由.(1)全体实数组成的集合 ;(2)我国的小河流 ;(3)大于3小于11的偶数 ;(4)平方值等于1-的全体实数 .例2. 用符号∈或∉填空:0 N 0 R 3.7 +N 3.7 Z 3- Q题型二 集合的表示方法例3. 试分别用列举法和描述法表示下列集合:3 / 9方程220x -=的所有实数根组成的集合; ; .【变式训练】用合适的表示方法表示下列集合:1. 不等式50x -<中所有正整数: ;2. 一次函数3y x =+与26y x =-+的图象的交点组成的集合 .方法总结:1. 列举法的特点是 .2. 描述法的特点是 .【堂上练习】1. 下列说法正确的是A .高一年级中的高个子组成一个集合B .所有小正数组成一个集合C .{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,2244能组成一个集合 2. 给出下列关系:① 12R =;② 2Q ;③3N +-∉;④3.Q -其中正确的个数为A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 试选择适当的集合表示方法表示下列集合(1)由方程290x -=的所有实数根组成的集合 .(2)不等式453x -<的解集 .【课堂小结】1.表示集合的主要的方法有 .2. 注意∈与⊆区别 .3. 集合具有三个性质是: .1.1.2 集合间的基本关系(1课时)【学习目标】4 / 91. 学习重点:理解集合之间包含于、相等的含义,能识集合的子集;了解空集的含义;2. 学习难点:子集、真子集、集合相等、空集之间的含义;3. 学习意义:通过学习集合之间的关系,为后章集合运算打下良好的基础.【预习导学】(一)新课导入回顾:用合适的方法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合 .(2)由大于10小于20的所有实数组成的集合 .(二)自主预习:(预习教材P6-P7)完成该下列问题,不明白的做记号.实数之间有大小关系,两个集合之间有没有关系呢?如:集合{}1,23A =,,{}1,2,3,4,5B =,我们发现,集合A 中任何一个元素都是集合B 中的元素,我们就说集合A 与集合B 有包含关系.1.子集:如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集,记作: ,读作: ,或 .在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:图1-1 2. 集合相等:若A B B A ⊆⊆且,记作 .如:集合{}{}1,2=(1)(2)0x R x x ∈--=3.真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集,记作: .4.空集:不含有任何元素的集合称为空集,记作: .并规定:空集是任何集合的 ,是任何非空集合的 . 如:{}210x R x ∈+== . 问题探究:你能用合适的方法表示子集、真子集、集合相等,空集之间的关系吗?【例题精析】题型:两集合之间的关系理解B A5 / 9例1.已知集合}{}{12,01A x x B x x =-<<=<<,则A. B A > B . B A ⊆ C. AB D. B A 例2. 用适当的符号填空.(1)a {,,}a b c (2)∅ {}230x R x ∈+= (3){0} 2{|0}x x x -=. 例3.写出集合{}1,2A =的所有子集:(1)不含元素的子集有 .(2)含1个元素的子集有 .(3)含2个元素的子集有 .(4)其中真子集有 个;非空真子集有 个. 【变式训练】写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.方法总结:两个集合之间的关系主要有 .【堂上练习】1. 集合}{Z x x x A ∈<≤=且30的真子集的个数为A . 5B . 6C . 7D . 82. 满足M a ⊆}{的集合},,,{d c b a M 共有A . 6个B . 7个C . 8个D . 15个3. 设集合}{{ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值. 【课后作业】(一)基础题1. 下列结论正确的是A. ∅∈AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈2. 比较下面例子,用合适的符号表示两个集合之间的关系:(1){|(1)(2)0}E x x x x =--= {0,1,2}F = .6 / 9(2){|(1)(2)0}E x x x x =--= {}1,2F = .(3){}3E x x =>- {}2F x x => .3. 设{}2A x x =<,{}1B x x =<,则B A .4. 集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是 A . 1-≤a B . 1≤a C . 1-≥a D . 1≥a(二)能力提升1. 设{}2A x x =<,{}B x x a =<,B A ⊆,则a 的范围是 .2. 设{}2A x x =<,{}B x x a =<,B A ⊂≠,则a 的范围是 .3. 