最新全国二卷理科数学高考真题及答案

合集下载

2024年全国统一高考数学试卷(新高考Ⅱ)正式版含答案解析

2024年全国统一高考数学试卷(新高考Ⅱ)正式版含答案解析

绝密★启用前2024年全国统一高考数学试卷(新高考Ⅱ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z=−1−i,则|z|=( )A. 0B. 1C. √ 2D. 22.已知命题p:∀x∈R,|x+1|>1,命题q:∃x>0,x3=x,则( )A. p和q都是真命题B. ¬p和q都是真命题C. p和¬q都是真命题D. ¬p和¬q都是真命题3.已知向量a⃗,b⃗⃗满足:|a⃗|=1,|a⃗⃗+2b⃗⃗|=2,且(b⃗⃗−2a⃗⃗)⊥b⃗⃗,则|b⃗⃗|=( )A. 12B. √ 22C. √ 32D. 14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表:据表中数据,结论中正确的是( )A. 100块稻田亩产量中位数小于1050kgB. 100块稻田中的亩产量低于1100kg的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg至300kg之间D. 100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(y>0),从C上任意一点P向x轴作垂线PP′,P′为垂足,则线段PP′的中点M的轨迹方程为( )A. x 216+y24=1(y>0) B. x216+y28=1(y>0)C. y 216+x24=1(y>0) D. y216+x28=1(y>0)6.设函数f(x)=a(x+1)2−1,g(x)=cosx+2ax(a为常数),当x∈(−1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=( )A. −1B. 12C. 1D. 27.已知正三棱台ABC−A1B1C1的体积为523,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为( )A. 12B. 1C. 2D. 38.设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为( )A. 18B. 14C. 12D. 1二、多选题:本题共3小题,共18分。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案解析)

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案解析)
所以,圆心到直线 的距离为 .
故选:B.
【点睛】
本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.
6.C
【分析】
取 ,可得出数列 是等比数列,求得数列 的通项公式,利用等比数列求和公式可得出关于 的等式,由 可求得 的值.
【详解】
在等式 中,令 ,可得 , ,
所以,数列 是以 为首项,以 为公比的等比数列,则 ,
所以 ,

即 ,解得 ,
所以 .
故选:C
【点晴】
本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
5.B
【分析】
由题意可知圆心在第一象限,设圆心的坐标为 ,可得圆的半径为 ,写出圆的标准方程,利用点 在圆上,求得实数 的值,利用点到直线的距离公式可求出圆心到直线 的距离.
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
23.已知函数 .
(1)当 时,求不等式 的解集;
(2)若 ,求a的取值范围.
参考答案
1.A
【分析】
首先进行并集运算,然后计算补集即可.
【详解】
由题意可得: ,则 .
故选:A.
故选:D.
【点睛】
本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.
3.B
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】
由题意,第二天新增订单数为 ,
,故至少需要志愿者 名.
故选:B
【点晴】
本题主要考查函数模型的简单应用,属于基础题.

