安徽工业大学附属中学高中数学 1.集合和函数概念 单调性与最大(小)值 (一)教案 湘教版必修1
高中数学第一章集合与函数概念1.3.1单调性与最大小值第一课时函数的单调性课件新人教A版必修1

x12
-
1 x1
-
x22
+
1 x2
=(x1-x2)(x1+x2+ 1 ). x1 x2
因为 0<x1<x2,所以 x1-x2<0,x1+x2+ 1 >0. x1 x2
所以 f(x1)-f(x2)<0,即 f(x1)<f(x2).
所以函数 f(x)=x2- 1 在区间(0,+∞)上是增函数. x
题型二 求函数的单调区间
f x2 =…),向有利于判 f x1
③④判下断结论:判:根断据y2-定y1义(或得出yy12 结)是论否. 大于0(或大于1),当不确定时,要分类讨论.
(2)图象法:画出函数的图象,根据图象的上升或下降趋势判断函数的单 调性. (3)直接法:对于我们所熟悉的函数,如一次函数、二次函数、反比例函数 等,可直接写出它们的单调区间.
变式探究:若本题改为函数f(x)=-x2-2(a+1)x+3在区间(1,2)上是单调函数,
则a的取值范围是
.
答案:(-∞,-3]∪[-2,+∞)
误区警示 函数的单调区间与函数在某一区间上单调是两个不同的 概念,其中后者的区间是函数单调区间的子集.
即时训练3-1:函数f(x)=x2-2mx-3在区间[1,2]上单调,则m的取值范围
【备用例2】 求下列函数的单调区间.
(1)f(x)=
(x∈[-2,4]);
4x
解:(1)函数 f(x)= 4 x 的定义域为(-∞,4],而[-2,4]为其定义域的子区间. 因为 y= 4 x 与 y=4-x 在[-2,4]上的单调性相同,两者均为减函数, 所以[-2,4]为函数 f(x)= 4 x (x∈[-2,4])的单调递减区间.
高中数学_第一章 集合与函数概念 1.3.1 单调性与最大(小)值 第1课时 函数的单调性课件 新人教版必修1

答案
知识点二 函数的单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这 一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 思考 若函数f(x)在定义域内的两个区间D1,D2上都是减函数,那么f(x) 的减区间能写成D1∪D2吗? 答 单调区间不能取并集,如 y=1x在(-∞,0)上递减,在(0,+∞)上也 递减,但不能说 y=1x在(-∞,0)∪(0,+∞)上递减.
-1<1-a<1, 正解 由题意可知-1<2a-1<1, 解得 0<a<1.①
又f(x)在(-1,1)上是减函数,且f(1-a)<f(2a-1),
∴1-a>2a-1,即 a<23.②
由①②可知,0<a<23,即所求
a
的取值范围是
2 0<a<3.
易错警示
解析答案
解析答案
(2)函数 y=x-1 1的单调递减区间是_(_-__∞__,__1_),__(_1_,__+__∞__)_. 解析 y=x-1 1的图象可由函数 y=1x的图象向右平移一个单位得到,如图 所示,其单调递减区间是(-∞,1)和(1,+∞).
解析答案
例2 画出函数y=-x2+2|x|+1的图象并写出函数的单调区间. 解 y=- -xx22+ -22xx+ +11, ,xx≥ <00, , 即 y=--xx+-1122++22,,xx<≥00., 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1],单调减区 间为[-1,0],[1,+∞).
高中数学第一章集合与函数概念1.3.1.1单调性与最大(小)值(第1课时)课件新人教a必修1

