临沂市七年级下学期数学期末试卷
临沂市七年级下册数学期末试卷

临沂市七年级下册数学期末试卷一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.下列运算正确的是( ) A .236a a a ⋅= B .222()ab a b = C .()325a a = D .623a a a ÷=3.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 4.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 5.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 6.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .7.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1) 8.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6± 10.下列方程组中,是二元一次方程组的为( )A .1512n m m n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题11.计算126x x ÷的结果为______.12.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .13.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 16.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.17.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.18.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.分解因式:ab ﹣ab 2=_____.三、解答题21.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90º+12∠A ,(请补齐空白处......) 理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=12∠ABC ,_________________,在ΔABC 中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在ΔAEF 中,如果有一个角是另一个角的4倍,则∠ABO=______.22.如图,已知AB ∥CD ,∠1=∠2,求证:AE ∥DF .23.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.24.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5(3)x (x+7)-(x-3)(x+2)(4)(a-2b-c )(a+2b-c )25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅27.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?28.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
山东省临沂市七年级下学期期末数学试卷

2020-2021学年山东省临沂市七年级下学期期末数学试卷一.选择题(共10小题,满分40分,每小题4分)
1.(4分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()
A.1个B.2个C.3个D.4个
解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;
②两直线平行,内错角相等,正确,是真命题,不符合题意;
③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;
④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,
故选:A.
2.(4分)在下列考察中,是抽样调查的是()
A.了解全校学生人数
B.调查某厂生产的鱼罐头质量
C.调查临沂市出租车数量
D.了解全班同学的家庭经济状况
解:A.了解全校学生人数,适合普查,故本选项不合题意;
B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;
C.调查临沂市出租车数量,适合普查,故本选项不合题意;
D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;
故选:B.
3.(4分)如图,下面哪个条件能判断DE∥BC的是()
A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°解:当∠1=∠2时,EF∥AC;
当∠4=∠C时,EF∥AC;
第1 页共12 页。
2023-2024学年山东省临沂市临沭县七年级(下)期末数学试卷(含答案)

2023-2024学年山东省临沂市临沭县七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列调查中,适合采用全面调查的是( )A. 了解沂河的水质B. 了解全国中学生的睡眠时间C. 检测嫦娥六号月球探测器的零部件质量D. 了解某池塘中现有鱼的数量2.如图,笔直小路DE的一侧栽种有两棵小树BM,CN,小明测得AB=3m,AC=5m,则点A到DE的距离可能为( )A. 5mB. 4mC. 3mD. 2m3.由3<5,得3x>5x,则x的值可能是( )A. 1B. 0.5C. 0D. −14.不等式x−1<6的正整数解的个数有( )A. 3个B. 4个C. 5个D. 6个5.下列命题正确的是( )A. 若|x|=3,则x=3B. 若x2=25,则x=5C. 若一个数的相反数是−5,则这个数是5D. 若一个数的立方根是它本身,则这个数一定是非负数6.设y=kx+b,当x=1时,y=1;当x=2时,y=−2,则k,b的值分别为( )A. −1,2B. −3,4C. 1,0D. −5,67.如图,MN⊥x轴,点M(−3,5),MN=3,则点N的坐标为( )A. (−6,5)B. (−3,2)C. (3,−2)D. (−3,3)8.按下列要求画图,只能画出一条直线的是( )A. ①②③B. ②③C. ①②D. ①③9.如图,在一个边长为10的大正方形中,剪掉一大一小两个正方形,且较小正方形的面积为9,如果将剩余部分的纸片重新裁剪拼接成一个新正方形,则新正方形的边长最接近的整数为( )A. 5B. 6C. 7D. 810.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是( )A. 2023B. 2024C. 2025D. 2026二、填空题:本题共6小题,每小题3分,共18分。
山东省临沂市七年级下学期期末数学试卷

