2.《高等数学》(二)期末模拟试题(含标准答案)

合集下载

高等数学2期末复习题与答案(可编辑修改word版)

高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。

《高等数学二》期末复习题及答案_28171462418361700

《高等数学二》期末复习题及答案_28171462418361700
13、(本题满分12分)求口(1-/一丁)心d1其中。是由》=",y = 0,
D
2 ,2t
x+y= 1
在第一象限内所围成的区域。
x= 0
14、(本题满分12分)一质点沿曲线>,= /从点(0,0,0)移动到点
z = r
(0, 1, 1),求在此过程中,力户=Jl + x*7-£ + 9所作的功W。
15、(本题满分10分)判别级数ynsin-的敛散性。
23、设L为连接(1,0)与(0,1)两点的直线段,则j(x+y)4s=
24、lim/x"=
(21。。)次+/ +1 _1
25、2=3,b=4,[与B的夹角是工,«')axb =2
26、已知三角形的顶点A(U,T),8(2J,0),C(0,0,2),则AABC的面积等于
27、点(2,3』)至1|点加2(274)的距离附|“[=
3、积分/=JJje4/b的值为x2+y2<4
4、若a,b为互相垂直的单位向量,则a b=
5、交换积分次序jjiZrJo /(x,yMy=
6、级数£(:+/)的和是
“1LJ
7、二一即=
Dxy,T)
8、二元函数z = sin(2x + 3y),则」=
9、设/(x, y)连续,交换积分次序J:八[J(x,y}dy=
11、B解:若级数£%收敛,由收敛的性质4G。三个选项依然是“■1
收敛的,而£(%+2)未必收敛,或者排除法选择B。/1.1
12、C解:二重积分|].f(#,y)d#dy的值与函数有关,与积分区域有关, 而与积分变量的字母表达没关系。
13、B解:利用平行向量对应的坐标成比例,Z=(84,-2),则

高数2期末练习(附答案)

高数2期末练习(附答案)