若集合{}{}2=1,1A x x B x ax ===,且满足B A ⊆,求实数a 的取值范围.1.1.3 集合的基本运算(2课时)【学习目标】1. 学习重点:(1)会求两个简单集合的并集与交集、补集.(2)能使用韦恩(Venn )图表达集合的关系及运算.2. 学习难点:两个简单集合的交集、并集、补集.3. 学习意义:理解集合的运算,类比数的运算,深刻理解集合思想.【预习导学】(一)新课导入:用适当的符号填空:0 {0}; ∅ {x |210,x x R +=∈}; {}3x x >- {}2x x >. (二)自主预习:(预习教材P8-P11)完成该下列问题,不明白的做记号.1. 并集、交集、补集(1). 由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集,记作: ,读作:A 并B ,用描述法表示是: .并集的Venn 图如下表示.图1-2 (2). 由属于集合A 属于集合B 的元素所组成的集合,叫作A 、B 的交集,B A7 / 9记作 ,读“A 交B ”, 用描述法表示是: ;交集的 Venn 图如下表示.图1-3 (3). 如果一个集合含有我们所研究问题中所涉及的 元素,那么就称这个集合为全集,通常记作 .(4). 设集合A ⊆U ,由U 中所有 A 的元素组成的集合,称这个集合为 ,记作: ,读作:“A 在U 中补集”; 用描述法表示是 .补集的Venn 图表示如右:图1-42. 两个集合的交、并、补的性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;问题探究1:若A ∩B=A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.问题探究2:若A B= A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.【例题精析】题型一:理解集合的交集、并集、补集运算例1. 设集合{}123456U =,,,,,,{}1,23A =,,{}34,5,6B =,.用Venn 图表示,A B 如下: 则A B = ; A B = ; 【变式训练】设集合{}12x x =-<<,集合{}13B x x =<<,在数轴上表示AB ,A B . 则A B = ; A B = ; R A = .方法总结:一般地说,集合之间的运算,除了可以用韦恩图表示外,若是数集,还可以采用数轴的方法直观表示,体现了数形结合的解题方法.题型二:集合思想的应用例2. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点 . (2)12L L =∅ . (3)1212L L L L == .A B A U U A 1, 2 3456BA8 / 9 【变式训练】 设全集{}U x x =是三角形,{}A x x =是锐角三角形,{}B x x =是钝角三角形,求A B ,()U A B ,()()U U A B .方法总结:数学有很多的知识可以用集合的思想去理解,集合思想是数学的基本概念之一.【课堂练习】1. 已知集合P M ,满足M P M = ,则一定有A . P M =B . P M ⊇C . M P M =D . P M ⊆2. 集合(){},0P x y x y =+=,(){},2Q x y x y =-= ,AB 3. 设集合{}{}=04,7A x x B x a x ≤<=<≤. (1)若AB φ=,求a 的取值范围; (2)若A B B =,求a 的取值范围.【课堂小结】1.用自己的语言总结:两个集合的交集,就是 ;并集是 ;补集是2. 我们在解题时,常采用图示法解题,一般的图示法有 .特别要注意分类讨论的方法解题.【课后作业】(一)基础题1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤ 2. 设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U3. 若集合{}=0,1,2,3A ,{}=1,2,4B ,则集合A B =A .{}01234,,,,B .{}1234,,,C .{}12,D .{}04. 设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则ST =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-9 / 9 5. 设{|18}A x x =-<<,{|45}B x x x =><-或,在数轴上求A ∩B 、A ∪B .(二)能力提升1. 某校秋季运动会中,若集合A ={参加比赛的运动员},集合B ={参加比赛的男运动员},集合C ={参加比赛的女运动员},则下列关系正确的是A. A B ⊆B. B C ⊆C. B C = AD. A ∩B = C2. 集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为A .4 B.3 C.2 D. 13. 设{|}A x x a =>,{|03}B x x =<<,若AB =∅,求实数a 的取值范围是 .4. 已知集合}023|{2=+-=x ax x A .(1) 若A 中至多有一个元素,则a 的取值范围是 .(2) 若A 中至少有一个元素,则a 的取值范围是 .。

