函数的单调性教学设计
《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
“函数的单调性”-教学设计

“函数的单调性”教案一、教材内容分析函数的单调性是人教版数学必修一第二章第一节的内容。
在《普通高中数学课程标准按(2017年版)》中明确指出,要会借助函数图象,会用符号语言表达函数的单调性,理解它们的作用和实际意义。
所以本节在学习函数单调性时要引导学生借助函数图像理解函数单调性,并学会用定义法来证明函数单调性。
函数的单调性是函数性质之一,揭示了函数图像的趋势,表示了自变量和因变量之间的关系,是数形结合数学思想的基础,与函数的奇偶性呈并列的关系,他俩从不同侧面研究函数性质,在函数性质中具有举足轻重的地位。
本节利用图像观察推导单调性判断方法,该方法再次体现了数形结合的主要思想。
二、学生情况分析高一学生具有较强的求知欲望,但是欠缺自主探究能力和良好的学习习惯。
本班学生基础一般,两极分化较为严重,大多数学生学习兴趣较高,能够积极踊跃的发表自己的想法,与教师配合默契。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
三、教学目标1、知识目标:(1)理解函数的单调性的概念;(2)会借助于函数图像讨论函数的单调性;(3)熟练应用定义判断函数在某区间上的的单调性。
2、能力目标:通过概念的教学,培养学生观察、比较、分析、概括的逻辑思维能力,使学生体验数学的一般思维方法,提高分析问题、解决问题的能力。
3、情感、态度、价值观目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。
四、重点难点重点:函数的单调性定义。
难点:利用函数的单调性定义判断、证明函数的单调性。
五、教学方法启发引导与自主探究讨论相结合。
六、教学过程教学中可根据学生的情况而定),并指出图象的变化的趋势。
观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。
问题1:如何量化的来刻画函数的增减性呢?1.请大家说说上述的“增大”是什么意思?(比较)2.比较至少是几个量之间?(两个)3.怎样取这两个量?取特殊值可以吗?(不可以,必需取遍整个区间的所有值)4.能做到一一全部都取出来吗?度抽象性造就了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律,在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象。
《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思《函数的单调性》教学设计与反思一、主题本篇文章的主题为《函数的单调性》的教学设计与反思。
我们将探讨如何通过合理的教学设计,使学生更好地理解和掌握函数的单调性,以及在教学过程中遇到的问题和解决方法。
二、引入函数的单调性是中学数学中一个重要的概念。
它不仅是解决许多数学问题的关键,也在其他学科和实际生活中有着广泛的应用。
因此,设计一个有效的教学方案,使学生深入理解和掌握这一概念,具有重要意义。
三、教学设计1、引入阶段:通过展示一些具有代表性的函数图像,引导学生观察并理解什么是函数的单调性。
2、呈现阶段:通过具体的函数例子,讲解单调性的概念和应用,并引出单调性的证明方法。
3、讲解阶段:针对学生在理解过程中可能遇到的困难,进行详细的讲解和演示,帮助学生掌握单调性的概念和证明方法。
4、练习阶段:设计一系列的练习题,让学生在课堂上进行练习,以巩固所学的知识。
5、总结阶段:对本节课的内容进行总结,并引导学生回顾所学的主要知识点。
四、反思在教学过程中,我发现以下问题:部分学生在练习阶段遇到困难,需要对单个学生进行针对性的辅导;部分学生对单调性的概念理解不深,需要改进教学方法,使学生更好地理解这一概念。
针对以上问题,我提出以下改进建议:在练习阶段,增加对学生的辅导时间,帮助学生解决遇到的问题;在概念讲解阶段,引入更多的实例和图示,帮助学生更好地理解单调性的概念。