全国2卷理科数学与答案

全国2卷理科数学与答案

普通高等学校招生全国统一考试(Ⅱ卷)逐题解析欧阳学文理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

【题目1】(·新课标全国Ⅱ卷理1)1.()A. B. C. D.【命题意图】本题主要考查复数的四则运算及共轭复数的概念,意在考查学生的运算能力.【解析】解法一:常规解法解法二:对十法可以拆成两组分式数,运算的结果应为形式,(分子十字相乘,分母为底层数字平方和),(分子对位之积差,分母为底层数字平方和).解法三:分离常数法解法四:参数法,解得故【知识拓展】复数属于新课标必考点,考复数的四则运算的年份较多,复数考点有五:1.复数的几何意义();2.复数的四则运算;3.复数的相等的充要条件;4.复数的分类及共轭复数;5.复数的模【题目2】(·新课标全国Ⅱ卷理2)2.设集合,.若,则()A. B. C. D.【命题意图】本题主要考查一元二次方程的解法及集合的基本运算,以考查考生的运算能力为目的.【解析】解法一:常规解法∵∴1是方程的一个根,即,∴故解法二:韦达定理法∵∴1是方程的一个根,∴ 利用伟大定理可知:,解得:,故解法三:排除法∵集合中的元素必是方程方程的根,∴,从四个选项A﹑B﹑C﹑D看只有C选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义相结合,集合考点有二:1.集合间的基本关系;2.集合的基本运算.【题目3】(·新课标全国Ⅱ卷理3)3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【命题意图】本题主要考查等比数列通向公式及其前项和,以考查考生的运算能力为主目的.【解析】解法一:常规解法一座7层塔共挂了381盏灯,即;相邻两层中的下一层灯数是上一层灯数的2倍,即,塔的顶层为;由等比前项和可知:,解得.解法二:边界效应等比数列为递增数列,则有,∴,解得,∴.【知识拓展】数列属于高考必考考点,一般占10分或12分,即两道小题或一道大题,其中必有一道小题属于基础题,一道中档偏上题或压轴题,大题在17题出现,属于基础题型,高考所占分值较大,在高中教学中列为重点讲解内容,也是大部分学生的难点,主要是平时教学题型难度严重偏离高考考试难度,以及研究题型偏离命题方向,希望能引起注意;考试主线非常明晰,1.等差数列通向公式及其前项和;2. 等比数列通向公式及其前项和.【题目4】(·新课标全国Ⅱ卷理4)4.如图,网格纸上小正方形的边长为1,学科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A .B .C .D .【命题意图】本题主要考查简单几何体三视图及体积,以考查考生的空间想象能力为主目的.【解析】解法一:常规解法从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,具体图像如下:切割前圆柱切割中切割后几何体从上图可以清晰的可出剩余几何体形状,该几何体的体积分成两部分,部分图如下:从左图可知:剩下的体积分上下两部分阴影的体积,下面阴影的体积为,,,∴;上面阴影的体积是上面部分体积的一半,即,与的比为高的比(同底),即,,故总体积.第二种体积求法:,其余同上,故总体积.【知识拓展】三视图属于高考必考点,几乎年年考三视图,题型一般有五方面,1.求体积;2.求面积(表面积,侧面积等);3.求棱长;4.视图本质考查(推断视图,展开图,空间直角坐标系视图);5.视图与球体综合联立,其中前三个方面考的较多.【题目5】(·新课标全国Ⅱ卷理5)5.设,满足约束条件,则的最小值是()A. B. C. D.【命题意图】本题主要考查线性规划问题,以考查考生数形结合的数学思想方法运用为目的, 属于过渡中档题.【解析】解法一:常规解法 根据约束条件画出可行域(图中阴影部分), 作直线,平移直线,将直线平移到点处最小,点的坐标为,将点的坐标代到目标函数, 可得,即.