第 1 页 高数2练习一、选择题1、设c 是一非零向量,λ是一实数,若__D___则a b =(,a b 均为向量). A .a b λλ= B .a c b c ⨯=⨯ C .a c b c ⋅=⋅ D .a c b c ⋅=⋅且a c b c ⨯=⨯2、若0),(),(0000='='y x f y x f y x ,则),(y x f 在),(00y x 下列结论正确的是 ( B )A、连续, B 、偏导数存在, C 、有极值, D 、可微.3、交换积分110(,)xdx f x y dy -⎰⎰的秩序等于 ( D )A .1100(,)xdy f x y dx -⎰⎰ B .1100(,)xdy f x y dx -⎰⎰C .11(,)dy f x y dx ⎰⎰ D .110(,)ydy f x y dx -⎰⎰4、设L 是从点(0,0)沿折线11--=x y 至点(2,0)的折线段,则积分⎰-Lydx xdy 等于( D )A.0B.-1C.2D.-25、下列命题错误的是 ( D )A . 如果1n n u ∞=∑与1n n v ∞=∑都收敛,则1()n n n u v ∞=+∑必收敛B .如果1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑必发散C .如果1n n u ∞=∑与1n n v ∞=∑都发散,则1()n n n u v ∞=+∑不一定发散D .如果1()n n n u v ∞=+∑收敛,则1n n u ∞=∑与1n n v ∞=∑必都收敛6、下列级数中发散的是 ( D )A 、132nn ∞=∑B、1(1)nn ∞=-∑ C 、3131n n n ∞=+∑D、1n ∞=∑7、下列级数中条件收敛的是 ( A )(A )∑∞=+-11)1cos(n n n π(B )∑∞=+⋅-131)1(n nn n (C )∑∞=+121!1n n(D )∑∞=+-1)1()1(n nn n第 2 页1、若b,a为两非零向量,则0b a =⨯是ba 与同向的( B )A.充要条件B.必要条件C.充分条件D.既非充分也非必要条件 2、函数z =0,0)处( B )A 、 不连续B 、 偏导数不存在C 、 任一方向的方向导数存在D 、可微 3、交换积分次序后,⎰⎰=x edy y x f dx ln 01),(( C )A.⎰⎰yeedx y x f dy ),(10B.⎰⎰ee 0dx )y ,x (f dy C.⎰⎰eeydx y x f dy ),(10 D.⎰⎰eeeydx y x f dy ),(04、已知()()2y x ydydx ay x +++为某函数的全微分,则a 等于( D )A 、 -1B 、 0C 、1D 、2 1、设直线L :22211-+==-z y x 及平面π:01232=+++-z y x ,则直线L于平面π的位置关系是直线L ( B )A.在平面π上B. 平行于平面πC. 垂直于平面πD. 与平面π斜交 2、设函数yx y x f arctan),(=,则(2,1)y f '=( B )A.52 B. 52- C.51 D. 51-3、函数22xy y x z -=在点(1,1)P 使其方向导数取得最大值的单位方向向量是( C )A .j i - B. j i +- C.ji 2222-D. ji 2222+-4、 交换二次积分ln 10(,)ex dx f x y dy⎰⎰的次序为( C )A.10(,)ye edy f x y dx ⎰⎰B.00(,)ee dyf x y dx ⎰⎰C.10(,)ye edy f x y dx ⎰⎰D.0(,)yee edy f x y dx⎰⎰5、下列级数中绝对收敛的级数是( A )A.1211(1)n n n∞+=-∑ B .111(1)n n n∞+=-∑ C.∑∞=++-11122)1(n nnn D.∑∞=+-11)1(n n二、填空题第 3 页1、过原点且与直线⎩⎨⎧=-+-=+-+0532062z y x z y x 垂直的平面方程为_______730x y z --=______________.2、由方程1=++z e y x 所确定的函数),(y x z 全微分=dz ___zdx dy e+-_______________.3、101lim (1)x x y xy →→-=____1e -___________.5、设L 为椭圆17422=+yx,其周长为a ,则⎰++Lds y x xy )47(22= 28a . 6、设a 为常数若级数,0()n n u a ∞=-∑收敛,则lim n x u →∞=_______a _______________.7、级数11(1)nn n xn∞-=-∑的收敛域为____(1,1]-_________________.1、过点M(1,4,3)且法向量为n=i-j+k 的平面方程______0x y z -+=_____________2、z=2y lnx, 则"xx z =________22y x-______________3、函数z=()xy x +ln 的定义域___{(,)|00}x y x x y >+>且________________________4、设zyx u =,则 ()=1,,1,1du_________dx dy -___________________5、当=K _____1-______时,向量{}{}3,1,,0,1,1-=-=K b a相互垂直6、求()ds y x L⎰+,其中L 为连接(1,0)及(0,1)两点的直线段7、以曲面z=sin(xy)为顶,D :-1≤x ≤1,-1≤y ≤1为底的曲顶柱体体积的二重积分表达式________sin Dxydxdy ⎰⎰_____________________第 4 页8、若L 是平行于y 轴的有向线段则⎰=Ldx y x p ),(__________0____________11、过点)1,0,1(-且与平面42=-+z y x 平行的平面方程为 230x y z +--= 12、设3222z xz y ++=确定函数),(y x f z =,则10==∂∂y x xz = 13-13、设L 为2x y =上从点)0,0(O 到)1,1(A 之间的曲线段,则=⎰Lxds11215、常数项级数∑∞=++12231n n n 的和=S 12-三、计算题1、已知曲面221z x y =-- 上的点P 处的切平面平行于平面 122=++z y x ,求点P 处的切平面方程.2(1)2(1)(1)0x y z -+-++=2、设()1yz xy =+ ,求xy z ''.121(1)2(1)(1)[ln(1)]1y y x y y xy y xy xy xy---=++++++3、计算()211Dx dxdy y -+⎰⎰,其中D 是由曲线2y x =与直线2y x =-所围成. 04、验证:在整个平面内,22xy dx x ydy +是某个函数的全微分,并求出一个这样的函数.222x y5、、已知曲线积分⎰+Ldy x yf dx xy )(2与路径无关,其中)(x f 具有一阶连续导数,且0)0(=f ,求⎰+)1,1()0,0(2)(dyx yf dx xy 的值. 21()2f x x =6、计算曲线积分()()22sin LI xy dx x y dy =---⎰,其中L是半圆周y =上从(0,0)O 到(1,1)A 的有向弧段. 1sin 264--7、将下列函数展开为x 的幂级数.第 5 页(1) ()(1)xf x x e =+,01,!nn n x x Rn ∞=+=∈∑(2)()12x f x x=-. 11(1)2,||2nnn n xx ∞+==-<∑(3))23ln()(x x f +=,10(1)233ln 3(),1322nn n n x x n ∞+=-=+-<<+∑8、在曲线x=t,y=32,t z t =上求一点,使该点的切线平行于平面x+2y+z=4。

《高等数学二》考试题及答案

《高等数学二》考试题及答案

《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。

高数二试题模拟及答案解析

高数二试题模拟及答案解析

高数二试题模拟及答案解析一、选择题(每题3分,共30分)1. 下列函数中,满足f(-x) = -f(x)的是:A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:C解析:根据奇函数的定义,f(-x) = -f(x)。