五、总结本篇文章对《函数的单调性》的教学设计进行了详细的描述,并对教学过程中遇到的问题进行了反思和提出改进建议。
通过合理的教学设计,可以使学生更好地理解和掌握函数的单调性,为后续的学习打下坚实的基础。
在教学过程中不断进行反思和改进,可以提高教学质量,更好地满足学生的学习需求。
《函数的单调性》教学设计(精品)

函数的单调性(一)教学目标 1.知识与技能(1)理解函数单调性的定义、明确增函数、减函数的图象特征. (2)能利用函数图象划分函数的单调区间,并能利用定义进行证明. 2.过程与方法由一元一次函数、一元二次函数的图象,让学生从图象获得“上升”“下降”的整体认识. 利用函数对应的表格,用自然语言描述图象特征“上升”“下降”最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念.3.情感、态度与价格观在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美.(二)教学重点和难点重点:理解增函数、减函数的概念;难点:单调性概念的形成与应用. (三)教学方法讨论式教学法. 在老师的引导下,学生在回顾旧知,细心观察、认真分析、严谨论证的学习过程中生疑与析疑,合作与交流,归纳与总结的过程中获得新知,从而形成概念,掌握方法.(四)教学过程 教学 环节教学内容师生互动设计意图提出 问题观察一次函数f (x ) = x 的图象:函数f (x ) = x 的图象特征由左到右是上升的.师:引导学生观察图象的升降.生:看图. 并说出自己对图象 的直观认识.师:函数值是由自变量的增大而增大,或由自变量的增大而减小,这种变化规律即函数的单调性.在函数图象的观察中获取函数单调性的直观认识.yx11 O引入深题观察二次函数f (x) = x2的图象:函数f (x) = x2在y轴左侧是下降的,在y轴右侧是上升的.列表:x …–4–3 –2 –1 0f(x)=x216 9 4 1 01 2 3 4 …1 4 9 16 …x∈(–∞,0]时,x增大,f (x)减少,图象下降.x∈(0,+∞)时,x增大,f (x)也增大,图象上升.师:不同函数,其图象上升、下降规律不同. 且同一函数在不同区间上的变化规律也不同. 这是“形”的方面,从“数”的方面如何反映.生:函数作图时列表描点过程中,从列表的数据变化可知自变量由–4到0变化,函数值随着变小;而自变量由0到4变化,函数值随着自变量的变大而变大.师:表格数值变化的一般规随是:自变量x增大,函数值y也增大,函数图象上升,称函数为增函数;自变量x增大,函数值y反而减少,函数图象下降. 称函数为减函数.体会同一函数在不同区间上的变化差异.引导学生从“形变”过渡到“数变”. 从定性分析到定量分析.形成概念函数单调性的概念一般地,设函数f (x)的定义域为I:如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f (x)在区间D上是增函数(increasing function);师:增函数、减函数的函数值随自变量的变化而变化怎么用数学符号表示呢?师生合作:对于函数f (x) = x2在区间(0,+∞)上. 任取x1、x2. 若x1<x2,则f (x1)<f (x2),即x12<x22.师:称f (x) = x2在(0,+∞)上为增函数.由实例探究规律从而获得定义的数学符号表示.O xy如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f (x1)>f (x2),那么就说函数f (x)在区间D上是减函数(decreasing function).应用举例例1 如图是定义在区间[–5,5]上的函数y = f (x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?训练题1:(1)请根据下图描述某装配线的生产率与生产线上工人数量间的关系.师:投影例1.生:合作交流完成例1.师:引导学生完成教材P36练习的第1题、第2题.师:投影训练题1生:学生通过合作交流自主完成.