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点的坐标为,点的坐标为,点的坐标为,所求值分 别为﹑﹑,故,.解法三:隔板法首先 看约束条件方程的斜率 约束条件方程的斜率分别为﹑﹑;y = 32x +3y 3=02x 3y +3=0其次排序按照坐标系位置排序﹑﹑;再次看目标函数的斜率和前的系数看目标函数的斜率和前的系数分别为﹑;最后画初始位置,跳格,找到最小值点目标函数的斜率在之间,即为初始位置,前的系数为正,则按逆时针旋转,第一格为最大值点,即,第二个格为最小值点,即,只需解斜率为和这两条线的交点即可,其实就是点,点的坐标为,将点的坐标代到目标函数,可得,即.【知识拓展】线性规划属于不等式范围,是高考必考考点,常考查数学的数形结合能力,一般变化只在两个方向变化,1.约束条件的变化;2.目标函数的变化;约束条件变化从封闭程度方面变化,目标函数则从方程的几何意义上变化,但此题型属于高考热点题型(已知封闭的约束条件,求已知的二元一次方程目标函数),此题型属于过渡中档题,只需多积累各题型解决的方法即可.【题目6】(·新课标全国Ⅱ卷理6)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【命题意图】本题主要考查基本计数原理的应用,以考查考生的逻辑分析能力和运算求解能力为主.【解析】解法一:分组分配之分人首先分组将三人分成两组,一组为三个人,有种可能,另外一组从三人在选调一人,有种可能;其次排序两组前后在排序,在对位找工作即可,有种可能;共计有36种可能.解法二:分组分配之分工作工作分成三份有种可能,在把三组工作分给3个人有可能,共计有36种可能.解法三:分组分配之人与工作互动先让先个人个完成一项工作,有种可能,剩下的一项工作在有3人中一人完成有种可能,但由两项工作人数相同,所以要除以,共计有36种可能.解法四:占位法其中必有一个完成两项工作,选出此人,让其先占位,即有中可能;剩下的两项工作由剩下的两个人去完成,即有种可能,按分步计数原理求得结果为36种可能.解法五:隔板法和环桌排列首先让其环桌排列,在插两个隔板,有种可能,在分配给3人工作有种可能,按分步计数原理求得结果为36种可能.【知识拓展】计数原理属于必考考点,常考题型有1.排列组合;2.二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.【题目7】(·新课标全国Ⅱ卷理7)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,学科&网给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩【命题意图】本题考查推理与证明的有关知识,考查考生推理论证能力.【解析】解法一:假设法甲看乙﹑丙成绩,甲不知道自己的成绩,那么乙﹑丙成绩中有一人为优,一人为良;乙已经知道自己的成绩要么良,要么优,丙同样也是,当乙看到丙的成绩,一定知道自己的成绩,但是丙一定不知道自己的成绩;而丁同学也知道自己的成绩要么良,要么优,只有看到甲的成绩,才能判断自己的成绩,丁同学也一定知道自己的成绩,故只有乙﹑丁两位同学知道自己的成绩.解法二:选项代入法当我们不知道如何下手,则从选项入手,一一假定成立,来验证我们的假设是否成立,略【知识拓展】推理与证明近两年属于热点考题,的第15题(理)﹑第16题(文),今年的理(7)﹑文(9),属于创新题,突出新颖,但题的难度不大,需要考生冷静的思考,抓住主要知识要点,从而能够快速做题,属于中档题.【题目8】(·新课标全国Ⅱ卷理8)8.执行右面的程序框图,如果输入的,则输出的()A.2 B.3 C.4 D.5【命题意图】本题考查程序框图的知识,意在考查考生对循环结构的理解与应用.【解析】解法一:常规解法∵,,,,,∴ 执行第一次循环:﹑﹑;执行第二次循环:﹑﹑;执行第三次循环:﹑﹑;执行第四次循环:﹑﹑;执行第五次循环:﹑﹑;执行第五次循环:﹑﹑;当时,终止循环,输出,故输出值为3.