选项A是偶函数,选项B和D不满足奇函数的性质,只有选项C满足。

2. 若函数f(x) = ln(x^2 - 1)的定义域为:A. (-∞, -1] ∪ [1, +∞)B. (-∞, -1) ∪ (1, +∞)C. (-∞, -1) ∪ [-1, 1) ∪ (1, +∞)D. (-∞, -1] ∪ (-1, 1) ∪ [1, +∞)答案:B解析:对数函数的定义域要求真数大于0,即x^2 - 1 > 0,解得x < -1或x > 1。

...(此处省略其他选择题,共10题)二、填空题(每题4分,共20分)1. 若曲线y = x^3在点(1,1)处的切线斜率为3,则该切线的方程为______。

答案:y = 3x - 2解析:首先求出y = x^3的导数y' = 3x^2,然后代入x = 1得到切线斜率k = 3。

利用点斜式方程y - 1 = k(x - 1),得到切线方程。

2. 设数列{an}的通项公式为an = 2n - 1,则该数列的前n项和Sn = ______。

答案:n^2解析:数列{an}是等差数列,首项a1 = 1,公差d = 2。

利用等差数列前n项和公式Sn = n(a1 + an)/2,代入得Sn = n(1 + (2n - 1))/2 = n^2。

...(此处省略其他填空题,共5题)三、解答题(共50分)1. (10分)计算定积分∫[0,1] x^2 dx。

答案:1/3解析:根据定积分的计算公式,∫[0,1] x^2 dx = (1/3)x^3|[0,1] = (1/3)(1)^3 - (1/3)(0)^3 = 1/3。

高数b2期末考试试题及答案

高数b2期末考试试题及答案

高数b2期末考试试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。

A. 3x^2 - 3B. x^2 - 3xC. 3x^2 - 3xD. x^3 - 3x^2答案:A2. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 求极限lim(x→0) (sin x) / x。