例1【解】:y= f (x)的单调区间有[–5,–2),[–2,1),[1,3),[3,5]. 其中y = f (x)在区间[–5,–2),[1,3)上是减函数,在区间[–2,1),[3,5]上是增函数.训练题1 答案:(1)在一定范围内,生产效率随着工人数的增加而提高,当工人数达到某掌握利用图象划分函数单调区间的方法.掌握单调性证明步骤及原理.内化定义,强化划分单调区间的方法.xx1 x2Oyf (x1) f (x2)y=f (x)xx1 x2Oyf (x1)f (x2)y=f (x)(2)整个上午(8∶00~12∶00)天气越来越暖,中午时分(12∶00~13∶00)一场暴风雨使天气骤然凉爽了许多. 暴风雨过后,天气转暖,直到太阳落山(18∶00)才又开始转凉. 画出这一天8∶00~20∶00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.(3)根据下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数.例2 物理学中的玻意耳定律kpV=(k为正常数) 告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大. 试用函数的单调性证明之.训练题2:证明函数f (x) = –2x +1在R上是减函数. 个数量时,生产效率达到最大值,而超过这个数量时,生产效率又随着工人的增加而降低. 由此可见,并非是工人越多,生产效率就越高.(2)增区间为[8,12],[13,18];减区间为:[12,13],[18,20].(3)函数在[–1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]是增函数.师:打出例2,请学生阐明应用定义证明(判定)并总结证明单调性的基本步骤.生:学生代表板书证明过程,教师点评.例2 分析:按题意,只要证明函数kpV=在区间(0,+∞)上是减函数即可.证明:根据单调性的定义,设V1,V2是定义域(0,+∞)上的任意两个实数,且V1<V2,即21121212()()V Vk kp V p V kV V VV--=-=.由V1,V2∈(0,+∞),得V1V2>0.由V1<V2,得V2 –V1>0.强化记题步骤与格式.又k>0,于是p (V1) –p (V2)>0,即p (V1) >p (V2).所以,函数kpV,V(0,+∞)是减函数,也就是说,当体积V 减小时,压强p将增大.师:投影训练题2生:自主完成训练题2 证明:任取x1,x2∈R,且x1<x2,因为f (x1) –f (x2) =2 (x2 –x1)>0,即f (x1)>f (x2),所以f (x) = –2x +1在R上是减函数.归纳小结1°体会函数单调性概念的形成过程.2°单调性定义.3°利用图象划分单调区间.4°利用定义证明单调性步骤.师生合作:回顾单调性概念的形式与发展.师:阐述单调性的意义与作用.反思回顾整理知识,提升能力.课后练习1.3第一课时习案学生独立完成巩固知识培养能力备选例题:例1 证明函数f (x) =3x +2在R上是增函数.【证明】设任意x1、x2R,且x1<x2,则f (x1) –f (x2) = (3x1 +2) – (3x2 +2) = 3(x1–x2).由x1<x2得x1 –x2<0. ∴f (x1) –f (x2)<0,即f (x1)<f (x2).∴f (x ) =3x +2在R 上是增函数.例2 证明函数f (x ) =1x在(0,+∞)上是减函数. 【证明】设任意x 1、x 2(0,+ ∞)且x 1<x 2,则f (x 1) – f (x 2) =21121211x x x x x x --=, 由x 1,x 2(0,+∞)得,x 1x 2>0,又x 1<x 2,得x 2 – x 1>0,∴f (x 1) – f (x 2) >0,即f (x 1)<f (x 2). ∴f (x ) =1x在(0,+∞)上是减函数.。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
函数单调性-完整版教学设计