解法二:数列法,,裂项相消可得;执行第一次循环:﹑﹑,当时,即可终止,,即,故输出值为3.【题目9】(·新课标全国Ⅱ卷理9)9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2 B. C. D.【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想.【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为,根据直线与圆的位置关系可求得圆心到渐进线的距离为,∴ 圆心到渐近线的距离为,即,解得.解法二:待定系数法设渐进线的方程为,根据直线与圆的位置关系可求得圆心到渐进线的距离为,∴ 圆心到渐近线的距离为,即,解得;由于渐近线的斜率与离心率关系为,解得.解法三:几何法从题意可知:,为等边三角形,所以一条渐近线的倾斜较为,由于,可得,渐近线的斜率与离心率关系为,解得.解法四:坐标系转化法根据圆的直角坐标系方程:,可得极坐标方程,由可得极角,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以,渐近线的斜率与离心率关系为,解得.解法五:参数法之直线参数方程如上图,根据双曲线的标准方程可求得渐近线方程为,可以表示点的坐标为,∵,∴点的坐标为,代入圆方程中,解得.【知识拓展】双曲线已成为高考必考的圆锥曲线内容(理科),一般与三角形﹑直线与圆﹑向量相结合,属于中档偏上的题,但随着二卷回归基础的趋势,圆锥曲线小题虽然处于中档题偏上位置,但难度逐年下降.【题目10】(·新课标全国Ⅱ卷理10)10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B. C. D.【命题意图】本题考查立体几何中的异面直线角度的求解,意在考查考生的空间想象能力【解析】解法一:常规解法在边﹑﹑﹑上分别取中点﹑﹑﹑,并相互连接.由三角形中位线定理和平行线平移功能,异面直线和所成的夹角为或其补角,通过几何关系求得,,,利用余弦定理可求得异面直线和所成的夹角余弦值为.解法二:补形通过补形之后可知:或其补角为异面直线和所成的角,通过几何关系可知:,,,由勾股定理或余弦定理可得异面直线和所成的夹角余弦值为.解法三:建系建立如左图的空间直角坐标系,,,,∴,∴解法四:投影平移三垂线定理设异面直线和所成的夹角为利用三垂线定理可知:异面直线和所成的夹角余弦值为.【知识拓展】立体几何位置关系中角度问题一直是理科的热点问题,也是高频考点,证明的方法大体有两个方向:1.几何法;2.建系;几何法步骤简洁,但不易想到;建系容易想到,但计算量偏大,平时复习应注意各方法优势和不足,做到胸有成竹,方能事半功倍.【题目11】(·新课标全国Ⅱ卷理11)11.若是函数的极值点,则的极小值为()A. B. C. D.1【命题意图】本题主要考查导数的极值概念及其极大值与极小值判定条件,意在考查考生的运算求解能力.【解析】解法一:常规解法∵∴ 导函数∵∴∴导函数令,∴,当变化时,,随变化情况如下表:++0 0极大值极小值从上表可知:极小值为.【知识拓展】导数是高考重点考查的对象,极值点的问题是非常重要考点之一,大题﹑小题都会考查,属于压轴题,但难度在逐年降低.【题目12】(·新课标全国Ⅱ卷理12)12.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是()A. B. C. D.【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生转化与化归思想和运算求解能力【解析】解法一:建系法,连接,,,∴∴∴,∴∴最小值为解法二:均值法∵,∴由上图可知:;两边平方可得∵,∴∴,∴最小值为解法三:配凑法∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通法就是建系法,比较直接,易想,但有时计算量偏大.二、填空题:本题共4小题,每小题5分,共20分。