山东省临沂市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)下列四幅图中,∠1和∠2是同位角的是()A . ⑴⑵B . ⑶⑷C . ⑴⑵⑶D . ⑵、⑶⑷2. (2分)(2018·长春) 如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A . 44°B . 40°C . 39°D . 38°3. (2分)下列命题中逆命题是真命题的是(A . 对顶角相等B . 若两个角都是45°,那么这两个角相等C . 全等三角形的对应角相等D . 两直线平行,同位角相等4. (2分) 4的平方根是()A . 2B . -2C . ±2D . 165. (2分)(2017·陕西模拟) 27的立方根为()A . ±3B . 3C . ﹣3D . 96. (2分) (2016七上·乳山期末) 如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A . (3,﹣2)B . (2,﹣3)C . (﹣2,3)D . (﹣3,2)7. (2分)(2017·肥城模拟) 如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是()A . 10 海里B . 10 海里C . 10 海里D . 20 海里8. (2分)如图,宽为50厘米的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A . 400平方厘米B . 500平方厘米C . 600平方厘米D . 700平方厘米9. (2分)不等式2x-6>0的解集为()A . x>3.B . x<3.C . x>-3.D . x<-3.10. (2分)在数轴上表示不等式组的解集,正确的是()A .B .C .D .11. (2分)(2017·长沙) 下列说法正确的是()A . 检测某批次灯泡的使用寿命,适宜用全面调查B . 可能性是1%的事件在一次试验中一定不会发生C . 数据3,5,4,1,﹣2的中位数是4D . “367中有2人同月同日初生”为必然事件12. (2分)下列说法中:①一组数据可能有两个中位数;②将一组数据中的每一个数据都加上(或减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的页码能被2或3整除,这个事件是必然发生的;④要反映内江市某一天内气温的变化情况,宜采用折线统计图.其中正确的是()A . ①和③B . ②和④C . ①和②D . ③和④13. (2分)(2017·银川模拟) 若关于x、y的二元一次方程组的解满足x+y>1,则实数k 的取值范围是()A . k<0B . k<﹣1C . k<﹣2D . k<﹣314. (2分)(2017·吴忠模拟) 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x千米,原定的时间为y小时,则可列方程组为()A .B .C .D .15. (2分) (2019九上·开州月考) 若整数a使关于x的分式方程的解为负数,且使关于x的不等式组无解,则所有满足条件的整数a的值之和是()A . 5B . 7C . 9D . 1016. (2分)小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A . 6组B . 7组C . 8组D . 9组二、填空题 (共4题;共4分)17. (1分) (2016七下·邻水期末) 实数| ﹣3|的相反数是________.18. (1分)如果方程组的解也是方程4x﹣y+2a=0的解,则a=________.19. (1分)如果a<b.那么3﹣2a ________3﹣2b.(用不等号连接)20. (1分)某校九年级共390名学生参加模拟考试,随机抽取60名学生的数学成绩进行统计,其中有20名学生的数学成绩在135分以上,据此估计该校九年级学生在这次模拟考试中数学成绩在135分以上的大约有________ 名学生.三、解答题 (共6题;共66分)21. (10分) (2017七下·滦南期末) 解方程(不等式)组(1)解方程组;(2)解不等式组22. (15分) (2017七下·单县期末) △ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移5个单位后再向下平移3个单位得到△A1B1C1.(1)写出经平移后△A1B1C1 点A1、B1.C1的坐标(2)作出△A1B1C1 .(3)求△ABC的面积23. (10分)计算.(1).(2)24. (11分)(2018·威海) 为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表一周诗词诵背数量3首4首4首6首7首8首人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为________;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.25. (10分) (2017七下·江阴期中) 如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.26. (10分)(2017·营口模拟) 某物流公司承接A,B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共66分)21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
山东省临沂市七年级下学期期末数学试卷

山东省临沂市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·新乐模拟) 如图,以学校(点C)为观测点,小明家(点B)和小丰家(点A)分别位于学校的正南方向和正西南方向,并测得AC=6 km , BC=6(1+ )km ,则小丰家位于小明家的()A . 南偏西30°方向B . 北偏西30°方向C . 北偏东45°方向D . 南偏东60°方向2. (2分) (2019七下·临颍期末) 为了解全校学生的上学方式,在全校1000名学生中随机抽取了150名学生进行调查.下列说法正确的是()A . 总体是全校学生B . 样本容量是1000C . 个体是每名学生D . 样本是随机抽取的150名学生的上学方式3. (2分) (2017七下·西华期末) 以方程组的解为坐标的点(x , y)在().A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)不等式≤的非负整数解的个数为()A . 1个B . 2个C . 3个D . 4个5. (2分)若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()A . 14B . -4C . -12D . 126. (2分) (2019八上·长沙期中) 如图,将一个长方形纸片沿着折叠,使两点分别落在点处.若,则的度数为()A . 70°B . 40°C . 30°D . 20°7. (2分)已知一个正方形纸片面积为32cm2 ,则这个正方形纸片的边长为()A . 8 cmB . 4 cmC . 8 cmD . 