函数的单调性(第一课时)学科:数学年级:高一课型:新授【学习目标】1、通过已学过的初等代数函数的图像,能了解单调函数的图像特征;并能用根据任意两点的坐标大小关系尝试归纳出单调函数的定义。
2、通过本课时的学习,运用单调函数的定义,逐步掌握判断及证明一些简单函数的单调性的一般方法。
3、通过对函数单调性的证明,能充分体验比较法,从而加深对逻辑推理的数学思想方法的认识。
【学习重点】通过对单调函数的定义的学习理解,逐步掌握用定义判断单调性的一般方法。
【学习难点】给定区间上有增有减函数的单调性研究中,对如何划分区间,寻找分界点,从而确定因式的符号,会成为你思维的难点。
【课前预习】1、作出下列初等代数函数的图像 f (x)2x 1=- 1f (x)x=2f (x)x = 2、观察右图函数图像中的变化趋势 在x (,a]∈-∞上,随着x 的增加,函数值y_________; 在x [a,b]∈上,随着x 的增加,函数值y__________;在x [b,c]∈上,随着x 的增加,函数值y__________;在x [c,)∈+∞上,随着x 的增加,函数值y__________。
【学习过程】(一)学习函数单调性的概念1、在图1上取两点()11A(x ,f x ),()22B(x ,f x ),是否能找到A 、B 两点坐标之间的数量关系?当A 、B (A左B 右)两点变化时,上述数量关系是否变化?2、根据上述研究,给增函数下定义。
阅读课本上有关函数的单调性的定义,你觉得的其中的关键词在哪些?为什x b a c O y么?3、类比增函数的定义,给减函数下个定义。
4、学习单调函数、单调区间的概念。
函数的增减区间与定义域之间存在什么关系?(二)单调函数的判断及证明写出引例中函数的单调区间。
例1:(如图)是定义在闭区间[5,5]-上的函数y f (x)=的图像,根据图像说出y f (x)=的单调区间,以及在每一单调区间上,y f (x)=是增函数还是减函数。
函数的单调性”教学设计

函数的单调性”教学设计教学目标:1.学生能够了解函数的单调性的概念和判断方法。
2.学生能够利用函数的导数和零点,判断函数的单调性。
3.学生能够应用函数的单调性解决实际问题。
教学重点:教学难点:应用函数的单调性解决实际问题。
教学准备:PPT、黑板、教材、练习题教学过程:Step 1:导入新知识(10分钟)教师通过一个有趣的问题引入“函数的单调性”这一概念。
例如:小明要去市场买苹果,他手上只有一张100元的大钞,而市场上每个苹果的价格各不相同。
请问小明应该如何选择购买的苹果种类和数量,才能使得他手上的钱能够买到尽量多的苹果?同学们可以思考一下。
Step 2:引入函数的单调性(15分钟)教师通过上述问题引导学生思考,提出函数的单调性的概念。
教师解释函数的单调性是指函数在定义域内的变化趋势,即随着自变量的增大,函数值是增大还是减小。
教师用PPT或黑板上的例子展示不同种类的函数图像,并让学生观察函数在不同区间的变化趋势。
Step 3:函数的单调性的判断方法(15分钟)教师介绍函数的单调性的判断方法。
1.对于定义在区间上的函数,可以通过求导数和零点的方法判断函数的单调性。
2.如果函数在一些区间上的导数大于零,则函数在这个区间上是递增的;如果函数在一些区间上的导数小于零,则函数在这个区间上是递减的。
Step 4:练习(15分钟)教师提供一些练习题,让学生运用函数的导数和零点,判断函数的单调性。
例如:1.求函数y=x^2的单调区间。
2.求函数y=x^3的单调区间。
Step 5:函数的单调性的应用(15分钟)教师介绍函数的单调性在实际问题中的应用。
例如:1.根据一些函数的单调性,判断一些实际问题中的一些变量的变化趋势。
2.根据一些函数的单调性,求解实际问题中的最优解。
Step 6:归纳总结(10分钟)教师与学生一起总结函数的单调性的概念、判断方法和应用。
教师鼓励学生提出相关问题,以加深对函数的单调性的理解。
Step 7:课堂练习(10分钟)教师布置一些课堂练习题,让学生巩固所学的内容,并及时纠正错误。
教学设计2:3.2.1 第1课时 函数的单调性