高考全国卷2数学理科试卷及答案

高考全国卷2数学理科试卷及答案

高考全国卷2数学理科试卷及答案1234567果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密,布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发,威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿,出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的,景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,,标准答案一、填空题。

最新2022年高考全国2卷理数试题(解析版)-打印

最新2022年高考全国2卷理数试题(解析版)-打印

最新2022年高考全国2卷理数试题(解析版)-打印改写后】18.一个三棱锥的底面是一个俯视图,高为3.求该几何体的体积。

解析:该几何体是一个三棱锥,底面是一个俯视图,高为3.所以,它的体积为V=1/3×底面积×高=1/3×6×3×3=9.12.一个等轴双曲线C的中心在原点,焦点在x轴上,与抛物线y=2x²的准线交于A、B两点,AB=4√3.那么C的实轴长为多少?解析:设C:x²/4-y²/a²=1与y的准线l:x=-4交于A(-4,2)、B(-4,-2/3)两点。

则a²=16-4/9=128/9,实轴长为2a=8/3.9.函数f(x)=sin(ωx+π)在区间(0,π)上单调递减。

那么ω的取值范围是多少?解析:由f(x)=sin(ωx+π),得ωx+π∈[π/2,3π/2],即ωx∈[0,π]。

因为在区间(0,π)上f(x)单调递减,所以ω应该满足ω≤π/π=1,又因为sin(ωx+π)是偶函数,所以ω应该满足ω≥0,综上可知ω∈[0,1]。

10.函数f(x)=ln(x+1)-x的图像大致是什么样子?解析:令g(x)=ln(1+x)-x,则g'(x)=-1/(1+x)-1),所以g(x)在(-1,0)上单调递减,在(0,+∞)上单调递增,且g(0)=0.因此,f(x)=g(x+1)在(-1,0)上单调递减,在(0,+∞)上单调递增,且f(0)=0.由此可知,f(x)的图像大致是一条过点(0,0)的单峰函数。

11.一个三棱锥S-ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2√3.那么此棱锥的体积是多少?解析:由△ABC是边长为1的正三角形可知,△ABC的外接圆半径R=√3/3.又因为S-ABC的所有顶点都在球O的表面上,所以点S到面ABC的距离为2R=2√3/3.因此,此棱锥的体积为V=1/3×S△ABC×2R=1/3×(1/2×1×(√3/2))×(2√3/3)=1/9.12.设点P在曲线y=1/(1+x)上,点Q在曲线y=x^2上,且PQ过第一象限的点(1,1)。

2020年普通高等学校招生全国统一考试(全国II卷理科) 数学试题及答案(学生版)

2020年普通高等学校招生全国统一考试(全国II卷理科) 数学试题及答案(学生版)

2020年普通高等学校招生全国统一考试(全国II卷理科)数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。