4 cm8. (2分) (2019七下·鸡西期末) 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A .B .C .D .9. (2分) (2019七下·南平期末) 如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A . ∠D=∠AB . ∠1=∠2C . ∠3=∠4D . ∠D=∠DCE10. (2分)不等式组的解集是3<x<a+2,则a的取值范围是()A . a>1B . a≤3C . a<1或a>3D . 1<a≤3二、填空题 (共5题;共6分)11. (1分) (2019七上·潮安期末) 当取最大值时,方程的解为________.12. (1分) (2020八上·历下期末) 若关于和的二元一次方程组,满足,那么的取值范围是________.13. (2分)若方程4xm﹣n﹣5ym+n﹦6是二元一次方程,则m﹦________ ,n﹦________14. (1分) (2019七下·鼓楼期中) 如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为________cm2 .15. (1分) (2016八上·六盘水期末) 计算; ; ;的值,总结存在的规律,运用得到的规律可得: =________(注:)三、解答题 (共7题;共60分)16. (10分) (2019七下·莘县期中) 解下列方程组:(1)(2)17. (7分) (2017七下·枝江期中) 如图所示,已知BE平分∠ABC,∠1=∠2,求证:∠AED=∠C.完善以下推理过程.证明:∵BE平分∠ABC,∴∠1=∠3.(________)又∵∠1=∠2(已知),∴________=________(等量代换),∴________∥________(________)∴∠AED=∠C (________).18. (5分)当k为何负整数时,方程组的解适合x>y?19. (8分)(2013·宜宾) 为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖a0.1二等奖100.2三等奖b0.4优秀奖150.3请你根据以上图表提供的信息,解答下列问题:(1) a=________,b=________,n=________.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.20. (10分)(2018·开封模拟) 某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和两台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共80台,并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.21. (10分) (2019七下·长沙期末) 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B 型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?22. (10分)(2018·玉林模拟) 如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共7题;共60分)答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。
山东省临沂市七年级下学期数学期末考试试卷

山东省临沂市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)方程2x-3y=5,x+=6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有()个。
A . 1B . 2C . 3D . 42. (2分)(2018·重庆) 下列图形中一定是轴对称图形的是()A .B .C .D .3. (2分)(2014·杭州) 3a•(﹣2a)2=()A . ﹣12a3B . ﹣6a2C . 12a3D . 6a24. (2分) (2017七上·西安期末) 点、、是直线上的三点,是直线外一点,,,,则到直线的距离()A . 不大于B . 大于小于C . 大于小于D . 总是5. (2分) (2017八下·江东期中) 已知:一组数据x1 , x2 , x3 , x4 , x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A . 2,B . 2,1C . 4,D . 4,36. (2分) (2018八上·临河期中) 如图,△ABC与△A1B1C1关于直线l对称,将△A1B1C1向右平移得到△A2B2C2 ,由此得出下列判断:①∠A=∠A2;②A1B1=A2B2;③AB∥A2B2.其中正确的是()A . ①②B . ②③C . ①③D . ①②③7. (2分)(2019·银川模拟) 一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A . 平均数B . 中位数C . 众数D . 方差8. (2分)(2017·泰兴模拟) 如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A . 1B . 2C . 3D . 49. (2分)(2019·广西模拟) 如图,∠AOB=90°,∠B=30°,△A’OB’可以看作是由△AOB绕点0顺时针旋转a角度得到的,若点A’在AB上,则旋转角a的大小可以是()A . 30°B . 45°C . 60°D . 90°10. (2分)(2017·费县模拟) 如图,直线a∥b,直线c分别与a、b相交于A,B两点,AC⊥AB于点A,交直线b于点C.已知∠1=44°,则∠2的度数是()A . 36°B . 44°C . 46°D . 56°11. (2分)如图所示的△ABC中,∠ABC=90°,∠ACB=40°,AC∥BD,∠ABD=()A . 40°B . 50°C . 140°D . 130°12. (2分)下列说法正确的是()A . a,b,c是直线,且a∥b,b∥c,则a∥cB . a,b,c是直线,且a⊥b,b⊥c,则a⊥cC . a,b,c是直线,且a∥b,b⊥c,则a∥cD . a,b,c是直线,且a∥b,b∥c,则a⊥c二、填空题 (共6题;共6分)13. (1分)计算:(﹣5mn3)•7m2n2=________14. (1分) (2017八上·鄂托克旗期末) 已知x2+y2=10,xy=2,则(x﹣y)2=________.15. (1分)(2020·重庆模拟) 如图,正方形ABCD中,AB=2 ,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.16. (1分) (2017七下·蓟州期中) 完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=________(________)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF= ________(________)∠ABE= ________(________)∴∠ADF=∠ABE∴________∥________(________)∴∠FDE=∠DEB.(________ )17. (1分)(2010·希望杯竞赛) 已知多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多项式,则a2+b2=________。