主要师生活动教师引导:我们知道函数是描述事物变化规律的数学模型,这样我们可以通过研究函数的性质获得对客观世界中事物变化规律的认识.那么什么是函数性质呢?总体而言,函数性质就是“变化中的不变性,变化中的规律性”.研究函数性质,就是要学会在运动变化中发现规律.请大家回顾初中学习过的一次函数、二次函数、反比例函数,我们通过什么来研究它们的性质呢?师生活动:学生回答,师生共同得到结论:通过图象研究函数性质.问题1:请看下面的函数图象,从中能发现什么变化中的规律?师生活动:教师利用PPT展示例子,学生观察图象并回答问题.学生的回答可能涉及很多方面(如升降变化,对称性,最高点或最低点等),教师引导学生关注图象从左到右升降变化的特点.追问:函数图象所反映的这些特点就是函数的性质.你能回顾一下初中的知识,用定性的方法描述前两个图象从左到右的升降变化吗?即y随x的增大是如何变化的?-∞+∞上,y随x 预设:第一个图象从左到右是上升的,即在(,)-∞-及(0.21),两个区间上,从左的增大而增大;第二个函数在(,1)明,要让学生明确,应该是区间(,0]-∞上的所有数对1x ,2x .预设反例:如图象所示函数,我们可以找到<a b 、()()>f a f b ,但很明显函数在区间[,]a b 上并不单调递减.追问4:“所有”又该如何说明?既然“所有”不易操作,可以用什么量词来代替“所有”呢?你能严格的表达出来吗?师生活动:教师引导学生说出用“任意”代替“所有”,帮助学生体会用“任意”处理“无限”的思想.预设:任取1x ,2x ,只要12<x x ,就有12()()>f x f x .教师总结:我们借助数学符号语言,给出了一个与“无限”相关的变化规律的定量描述,即任取1x ,2x ,把“无穷”问题转化为了可操作的有限过程,这就是数学抽象的力量.追问5:你能说出为什么12()()>f x f x 吗?教师引导:要对两个函数值比大小,实质上是不等式的代数证明,具体证明方法我们稍后会说明.追问6:对于函数2=y x ,你能模仿上述方法,给出“在区间[0,)+∞上,y 随x 的增大而增大”的符号语言刻画吗?设计意图:这个环节是本节课的重点,也是难点,其核心是通过从具体到抽象的过程,让学生学会用严格的符号语言刻画“在区间D 上,当x 增大时,相应的()f x 随之减小”.从图象到定性再到定量的不断精确化的过程中,通过问题串,设法引出“任意”,引导学生体会用“任意”刻画“无限”的力量.练习:请你模仿上述过程,用严格的符号语言刻画函数2=-y x 的单调性.2.单调性定义的抽象问题3:请你归纳以上两个函数单调性的刻画方法,给出函数()=y f x 在区间D 上单调性的符号表述.师生活动:先由学生独立完成并交流,再由教师给出严格的单调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性
教材分析
函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念.
教学目标
1. 通过对增函数、减函数概念的归纳、抽象和概括,体验数学概念的产生和形成过程,培养学生从特殊到一般的抽象概括能力.
2. 掌握增函数、减函数等函数单调性的概念,理解函数增减性的几何意义,并能初步运用所学知识判断或证明一些简单函数的单调性,培养学生对数学的理解能力和逻辑推理能力.
3. 通过对函数单调性的学习,初步体会知识发生、发展、运用的过程,培养学生形成科学的思维.
任务分析
这节函数增减性的定义,是运用数学符号将自然语言的描述提升到形式化的定义,学生接受起来可能比较困难.在引入定义时,要始终结合具体函数的图像来进行,以增强直观性,采用由具体到抽象,再由抽象到具体的思维方法,便于学生理解.对于定义,要注意对区间上所取两点x1,x2的“任意性”的理解,多给学生操作与思考的时间和空间.
教学设计
一、问题情境
1. 如图为某市一天内的气温变化图:
(1)观察这个气温变化图,说出气温在这一天内的变化情况.
(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?
2. 分别作出下列函数的图像:
(1)y=2x.(2)y=-x+2.(3)y=x2.