本试卷满分150分。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A B=( )U A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3} 2.若α为第四象限角,则( )A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块 B.3474块 C.3402块 D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230--=的距离为( )x yA .5B .5C .5D .56.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D .11.若2x -2y <3−x -3−y ,则( )A .ln(y-x+1)>0B .ln(y-x+1)<0C .ln ∣x-y ∣>0D .ln ∣x-y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .11001二、填空题(本题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)附答案

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)附答案

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合,则()A. B.C. D.2.若为第四象限角,则()A. B. C. D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10名B. 18名C. 24名D. 32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块5.若过点的圆与两坐标轴都相切,则圆心到直线的距离为( )A. B. C. D.6.数列中,,,若,则()A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为( )A.B.C.D.8.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )A. 4B. 8C. 16D. 329.设函数,则( )A. 是偶函数,且在单调递增B. 是奇函数,且在单调递减C. 是偶函数,且在单调递增D. 是奇函数,且在单调递减10.已知是面积为的等边三角形,且其顶点都在球的表面上,若球的表面积为,则球到平面的距离为()A. B. C. D.11. 11.若,则()A. B. C. D.12.0-1周期序列在通信技术中有着重要应用,若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标.下列周期为5的0-1序列中,满足的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…二、填空题(本大题共4小题,共20.0分)13.已知单位向量的夹角为45°,与垂直,则_______.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有______种.15.设复数满足,则______.16.设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是________.①②③④三、解答题(本大题共7小题,共82.0分)17.中,.(1)求;(2)若,求周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.19.已知椭圆:的右焦点与抛物线的焦点重合,的中心与的的顶点重合.过且与轴垂直的直线交于,两点,交于,两点,且.(1)求的离心率;(2)设是与的公共点,若,求与的标准方程.20.如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)证明:,且平面;(2)设为△的中心,若,且,求直线与平面所成角的正弦值.21.已知函数.(1)讨论在区间的单调性;(2)证明:;(3)设,证明:.22.已知曲线,的参数方程分别为:(为参数),:(为参数).(1)将,的参数方程化为普通方程;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系.设,的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程.23.已知函数.(1)当时,求不等式的解集;(2)若,求的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查集合的运算,属基础题.先求出,再求补集.【解答】解:,故选A.2.【答案】D【解析】【分析】本题考查三角函数在各象限的正负,属于基础题.根据所给角是第四象限角,写出角的范围,求出的范围,进而可判断出三角函数值的正负.【解答】解:∴是第三象限或第四象限角或终边在y轴的非正半轴上,故选D.3.【答案】B【解析】【分析】本题考查对概率的理解,通过条件容易得出第二天需配送的总订单数,进而可求出所需至少人数.【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为名.故选B.4.【答案】C【解析】【分析】本题考查等差数列前n项和的性质,属于中档题.由成等差数列,可得每一层的环数,通过等差数列前n项和公式可求得三层扇形石板的总数.【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差,,由等差数列性质知成等差数列,且,则,得,则三层共有扇形面石板为故选C.5.【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为,则半径为,圆过点,则,解得或,所以圆心坐标为,圆心到直线的距离都是故选B.6.【答案】C【解析】【分析】本题考查等比数列的判定及等比数列前n项求和,属基础题.取m=1,知数列是等比数列,再由等比数列前n项和公式可求出k的值.【解答】解:取,则,又,所以,所以是等比数列,则,所以,得故选C.7.【答案】A【解析】【分析】本题三视图,考查空间想象能力,属基础题.由三视图,通过还原几何体,观察可知对应点.【解答】解:该几何体是两个长方体拼接而成,如图所示,显然选A.8.【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线,属于中档题.【解答】解:双曲线C的两条渐近线分别为,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到,则, ,即,所以焦距.故选B.9.【答案】D【解析】【分析】本题主要考查函数的奇偶性、单调性,属于中档题.【解答】解:函数,则为奇函数,时,,单调递增;时,,单调递减.故选D.10.【答案】C【解析】【分析】本题主要考查点到平面的距离求法,属于中档题.【解答】解:设△ABC的外接圆圆心为,设,圆的半径为r,球O的半径为R,△ABC的边长为a,则,可得,于是,由题意知,球O的表面积为,则,由,求得,即O到平面ABC的距离为1.故选C.11.【答案】A【解析】【分析】本题主要考查对数函数与指数函数,考查函数的单调性,属于较难题.【解答】解:,设,则,所以函数在R上单调递增,因为,所以,则,.故选A.12.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,,,不满足,排除;对于B选项,,不满足,排除;对于C选项,,,,,满足;对于D选项,,不满足,排除;故选C.13.【答案】【解析】【分析】本题主要考查平面向量的运算以及向量间的垂直关系,属于基础题.【解答】解:由单位向量的夹角为,与垂直,所以,则.故答案为.14.【答案】36【解析】【分析】本题考查计数原理,属于基础题.【解答】解:由题意可得不同的安排方法有:.答案:36.15.【答案】【解析】【分析】本题考查复数的运算及复数的模,属于基础题.【解答】解:在复平面内,用向量方法求解,原问题即等价于平面向量满足,,求,由,可得,故.故答案为.16.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于:可设与,所得平面为若与相交,则交点A必在平面内.同理与的交点B在平面内,故直线AB在平面内,即在平面内,故为真命题.对于过空间中任意三点,若三点共线,可形成无数个平面,故为假命题.对于空间中两条直线的位置关系有平行,相交,异面,故为假命题.对于若,则m垂直于平面内的所有直线,故,故为真命题.综上可知,为真命题,为真命题,为真命题.故答案为①③④.17.【答案】解:在中,设内角A,B,C的对边分别为a,b,c,因为,由正弦定理得,,即,由余弦定理得,,因为,所以.由知,,因为,即,由余弦定理得,,所以,由基本不等式可得,所以所以当且仅当时取得等号,所以周长的最大值为.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题.直接利用正余弦定理即可求解;利用余弦定理与基本不等式即可求解.18.【答案】解:(1)由题可知,每个样区这种野生动物数量的平均数为,所以该地区这种野生动物数量的估计值为(2)根据公式得(3)为了提高样本的代表性,选用分层抽样法更加合理,因为分层抽样可以按照规定的比例从不同的地块间随机抽样,其代表性较好,抽样误差更小。