山东省临沂市七年级下学期数学期末考试试卷

山东省临沂市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、精心选一选,慧眼识金! (共14题;共28分)1. (2分) (2018七下·龙海期中) 若a<b,则下面错误的变形是()A .B .C .D .2. (2分)(2013·杭州) 在一个圆中,给出下列命题,其中正确的是()A . 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B . 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C . 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D . 若两条弦平行,则这两条弦之间的距离一定小于圆的半径3. (2分)多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A . (m+2n)(m﹣2n)B . m+2nC . m﹣2nD . (m+2n)(m﹣2n)24. (2分)如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A . 45°B . 55°C . 60°D . 75°5. (2分) (2017七下·兰陵期末) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分)(2011·徐州) 下列运算正确的是()A . x•x2=x2B . (xy)2=xy2C . (x2)3=x6D . x2+x2=x47. (2分)分解因式x3-x的结果是()A . x(x2-1)B . x(x-1)2C . x(x+1)2D . x(x+1)(x-1)8. (2分) (2016八上·萧山期中) 小华在电话中问小明:“已知一个钝角三角形三边长分别是5,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A .B .C .D .9. (2分) (2017八上·临洮期中) 若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A . 5cmB . 8cmC . 10cmD . 17cm10. (2分) (2017七下·临沧期末) 如图,已知直线a∥b,∠1=70°,那么∠2的度数是()A . 60°B . 80°C . 90°D . 110°11. (2分)用两块相同的三角板按如图所示的方式作平行线AB和CD,能解释其中的道理的依据是()A . 内错角相等,两直线平行B . 同位角相等,两直线平行C . 同旁内角互补,两直线平行D . 平行于同一直线的两直线平行12. (2分)若代数式4x2-2x+5=7,那么代数式2x2-x+1的值等于()A . 2B . 3C . -2D . 413. (2分)(2017·全椒模拟) 因式分解x2y﹣4y的结果是()A . y(x2﹣4)B . y(x﹣2)2C . y(x+4)(x﹣4)D . y(x+2)(x﹣2)14. (2分)(2019·平顶山模拟) 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A .B .C .D . ﹣二、填空题 (共6题;共6分)15. (1分) (2018七上·襄城期末) 中国的领水面积约为370000 ,将370000用科学计数法表示为________.16. (1分)如果三角形的三边长度分别为,,,则的取值范围是________。
临沂市七年级下册数学期末试题及答案解答

临沂市七年级下册数学期末试题及答案解答一、选择题1.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 2.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2D .14a 2 3.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.下列图形中,不能通过其中一个四边形平移得到的是( ) A . B . C . D .6.计算23x x 的结果是( )A .5xB .6xC .8xD .23x 7.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 98.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 10.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.已知22a b -=,则24a b ÷的值是____.12.已知2m+5n ﹣3=0,则4m ×32n 的值为____13.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.16.若2a x =,5b x =,那么2a b x +的值是_______ ;17.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.18.分解因式:m 2﹣9=_____.19.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.20.计算212⎛⎫= ⎪⎝⎭______. 三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.22.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩. 23.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.24.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.25.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.26.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.27.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.28.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.2.D解析:D【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a +;求出两个图形面积然后做差即可.【详解】解:设长方形的宽为x cm ,则长为(x +a )cm ,则正方形的边长为()2242x a x x a ⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+, 二者面积之差为()222244144x ax a x ax a ++-+=, 故选:D .【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.3.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误.