要点2 单调性和单调区间 如果一个函数在某个区间D上是增函数或减函数就说这个函 数在这个区间D上具有单调性,区间D称为单调区间.
1.画出函数y=1x的图像,结合图像探讨下列说法是否正确? (1)函数y=1x是减函数; (2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).
答:(1)是错误的,从左向右看,函数y=
得函数的单调递减区间是(-∞,-3)和(-3,+∞).
方法二:利用已知函数的单调性:f(x)的图像是由y=
5 x
的图
像先向左平移3个单位,再向下平移一个单位得到的,
∴y=5x在(-∞,0)及(0,+∞)上是减函数.
∴f(x)=2x+-3x在(-∞,-3)及(-3,+∞)上也是减函数.
方法三:定义法(略).
探究1 (1)证明函数的单调性的常用方法是利用函数单调性 的定义.其步骤是:①取值:在给定区间上任取两个自变量.②作 差变形:将f(x1)-f(x2)进行代数恒等变形,一般要出现乘积形 式,且含有x1-x2的因式.③判断符号:根据条件判断f(x1)-f(x2) 变形后的正负.④得出结论.
(2)在“作差变形”中,我们尽量化成几个最简因式乘积的 形式,也可以把其中的因式化成几个完全平方式和差的形式, 例如(x+1)2+2,-(x+1)2-3等,这也是值得学习的解题技巧.
题型三 含参数的函数的单调性 例3 已知f(x)=x2-2(1-a)x+2在(-∞,4]上是减函数, 求实数a的取值范围.
【思路】 由于f(x)=x2+2(a-1)x+2=(x+a-1)2-(a-1)2+ 2,所以在区间(-∞,1-a]上单调递减,故有(-∞,4]⊆(-∞,1 -a],可求a的值.
思考题1
(1)已知函数f(x)=
高中数学 第一章 集合与函数概念 1.3.1 单调性与最大(小)值素材 新人教A版必修1

1.3.1 单调性与最大(小)值函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念. 单调性的单词区间若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质↑(增函数)↓(减函数)↑(增函数)+↑(增函数)= ↑(增函数)↑(增函数)-↓(减函数)=↑(增函数)↓(减函数)+↓(减函数)=↓(减函数)↓(减函数)-↑(增函数)=↓(减函数)用定义证明函数的单词性步骤1取值即取x1,x2是该区间崆的任意两个值且x1<x22作差变形即求f(x1)-f(x2),通过因式分解,配方、有理化等方法3定号即根据给定的区间和x2-x1的符号确定f(x1)-f(x2)的符号4判断根据单词性的定义得出结论判断函数f(x)在区间D上的单调性的方法1定义法:其步骤是:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2)或作商,并变形;③判定f(x1)-f(x2)的符号,或比较与1的大小;④根据定义作出结论。
2复合法:利用基本函数的单调性的复合。
3图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
函数最值函数最值分为函数最小值与函数最大值。
函数最小值设函数y=f(x)的定义域为d,如果存在M∈R满足:①对于任意实数x∈d,都有f(x)≥M;②存在x0∈d。
使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。
函数最大值设函数y=f(x)的定义域为d,如果存在M∈R满足:①对于任意实数x∈d,都有f(x)≤M,②存在x0∈d。
使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最大值。
人教版高中数学必修1第一章集合与函数的概念-《1.3.1单调性与最大(小)值》教案(1)

1.3.1单调性与最大(小)值(第一课时)教材分析单调性与最大(小)值这节内容选自人教版A版《普通高中课程标准试验教科书必修1》第一章1.3节函数的基本性质的内容。
函数是描述事物运动变化规律的数学模型,学习函数的变化规律能把握事物的变化规律,因此研究函数的性质非常关键。
学生在此之前已经学习了函数的概念及函数的三种表示法,并且学生学会了从集合的角度来认识函数。
本次课的学习是函数的基本性质的第一课时,研究函数的单调性与最大最小值问题,这一性质是函数最直观的一个性质。
也是为后续学习函数的奇偶性等相关性质奠定基础。
因此,本次课的教学尤为关键。
本次课在教学上我将采取两个课时的时间,在第一课时内完成函数单调性概念的教学并掌握判断简单函数单调性的方法,在第二课时内完成最大(小)值概念的教学,并且能进一步掌握部分函数单调性的判断技巧。
教学目标●知识与技能:了解函数单调性的概念,掌握判断简单函数单调性的方法;●过程与方法:经历情景引入、直观感知、知识形成等过程,掌握数形结合的数学方法,同时学会从直观的图像上发现问题并且掌握作差法,培养学生严谨的数学思维能力;●情感态度与价值观感受数学符号以及图形的魅力,培养学生能从辩证的角度看问题,感受数学与现实生活的联系,体会数学的强大实用功能;教学重难点教学重点:函数单调性的概念以及判断简单函数单调性的方法;教学难点:判断简单函数单调性的方法;重难点突破:学生在学习函数单调性概念的过程中,教师通过引入具体事例加以分析,首先让学生直观感受函数的单调性,进而通过引导探究认识函数的单调性;在判断简单函数的单调性的过程中,教师引导学生通过直接看图像以及做差这两种方法来判断函数的单调性。
教法学法分析新课标的教学理念认为学生是天生的学习者,学生已经具备了一定的生活经验,具备一定数学知识和数学经验。
在教学中力求通过教师的引导,学生根据已有的生活经验进行自主探究,发现数学规律,掌握数学知识,并且能进一步把知识运用到实践中;而教师是学生学习中的引导者、组织者和合作者,教师应该给予学生足够的空间感受数学本身的魅力,感受数学的使用功能。
高中数学第1章集合与函数概念1.3.1单调性与最大(小)值(第2课时)函数的最大(小)值