导学案001集合的概念及运算

导学案001集合的概念及运算

集合的概念及运算考纲要求(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合的关系及运算.考情分析1.集合部分主要以考查集合的含义、基本关系与基本运算为主,题目简单、易做,大多都是送分题;2.近几年部分省市也力求创新,创造新情境,尽可能做到灵活多样,甚至进行一些小综合,比如新定义题目,与方程、不等式、函数、数列等内容相联系的题目出现;3.题型以选择题为主,大多都是试卷的第1、2题.教学过程基础梳理1、集合的含义与表示(1)、一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合;(2)、集合中的元素有三个性质:确定性,无序性,互异性;(3)、集合中的元素与集合的关系属于和不属于,分别用和表示;(4)、几个常用的集合表示法 数集 自然数集 正整数集 整数集 有理数集 实数集 表示法2、集合间的基本关系表示 关系 文字语言符号语言相等 集合A 与集合B 中的所有元素相同A= B 子集 A 中任意元素均为B 中元素AB真子集A 中任意元素均为B 中元素,且B 中至少有一个元素不属于A A B 空集空集是任何集合的子集,是任何非空集合的真子集φ3、集合的基本运算 交集 并集 补集 符号表示 图形表示 意义4、 常用结论 (1)、集合A 中有n 个元素,则集合A 的子集有 个; 真子集有 个; (2);,,A B B A A A A A ⋂=⋂Φ=Φ⋂=⋂ (3);,A B B A A A ⋃=⋃=Φ⋃ (4));()(B A B A ⋃⊆⋂(5)B B A B A A B A B A =⋃⇔⊆=⋂⇔⊆;;(6)S C (A ∩B )=(S C A )∪(S C B ),S C (A ∪B )=(S C A )∩(S C B )。

集合的基本运算—全集、补集导学案

集合的基本运算—全集、补集导学案

§1.3.2集合的基本运算一补集导学目标:1.在具体情境中,了解全集的含义.2.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.3.能使用后研图表达集合的运算,体会直观图示对理解抽象概念的作用.谍前准备区|(预习教材P∣0〜P∣3,找出疑惑之处)复习:已知A = {1,2,3}, 3 = {2,3,4},如何理解以下元素组成的集合{巾∈ A且x ∈ B∣=;{巾∈ A或x ∈ B} =思考:已知A = {l,2,3}, 8 = {2,3,4}, S = {l,2,3,4,5},如何理解以下元素组成的集合1x∣x∈S⅛x¢ A∣=(其中A S );1x∣x∈ S或x e 3} = (其中8 S ).【知识点一】全集、补集①如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),• •通常记作U.②已知集合U,集合AqU,由U中所有不属于A的元素组成的集合,叫作A相对于U的补集♦♦(complementary set),记作:,读作:“用描述法表示是:补集的Venn图表示:自我检测1:完成下列填空A (QA) =; A (QA) =;C u U=;C u0 =.课堂活动区|题型一补集的运算【例1】求下列集合的补集(1)设U={x∣x是小于9的正整数}, A={l,2,3}, B={ 3,4,5,6),求〔以,葭氏(2)设全集U=R, M={Λ¼<-2或x>2}, N={∕∣14<3},求晨〃,[小.题型二集合交、并、补的综合运算【例2・1】已知全集U={小≤4},集合2={R-2<x<3}, B={x∖~3<x≤3}.求 A B, A B, GA、C u B,(Q,Λ) B, C u(A B).【例2-2】试用集合A,8的交集、并集、补集分别表示图中I , II, III, IV四个部分所表示的集合.I部分: ______________II部分: _____________III部分: ____________IV部分:或题型三补集思想的应用【例3・1]设全集U={3,6, m2-m-∖}, A= {∣3-2∕π∣,6}, C t4 = {5},求实数利.。

集合的概念导学案(含答案)

集合的概念导学案(含答案)