故选:A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.D解析:D【详解】解:A 、能通过其中一个四边形平移得到,不符合题意;B 、能通过其中一个四边形平移得到,不符合题意;C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .6.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.【详解】解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.A解析:A【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可.【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.9.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.12.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.13.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.14.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得311162315x y x y -=⎧⎨-=⎩①② ①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91x y =⎧⎨=⎩故答案为:91x y =⎧⎨=⎩【点睛】 本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.16.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.17.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a-b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.18.(m+3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ).【详解】解:m2﹣9=m2﹣32=(m+3)(m ﹣3).故答案为解析:(m +3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ).【详解】解:m 2﹣9=m 2﹣32=(m +3)(m ﹣3).故答案为:(m +3)(m ﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.19.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.20.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111==224⎛⎫ ⎪⎝⎭. 故答案为14. 【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 三、解答题21.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.22.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.23.(1)m=﹣3,n=﹣5;(2)x3+5x2+8x+4=(x+1)(x+2)2.【解析】【分析】(1)根据x3﹣5x2+x+10=(x﹣2)(x2+mx+n),得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.24.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A ′BP+∠D ,∴∠BPD=∠ABP+∠D+∠BQD ,故答案为:∠BPD=∠ABP+∠D+∠BQD ;(3)过点E 作EN ∥BF ,如图d 所示:则∠B=∠BEN ,同(1)得:∠FQE=∠F+∠QEN ,∴∠EQF=∠B+∠E+∠F ,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A ,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F ; ∵∠AMP=∠FMQ ,∴126°-∠A=80°-∠F ,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.25.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE ∥AB ,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF ∥AC ;(2)∵DE ∥AB ,∠1=120°,∴∠FDE=60°,∵DF 平分∠BDE ,∴∠FDB=60°,∵DF ∥AC ,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.27.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<; ②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤; 当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临沂市七年级下学期数学期末试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共40分)
1. (4分) (2017八上·郑州期中) 若a>0,b<0,则点(a,b−1)在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
2. (4分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()
A . 16°
B . 33°
C . 49°
D . 66°
3. (4分)下列调查,样本具有代表性的是()
A . 了解全校同学对课程的喜欢情况,对某班男同学进行调查
B . 了解某小区居民的防火意识,对你们班同学进行调查
C . 了解商场的平均日营业额,选在周末进行调查
D . 了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查
4. (4分)(2017·北京) 如图所示,点P到直线l的距离是()
A . 线段PA的长度
B . 线段PB的长度
C . 线段PC的长度
D . 线段PD的长度
5. (4分)如图,若∠1=∠2,DE∥BC,则:①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;
⑤∠BFG=∠BDC,其中正确的结论是()
A . ①②③
B . ①②⑤
C . ①③④
D . ③④
6. (4分) (2020八上·淅川期末) 下列语句中正确的是()
A . 的平方根是
B . 的平方根是
C . 的算术平方根是
D . 的算术平方根是
7. (4分) (2019七下·西宁期中) 下列实数是无理数的是()
A . ﹣1
B . 0
C .