∴f(x1)>f(x2),∴f(x)是减函数. 同理 f(x)在[2,4]上是增函数.
∴当 x=2 时,f(x)取得最小值 4;当 x=1 或 x=4 时,f(x)取得最大值 5.
2021/12/9
第十八页,共三十九页。
函数最值的实际应用 例 3 一个工厂生产某种产品每年需要固定投资 100 万元,此外每生产 1 件该产品还需 要增加投资 1 万元,年产量为 x(x∈N*)件.当 x≤20 时,年销售总收入为(33x-x2)万元; 当 x>20 时,年销售总收入为 260 万元.记该工厂生产并销售这种产品所得的年利润为 y 万元.(年利润=年销售总收入-年总投资) (1)求 y(万元)与 x(件)的函数关系式. (2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?
2021/12/9
第十六页,共三十九页。
(2)若函数 f(x)在区间[a,b]上是增减函数,在区间[b,c]上是减增函数,则 f(x) 在区间[a,c]上的最大小值是 f(b),最小大值是 f(a)与 f(c)中较小大的一个. 提醒:(1)求最值勿忘求定义域. (2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错 误,求解时一定注意.
2021/12/9
第十一页,共三十九页。
[跟踪训练]
x2,-1≤x≤1,
1.已知函数 f(x)=1x,x>1,
求 f(x)的最大值、最小值.
2021/12/9
第十二页,共三十九页。
[解] 作出函数 f(x)的图象(如图).
由图象可知,当 x=±1 时,f(x)取最大值为 f(±1)=1.当 x=0 时,f(x)取最小值 f(0) =0, 故 f(x)的最大值为 1,最小值为 0.
高中数学第一章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性aa高一数学

【解析】∵f(x)=x2-2(1-a)x+2 =[x-(1-a)]2+2-(1-a)2, ∴f(x)的减区间是(-∞,1-a]. ∵f(x)在(-∞,4]上是减函数, ∴对称轴x=1-a必须在直线(zhíxiàn)x=4的右侧或与其重合. ∴1-a≥4,解得a≤-3. 故实数a的取值范围为[-∞,-3].
12/12/2021
第七页,共三十四页。
函数单调性的证明(zhèngmíng)与判断
【例 1】证明:函数 y=x+9x在区间(0,3]上单调递减. 【解题探究】 取值 → 作差 → 变形 → 判断符号 → 得结论 【证明】设 0<x1<x2≤3, 则有 y1-y2=x1+x91-x2+x92 =(x1-x2)-9xx11-x2x2=(x1-x2)1-x19x2.
值:设x1,x2是该区间内的任意两个值,且x1<x2;(2)作差变形:作差 f(x1)-f(x2),并通过因式分解、通分、配方、有理化等手段,转化为易 判断正负的式子;(3)定号:确定f(x1)-f(x2)的符号;(4)结论:根据f(x1) -f(x2)的符号及定义判断单调性.
2.证明抽象函数的单调性时,因为抽象函数不知道解析(jiě
12/12/2021
第二十九页,共三十四页。
4.已知函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),则实数
(shìshù)m的取值范围是( )
A.(-∞,-3)
B.(0,+∞)
C.(3,+∞)
D.(-∞,-3)∪(3,+∞)
【答案】C
【解析】因为函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),
12/12/2021
第十五页,共三十四页。
2.作出函数 f(x)=- x-x-232+,3x≤,1x>,1 的图象,并指出函数
安徽工业大学附属中学高中数学 1.集合和函数概念 集合复习课教案 新人教A版必修1