第1课时集合的概念【学习目标】1、通过实例了解集合的含义.(难点)2、掌握集合中元素的三个特性.(重点)3、掌握元素与集合的关系,并能用符号表示.4、记住常用数集及其记法.(重点、易混点)【自主学习】1.元素与集合的概念(1)元素:一般地,我们把研究统称为元素.(2)集合:把一些元素组成的叫做集合(简称集).2.集合中元素的特性集合中元素具有三个特性:、、.注意:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.集合的相等只要构成两个集合的元素是一样的,我们就称两个集合是.4.元素与集合的表示(1)元素的表示:通常用小写拉丁字母表示集合中的元素.(2)集合的表示:通常用大写拉丁字母表示集合.5.元素与集合的关系(1)属于:如果a是集合A的元素,就说,记作.(2)不属于:如果a不是集合A中的元素,就说,记作.6.常用数集及符号表示数集非负整数集(或自然数集) 正整数集整数集有理数集实数集符号1、判断(正确的打“√”,错误的打“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.()(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.()(3)由-1,1,1组成的集合中有3个元素.()2、用“∈”或“∉”填空:12____N;-3____Z;2____Q;0____N*;5____R.【经典例题】题型一集合的概念例1下列所给的对象能构成集合的是________.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2018年俄罗斯世界杯的年轻足球运动员;⑥2的近似值的全体.[跟踪训练]1.判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.题型二元素与集合的关系例2给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z. 其中正确命题的个数为()例3集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[跟踪训练]2.用符号“∈”或“∉”填空.若A表示第一、三象限的角平分线上的点的集合,则点(0,0)________A,(1,1)______A,(-1,1)______A.题型三集合中元素的特性例4已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[变式](1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?例5已知集合A含有两个元素1和a2,若a∈A,求实数a的值.[跟踪训练]3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可【当堂达标】1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素2.下列各组中集合P与Q,表示同一个集合的是() B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集3.已知集合A由x<1的数构成,则有()A.3∈A B.1∈AC.0∈A D.-1∉A4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为()A.2 B.2或4C.4 D.05.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2C.3 D.46.给出下列关系:①13∈Z;②5∈R;③|-5|∉N+;④|-32|∈Q;⑤π∈R.其中,正确的个数为________.7.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a满足的条件是________.8.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.9.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.10.设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2∈A,求实数x.【参考答案】【自主学习】 1.(1)对象 (2)总体 2.确定性、互异性、无序性 3.相等的4.(1) a ,b ,c ,… (2) A ,B ,C ,…4.(1) a 属于集合A a ∈A (2) a 不属于集合A a ∉A 5.N N *或N + Z Q R 【小试牛刀】 1. (1)× (2)√ (3)×【解析】(1)因为“优秀”没有明确的标准,其不满足集合中元素的确定性. (2)根据集合相等的定义知,两个集合相等.(3)因为集合中的元素要满足互异性,所以由-1,1,1组成的集合有2个元素-1,1. 2. ∉ ∈ ∉ ∉ ∈【解析】因为12不是自然数,所以12∉N ;-3是整数,所以-3∈Z ;因为2不是有理数,所以2∉Q ;0不是非零自然数,所以0∉N *;因为5是实数,所以5∈R. 【经典例题】 例1 ①③④【解析】①能构成集合,其中的元素满足三条边相等;②不能构成集合,因为“比较接近1”的标准不明确,所以元素不确定,故不能构成集合; ③能构成集合,其中的元素是“某校高一年级16岁以下的学生”;④能构成集合,其中的元素是“平面直角坐标系内到原点的距离等于1的点”; ⑤不能构成集合,因为“年轻”的标准是模糊的、不确定的,故不能构成集合;⑥不能构成集合,因为“2的近似值”未明确精确到什么程度,因此不能断定一个数是不是它的近似值,所以不能构成集合.1. (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合. 例2 C【解析】R ,Q ,N ,Z 分别表示实数集、有理数集、自然数集、整数集,所以①④正确,因为0是自然数,3,π都是无理数,所以②③⑤⑥不正确. 例3 0,1,2【解析】当x =0时,63-0=2;当x =1时,63-1=3; 当x =2时,63-2=6; 当x ≥3时不符合题意,故集合A 中元素有0,1,2.[跟踪训练] 2. ∈ ∈ ∉【解析】第一、三象限的角平分线上的点的集合可以用直线y =x 表示,显然(0,0),(1,1)都在直线y =x 上,(-1,1)不在直线上.∴(0,0)∈A ,(1,1)∈A ,(-1,1) ∉A . 例4 -1【解析】 若a =1,则a 2=1,此时集合A 中两元素相同,与互异性矛盾,故a ≠1;若a 2=1,则a =-1或a =1(舍去),此时集合A 中两元素为-1,1,故a =-1. 综上所述a =-1.[变式] (1)若a =2,则a 2=4,符合元素的互异性;若a 2=2,则a =2或a =-2,符合元素的互异性. 所以a 的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a ≠a 2,所以a ≠0且a ≠1. 例5 解:由题意可知,a =1或a 2=a ,(1)若a =1,则a 2=1,这与a 2=1相矛盾,故a ≠1.(2)若a 2=a ,则a =0或a =1(舍去),又当a =0时,A 中含有元素1和0,满足集合中元素的互异性,符合题意.[跟踪训练] 3.B【解析】由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A 的元素为0,3,2,符合题意. 【当堂达标】 1. C【解析】 A 项中元素不确定.B 项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D 项中方程的解分别是x 1=1,x 2=x 3=-1.由互异性知,构成的集合含2个元素. 2.C【解析】由于C 中P 、Q 元素完全相同,所以P 与Q 表示同一个集合,而A 、B 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选C . 3.C【解析】很明显3,1不满足不等式,而0,-1满足不等式. 4.B【解析】若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .故选B . 5.B【解析】当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素.故选B . 6. 2【解析】由Z ,R ,Q ,N +的含义,可知②⑤正确,①③④不正确.故正确的个数为2. 7. a ≠±2且a ≠1【解析】由元素的互异性,得⎩⎪⎨⎪⎧a 2≠4,2-a ≠4,a 2≠2-a ,即a ≠±2,且a ≠1.8. 0或1②若2a -1=-3,则a =-1,此时A 中元素为-4,-3,-3,不满足元素的互异性. ③若a 2-4=-3,则a =±1.当a =1时,A 中元素为-2,1,-3,满足题意;当a =-1时,由②知不合题意.综上可知:a =0或a =1.9.因为集合A ,B 相等,则x =0或y =0.①当x =0时,x 2=0,B 中元素为0,0,不满足集合中元素的互异性,故舍去. ②当y =0时,x =x 2,解得x =0或x =1.由①知x =0应舍去. 综上知:x =1,y =0.10. (1)由集合中元素的互异性可知,x ≠3. 且x ≠x 2-2x ,x 2-2x ≠3. 解之得x ≠-1,且x ≠0,x ≠3.(2)由-2∈A ,知x =-2或x 2-2x =-2, 当x =-2时,x 2-2x =(-2)2-2×(-2)=8. 此时A 中含有三个元素3,-2,8满足条件. 当x 2-2x =-2,即x 2-2x +2=0时,Δ=(-2)2-4×1×2=4-8<0, 故方程无解,显然x 2-2x ≠-2. 综上,x =-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合总复习
一、课前回顾:
1 、集合:一般地,把一些能够 对象看成一个整体,就说这个整体是
由这些对象的全体构成的 (或 )。