D .
8. (4分)(2019·通辽) 关于的二元一次方程组的解满足,则直线
与双曲线在同一平面直角坐标系中大致图象是()
A .
B .
C .
D .
9. (4分) (2019八下·罗湖期中) ①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()
A . 1个
B . 2个
C . 3个
D . 4个
10. (4分)观察下列等式:21=2;22=4;23=8;24=16;25=32……通过观察,用你所发现的规律确定22018的个位数字是()
A . 2
B . 4
C . 6
D . 8
二、填空题 (共6题;共32分)
11. (12分)(2019·遵义) 计算3 的结果是________.
12. (4分) (2017七下·江阴期中) 当 ________时,代数式的值是正数.
13. (4分)(2019·云南) 如图,若AB∥CD,∠1=40度,则∠2=________度.
14. (4分) (2019七下·通州期末) 北京市通州区2019年4月份的每日最高气温如下表所示:(单位:℃)
根据以上信息,将下面的频数分布表补充完整:________,________,________,________.
15. (4分)小彬拿20元钱到超市买来果汁x瓶,酸奶y瓶,找回7元,已知果汁每瓶2元,酸奶每瓶3元,列出关于x、y的二元一次方程为________ .
16. (4分) (2017九上·老河口期中) 如图,在平面直角坐标系中,点A(0,2),B(,0),点P为线段AB的中点,将线段AB绕点O顺时针旋转60°后点P的对应点的坐标是________.
三、解答题 (共9题;共78分)
17. (8分) (2018八上·建平期末) 解方程组
(1),
(2).
18. (8分)(2018·苏州模拟) 解不等式组: .
19. (8分) (2020七下·达县期中) 完成下列证明:
如图,已知AD⊥BC,EF⊥BC,∠1=∠2.
求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°(▲)
∴EF∥AD(▲)
∴∠1=∠BAD(▲)
又∵∠1=∠2(已知)
∴▲(等量代换)
∴DG∥BA.(▲)
20. (8.0分)(2016·姜堰模拟) 为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生是________;
(2)求图1中∠α的度数是________°,
(3)把图2条形统计图补充完整;
(4)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为________.
21. (8分) (2016九上·东营期中) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1 ,已知点C1的坐标为(4,0),写出顶点A1 , B1的坐标,并画出△A1B1C1;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3 ,写出△A3B3C3的各顶点的坐标,并画出
△A3B3C3 .
22. (8分) (2016九上·肇庆期末) 如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2 .
23. (9.0分) (2018八上·茂名期中) 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶距离y(km)与时间x(h)的函数图象.
(1)图中的m=________,a=________km(直接写出结果);
(2)求当1.5≤x≤7时,甲车行驶的路程y甲(km)与时间x(h)的函数关系式;
(3)当乙车行驶多长时间时,两车恰好相距50km?
24. (10分) (2019七下·江门期末) 如图,在四边形中,的平分线交于点,交的延长线于点,
(1)写出对由条件推出的相等或互补的角
(2)与相等吗?为什么?
(3)证明:
请在下面的括号内,填上推理的根据,并完成下面的证明:
(①)
(已证),,(②)
又(角平分线的定义)
(③)
25. (11.0分)与在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标:
________; ________; ________;
(2)说明由经过怎样的平移得到:
________.
(3)若点(,)是内部一点,则平移后内的对应点的坐标为________;
(4)求的面积.
参考答案一、选择题 (共10题;共40分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共32分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共9题;共78分)
17-1、17-2、18-1、
19-1、20-1、20-2、
20-3、20-4、
21-1、21-2、
21-3、
22-1、23-1、
23-2、
23-3、24-1、24-2、
24-3、
25-1、25-2、25-3、25-4、。