全国二卷理科数学高考真题及详解(全word版)

全国二卷理科数学高考真题及详解(全word版)

2021年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试完毕后,将本试卷和答题卡一并交回。

考前须知:1.答题前,考生先将自己的XX、XX填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:此题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.3i1 iA.12i B.12i C.2i D.2i2.设集合A 1,2,4,Bx24xm0 ,假设A B 1,那么BA.1,3 B..1,0 C.1,3 D.1,53.我国古代数学名著?算法统宗?中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,那么塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一局部后所得,那么该几何体的体积为A.90B.63C.42D.362x 3y 3 ,05.设x、y满足约束条件2x 3y 3 ,那么z 2xy的最小值是0y 3,0A.15 B.9 C.1 D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,那么不同的安排方式共有A.12种B.18种C.24种D.36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向教师询问成语竞猜的成绩.教师说:你们四人中有 2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,那么 A .乙可以知道四人的成绩B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的a1,那么输出的S 开场A .2B .3 输入aC .4S=0,K=1 D .5 K6 否 是S=S+a K a=-a K=K+1 输出S开场.假设双曲线C:x2y 2 1(a0,b0)的一条渐近线被圆 (x 2) 2y 24 所截得的弦9 a 2 b 2长为2,那么C 的离心率为A . 2 . 3 . 2D . 2 3B C310.直三棱柱ABCA 1B 1C 1中,ABC120 , AB2,BC CC 1 1,那么异面直线AB 1与BC 1所成角的余弦值为A .3B .15C .10D .3255311.假设x2是函数f(x)(x 2ax 1)e x1的极值点,那么f(x)的极小值为A .1B .2e 3C .5e 3D .112.ABC 是边长为2的等边三角形,P 为平面ABC 内一点,那么PA(PB PC)的 最小值是A .2B . 3C . 4D . 1 2 3二、填空题:此题共 4小题,每题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a =a S =S +a ∙K 是否输入a S =0,K =1K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C的离心率为()A .2 BCD10.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =.14.函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是. 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑.16.已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B (2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )其频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:旧养殖法/kgO/kg新养殖法O(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠=E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M -AB -D 的余弦值20.(12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修4-5:不等式选讲](10分) 已知330,0,2a b a b >>+=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.2017年普通高等学校招生全国统一考试理科数学(Ⅱ)试题答案一、选择题1.D2.C3.B4.B5.A6.D7.D8.B9.A 10.C 11.A 12.B 二、填空题13. 1.96 14. 1 15.2n1n + 16. 6 三、解答题 17.解:(1)由题设及2sin 8sin 2A B C B ππ++==得,故sin 4-cosB B =(1)上式两边平方,整理得 217cos B-32cosB+15=0解得 15cosB=cosB 171(舍去),=(2)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆== 又17=22ABC S ac ∆=,则 由余弦定理及a 6c +=得2222b 2cos a 2(1cosB)1715362(1)2174a c ac Bac =+-=-+=-⨯⨯+=(+c )所以b=2 18.解:(1)记B 表示事件“旧养殖法的箱产量低于50kg ”,C 表示事件“新养殖法的箱产量不低于50kg ” 由题意知()()()()P A P BC P B P C == 旧养殖法的箱产量低于50kg 的频率为0.0400.0340.0240.0140.0125=0.62++++⨯()故()P B 的估计值为0.62新养殖法的箱产量不低于50kg 的频率为0.0680.0460.0100.0085=0.66+++⨯()故()P C 的估计值为0.66因此,事件A 的概率估计值为0.620.660.4092⨯= (2)根据箱产量的频率分布直方图得列联表()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于55kg 的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故新养殖法箱产量的中位数的估计值为0.5-0.3450+2.35kg 0.068()≈5. 19.解:(1)取PA 中点F ,连结EF ,BF .因为E 为PD 的中点,所以EF AD ,12EF AD =,由90BAD ABC ∠=∠=︒得BC AD ∥,又12BC AD = 所以EF BC ∥.四边形BCEF 为平行四边形,CE BF ∥. 又BF PAB ⊂平面,CE PAB ⊄平面,故CE PAB ∥平面 (2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系A -xyz,则则(000)A ,,,(100)B ,,,(110)C ,,,(01P ,,(10PC =,,,(100)AB =,,则(x 1),(x 1BM y z PM y z =-=--,,,,因为BM 与底面ABCD 所成的角为45°,而(00)=n ,,1是底面ABCD 的法向量,所以0cos ,sin 45BM =n=即(x -1)²+y ²-z ²=0又M 在棱PC 上,设,PM PC λ=则x ,1,y z λ===由①,②得x x y y ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪=-=⎪⎪⎩⎩=1+=1-22=1(舍去),=1z z 22所以M 1-,1⎛ ⎝⎭,从而1-,1⎛= ⎝⎭AM设()000,,x y z m =是平面ABM 的法向量,则(0000200即00⎧⎧++==⎪⎪⎨⎨=⎪⎪=⎩⎩x y AM AB x m m所以可取m =(0,2).于是cos 105==m nm,n m n因此二面角M -AB -D20.解(1)设P (x,y ),M (x 0,y 0),设N (x 0,0), ()()00,,0,=-=NP x x y NM y由2=NP NM 得00=,=x x y y因为M (x 0,y 0)在C 上,所以22122+=x y因此点P 的轨迹方程为222+=x y(2)由题意知F (-1,0).设Q (-3,t ),P(m,n),则()()3,1,,33t =-=---=+-OQ ,PF m n OQ PF m tn ,()(),3,==---OP m,n PQ m,t n由1=OP PQ 得22-31-+-=m m tn n ,又由(1)知22+=2m n ,故3+3m -tn=0所以0=OQ PF ,即⊥OQ PF 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.解:(1)()f x 的定义域为()0,+∞设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=--设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x - 22.解:(1)设P 的极坐标为()(),>0ρθρ,M 的极坐标为()()11,>0ρθρ,由题设知cos 14=,=ρρθOP OM = 由16OM OP =得2C 的极坐标方程()cos =4>0ρθρ因此2C 的直角坐标方程为()()22240x y x -+=≠(2)设点B 的极坐标为()(),>0B Bραρ,由题设知cos =2,=4B ραOA ,于是△OAB 面积1=sin 24cos sin 32sin 232B S OA AOB ρπααπα∠⎛⎫=- ⎪⎝⎭⎛⎫=--⎪⎝⎭≤+当=-12πα时,S 取得最大值所以△OAB 面积的最大值为 23.解: (1)()()()()()5565562333344222244++=+++=+-++=+-≥a b ab a ab a b b a ba b ab a b ab a b(2)因为()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b所以()3+8≤a b ,因此a+b≤2.。

相关文档
最新文档