课型:新授课教学目标:(1)掌握集合、交集、并集、补集的概念及有关性质;(2)掌握集合的有关术语和符号;(3)运用性质解决一些简单的问题。
教学重点:集合的相关运算。
教学难点:集合知识的综合运用。
教学过程:一、复习回顾:1.提问:什么叫集合?元素?集合的表示方法有哪些?2.提问:什么叫交集?并集?补集?符号语言如何表示?图形语言如何表示?3.提问:什么叫子集?真子集?空集?相等集合?有何性质?3.交集、并集、补集的有关运算结论有哪些?4.集合问题的解决方法:Venn图示法、数轴分析法。
二、讲授新课:(一)集合的基本运算:例1:设U=R,A={x|-5<x<5},B={x|0≤x<7},求A∩B、A∪B、CU A 、CUB、(CU A)∩(CUB)、(CUA)∪(CUB)、CU(A∪B)、CU(A∩B)。
(学生画图→在草稿上写出答案→订正)说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。
例2:全集U={x|x<10,x∈N+},A⊆U,B⊆U,且(CUB)∩A={1,9},A∩B={3},(CUA)∩(CUB)={4,6,7},求A、B。
说明:列举法表示的数集问题用Venn图示法、观察法。
(二)集合性质的运用:例3:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}, 若A∪B=A,求实数a的值。
说明:注意B为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。
例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a的取值范围。
(三)巩固练习:1.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B。
2.P={0,1},M={x|x⊆P},则P与M的关系是。
3.已知50名同学参加跳远和铅球两项测验,分别及格人数为40、31人,两项均不及格的为4人,那么两项都及格的为人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:单调性与最大(小)值(一)
课型:新授课
教学目标:
理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。
教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。
教学难点:理解概念。
教学过程:
一、复习准备:
1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?
2. 观察下列各个函数的图象,并探讨下列变化
规律:
①随x的增大,y的值有什么变化?
②能否看出函数的最大、最小值?
③函数图象是否具有某种对称性?
3. 画出函数f(x)= x+2、f(x)= x2的图像。
(小结描点法的步骤:列表→描点→连线)
二、讲授新课:
1.教学增函数、减函数、单调性、单调区间等概念:
①根据f(x)=3x+2、 f(x)=x2 (x>0)的图象进行讨论:
随x的增大,函数值怎样变化?当x
1>x
2
时,f(x
1
)与f(x
2
)的大小关系怎样?
②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?
③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两
个自变量x
1,x
2
,当x
1
<x
2
时,都有f(x
1
)<f(x
2
),那么就说f(x)在区间D上是增函数(increasing
function)
④探讨:仿照增函数的定义说出减函数的定义;→区间局部性、取值任意性
⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。
⑥讨论:图像如何表示单调增、单调减?
所有函数是不是都具有单调性?单调性与单调区间有什么关系?
⑦一次函数、二次函数、反比例函数的单调性
2.教学增函数、减函数的证明:
例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?
1、例题讲解
例1(P29例1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
例2:(P29例2)物理学中的玻意耳定律k
p V =(k 为正常数),告诉我们对于一定量的气体,
当其体积V 增大时,压强p 如何变化?试用单调性定义证明.
例3.判断函数21y x =
-在区间[2,6] 上的单调性
三、巩固练习:
1.求证f(x)=x +x 1
的(0,1)上是减函数,在[1,+∞]上是增函数。
2.判断f(x)=|x|、y=x 3的单调性并证明。
3.讨论f(x)=x2-2x的单调性。
推广:二次函数的单调性
4.课堂作业:书P32、 2、3、4、5题。
四、小结:
比较函数值的大小问题,运用比较法而变成判别代数式的符号。
判断单调性的步骤:设x
1、x
2
∈给定区间,且x
1
<x
2
;→计算f(x
1
)-f(x
2
)至最简→判断
差的符号→下结论。
五、作业:P39、1—3题
课后记:。