根据三个函数图像,分别指出当x∈(-∞,+∞)时,图像的变化趋势?
二、建立模型
1. 首先引导学生对问题2进行探讨———观察分析
观察函数y=2x,y=-x+2,y=x2图像,可以发现:y=2x在(-∞,+∞)上、y=x2在(0,+∞)上的图像由左向右都是上升的;y=-x+2在(-∞,+∞)上、y=x2在(-∞,0)上的图像由左向右都是下降的.函数图像的“上升”或“下降”反映了函数的一个基本性质———单调性.那么,如何描述函数图像“上升”或“下降”这个图像特征呢?
以函数y=x2,x∈(-∞,0)为例,图像由左向右下降,意味着“随着x的增大,相应的函数值y=f(x)反而减小”,如何量化呢?取自变量的两个不同的值,如x1=-5,x2=-3,这时有x1<x2,f(x1)>f(x2),但是这种量化并不精确.因此,x1,x2应具有“任
意性”.所以,在区间(-∞,0)上,任取两个x1,x2得到f(x1)=,f(x2)=.当
x1<x2时,都有f(x1)>f(x2).这时,我们就说f(x)=x2在区间(-∞,0)上是减函数.
注意:在这里,要提示学生如何由直观图像的变化规律,转化为数学语言,即自变量x变化时对函数值y的影响.必要时,对x,y可举出具体数值,进行引导、归纳和总结.这里的“都有”是对应于“任意”的.
2. 在学生讨论归纳函数单调性定义的基础上,教师明晰———抽象概括
设函数f(x)的定义域为I:
如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)<f(x2),那么我们就说函数f(x)在区间D上是增函数[如图8-2(1)].
如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)>f(x2),那么我们就说函数f(x)在区间D上是减函数[如图8-2(2)].
如果函数y=f(x)在区间D上是增函数或减函数,那么我们就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫作y=f(x)的单调区间.
3. 提出问题,组织学生讨论
(1)定义在R上的函数f(x),满足f(2)>f(1),能否判断函数f(x)在R是增函数?
(2)定义在R上函数f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上也是增函数,判断函数f(s)在R上是否为增函数.
(3)观察问题情境1中气温变化图像,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数.
强调:定义中x1,x2是区间D上的任意两个自变量;函数的单调性是相对于某一区间而言的.
三、解释应用
[例题]
1. 证明函数f(x)=2x+1,在(-∞,+∞)是增函数.
2. 证明函数f(x)=,在区间(-∞,0)和(0,+∞)上都是减函数.
思考:能否说,函数f(x)=在定义域(-∞,0)∪(0,+∞)上是减函数?
3. 设函数y=f(x)在区间D上保号(恒正或恒负),且f(x)在区间D上为增函数,
求证:f(x)=在区间D上为减函数.
[练习]
1. 证明:(1)函数f(x)=在(0,+∞)上是增函数.
(2)函数f(x)=x2-x在(-∞,]上是减函数.
2. 判断函数的单调性,并写出相应的单调区间.
3. 如果函数y=f(x)是R上的增函数,判断g(x)=kf(x),(k≠0)在R上的单调性.
四、拓展延伸
1. 根据图像,简要说明近150年来人类消耗能源的结构变化情况,并对未来100年能源结构的变化趋势作出预测.
2. 判断二次函数f(x)=ax2+bx+c,(a≠0)的单调性,并用定义加以证明.
3. 如果自变量的改变量Δx=x2-x1<0,函数值的改变量Δy=f(x2)-f(x1)>0,那么函数f(x)在区间D上是增函数还是减函数?
4. 函数值的改变量与自变量的改变量的比叫作函数f(x)在x1,x2之间的平均变化率.
(1)根据函数的平均变化率判断y=f(x)在区间D上是增函数还是减函数.(2)比值的大小与函数值增长的快慢有什么关系?。