构成集合的每个对象叫做这个集合的 (或 )。

2、集合与元素的表示:集合通常用 来表示,它们的元
素通常用 来表示。

3、元素与集合的关系:
如果a 是集合A 的元素,就说 ,记作 ,读作 。

如果a 不是集合A 的元素,就说 ,记作 ,读作 。

4、常用的数集及其记号:
(1)自然数集: ,记作 。

(2)正整数集: ,记作 。

(3)整数集: ,记作 。

(4)有理数集: ,记作 。

(5)实数集: ,记作 。

5、集合的三要素: 、 、 。

集合元素的三个特征: 、 、 。

6、 列举法的基本格式是
描述法的基本格式是
7、(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?
(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?
(3)0,{0}与∅三者之间有什么关系?
(4)包含关系{}a A ⊆与属于关系a A ∈正义有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何一人集合是它本身的子集,即A A ⊆?
(7)对于集合A ,B ,C ,D ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?
8、①交集:一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的 .记作 ,即
②并集: 一般地,对于给定的两个集合A,B 把它们所有的元素并在一起所组成的集合,叫
做A,B 的 .记作 ,即
③用韦恩图表示两个集合的交集与并集。

④如果所要研究的集合________________________________,那么称这个给定的集合为全
集,记作_____.
⑤如果A 是全集U 的一个子集,由_______________________________构成的集合,叫做
A在U中的补集,记作________,读作_________.
⑥A∪CU A =_______,A ∩C U A =________,C U (C U A)=_______。

二、例题精炼:
1、已知集合M={y 丨x 2+1,x ∈R},N={y 丨y=x+1,x ∈R},则M ∩N=( )
A 、(0,1),(1,2)
B 、{(0,1),(1,2)}
C 、{y 丨y=1或y=2}
D 、{y 丨y ≥1}
2、若P={y 丨y=x 2,x ∈R},Q={y 丨y=x 2+1,x ∈R},则P ∪Q 等于( )
A 、P
B 、Q
C 、∅
D 、{x 丨x ∈R}
3、若A={x 丨x 2=1},B={x 丨x 2-2x-3=0},则A ∩B=( )
A 、1
B 、{1}
C 、∅
D 、{-1}
4、设集合A={x ,y},B={0,x 2},若A=B ,则实数x= ,y= 。

5、若{}4,12,2--=x x A ,{}9,1,5x x B --=,{
}9=A B ,求B A
6、若A={x 丨x 2-3x+2=0},B={x 丨x 2-ax+a-1=0},且A ∪B=A ,则a 的值。

7、设全集U R =,{}
2|10M m mx x =--=方程有实数根, {}()2|0,.
U N n x x n C M N =-+= 方程有实数根求
8、.已知全集=I {
∈x x |R},集合=A {x x |≤1或x ≥3},集合=B {1|+<<k x k x ,∈k R},且∅=B A C I )(,则实数k 的取值范围是( )
A 、0<k 或3>k
B 、32<<k
C 、30<<k
D 、31<<-k
9、已知集合A={x|0< ax+1≤5},集合B={x|-1< 2x ≤4},若 求实数a 的取值范围.
B A ⊆。

相关文档
最新文档