A. 1B. 0C. 2D. ∞答案:A4. 判断下列级数是否收敛。

∑(1/n^2),n从1到∞。

A. 收敛B. 发散答案:A5. 判断函数f(x)=e^x在实数域R上的连续性。

A. 连续B. 不连续答案:A6. 求二阶偏导数f''(x,y),其中f(x,y)=x^2y+y^2。

A. 2xyB. 2xC. 2yD. 2答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=ln(x+1),求f'(x)=______。

答案:1/(x+1)2. 计算定积分∫(0,2π) sin(x) dx=______。

答案:03. 求极限lim(x→∞) (1+1/x)^x=______。

答案:e4. 判断级数∑(1/n),n从1到∞是否收敛,答案是______。

答案:发散三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1,x=11/3。

经检验,x=1为极大值点,x=11/3为极小值点。

2. 计算定积分∫(0,1) e^x dx。

答案:∫(0,1) e^x dx = [e^x](0,1) = e^1 - e^0 = e - 1。

3. 求极限lim(x→0) (e^x - 1) / x。

答案:根据洛必达法则,lim(x→0) (e^x - 1) / x = lim(x→0) e^x = 1。

高等数学(B2)期末模拟试卷及答案

高等数学(B2)期末模拟试卷及答案

高等数学(B2)期末模拟试卷(一)一、选择题(本大题共10小题,每题3',共30'):1. )1ln(412222-++--=y x y x z ,其定义域为----------------------------------(A ).A {}41),(22<+<y x y x B {}41),(22<+≤y x y x C {}41),(22≤+<y x y x D {}41),(22≤+≤y x y x .2. 设yx z =,则=dz --------------------------------------------------------------------------(D ). A dy yx xdx x y y1ln -+ B dy x dx yx y y +-1C xdy x xdx yxy y ln ln 1+- D xdy x dx yx y y ln 1+-.3. 由椭圆1162522=+y x 绕y 轴旋转一周所生成的旋转体体积可表示为--------------( C ). A 5202y dx π⎰B 5204y dx π⎰ C 4202x dy π⎰ D 4204x dy π⎰.4. 设)3,2,1(=a ,)4,3,2(=b ,)2,1,1(-=c,则.)(c b a ⋅⨯为--------------------(A ).A 5-B 1-C 1D 5. 5. 设05432:=+++∏z y x ,41321:-==-z y x L ,则∏与直L 的关系为---( A ). A L 与∏垂直 B L 与∏斜交 C L 与∏平行 D L 落于∏内.6. 若{}4,2),(≤≤=y x y x D ,{}40,20),(1≤≤≤≤=y x y x D ,)(22y x f +为D 上的连续函数,则σd y x f D)(22⎰⎰+可化为----------------------------------------------------(C ).Aσd y x f D )(122⎰⎰+ B σd y x f D )(2122⎰⎰+C σd y x fD )(4122⎰⎰+ D σd y x f D )(8122⎰⎰+.7. 下列哪个函数是某一二阶微分方程的通解----------------------------------------------( C ).A xe cx y += B x ec y xc +=+21C x c e c y x21+= D )(21xe x c c y +=.8. 下列哪个级数收敛---------------------------------------------------------------------------(D ). A∑∞=-1)1(n nB∑∞=+11001n n C ∑∞=+1100n n nD∑∞=1100100n n . 9. 若⎰⎰=Dd 4σ,其中ax y a x D ≤≤≤≤0,0:,则正数=a ---------------------( B ).A 322 B 2 C 342 D 232. 10. 若幂级数∑∞=-1)1(n nnx a在3=x 处条件收敛,则其收敛半径为-----------------( B ). A 1 B 2 C 3 D 4.二、计算题(本大题共4小题,每题7',共28'):1. 设),(v u f z =具有二阶连续偏导数,若)cos ,(sin y x f z =,求.,2y x z x z ∂∂∂∂∂ 解: ,cos 1xf xz=∂∂=∂∂∂y x z 2.cos sin )sin (cos )(1212xf y y xf x z y -=-⋅=∂∂∂∂ 2. 设)sin(22y x z +=,求⎰⎰Dzdxdy . D :22224ππ≤+≤y x .解:⎰⎰Dzdxdy =)4cos (cos 22πππ-3. 设曲线xe y 2=, )1ln(+=x y 与直线1=x 及y 轴所围成的区域为D ,求D 的面积.解D 的面积=2ln 2)1(212-+e . 4. 解微分方程.2x e x y dxdyx -+=解:x xe y xdx dy -=-1x xe x Q xx P -=-=)(,1)(⎰-=∴x dx x P ln )(, x x x dxx P e dx e xe dx ex Q ----=⋅=⎰⎰⎰ln )()(故通解为)(C ex y x+-=-三、计算题(本题9')设⎰⎰=202sin ππy ydx xxdy I ,(1)改变积分次序;(2)计算I 的值.解:⎰⎰=202sin ππyydx xxdy I =πππππ21)2(sin sin 2022022-=-=⎰⎰⎰dx x x x x dy x x dx xx 四、证明题(本题8')求证:曲面a z y x =++上任何点处的切平面在各坐标轴上的截距之和等于a .解:设切点为(000,,z y x )且设=),,(z y x F a z y x -++,则切平面方程为:+-)(2100x x x +-)(2100y y y 0)(2100=-z z z令0==z y 可得:切平面在x 轴上的截距为 a x z x y x x 000000=++同理可得:切平面在z y ,轴上的截距分别为,,00a z a y因此切平面在各坐标轴上的截距之和等于a a z a y a x =++000。

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。

二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。

(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。

(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。

(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。

2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。

原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【注】 高等数学考试时间:7月13日(第二十周周二) 地点:主教楼1601教室 以下题目供同学们复习参考用!!!!
《高等数学》(二)期末模拟试题
一、填空题:(15分)
1.设,y
x z =则=∂∂x
z .1-y yx
2. 积分=⎰⎰D
xydxdy .其中D为40,20≤≤≤≤y x 。

16
3. L 为2x y =点(0,0)到(1,1)的一段弧,则=⎰
ds y L
.121
55-
4. 级数∑∞
=-1)1(n p n
n
当p 满足 时条件收敛.10≤<p
5. 方程0)1(=+-dy e dx ye x
x
的通解为 .
)1(x
e C y += 二、选择题:(15分)
1.方程
0)4(sin )cos 3(3
2=-++dy y x dx x y x 是 .C (A)可分离变量微分方程; (B) 一阶线性方程; (C )全微分方程; (D)(A),B ),(C )均不对.
2.),(y x f z =在),(00y x 可微,则
y
z
x z ∂∂∂∂,在),(00y x 。

C (A)连续; (B )不连续; (C )不一定存在; (D)一定存在。

3.级数∑∞
=⎪⎪⎭⎫
⎝⎛
+-
-211
1
1n n n 是 。

A
(A )发散; (B)收敛; (C)条件收敛; (D )绝对收敛。

4.曲面22y x z +=与平面1=z 所围立体的体积为 。

B (A )⎰⎰⎰Ω
+dv y x )(2
2
; (B)⎰⎰⎰
1
1 0
2 0
r
dz rdr d π
θ;
(C)⎰⎰
⎰+----2
22
2
1 1 1
1
y x x x
dz dy dx ; (D )⎰⎰⎰
1
1 0
2 0
dz rdr d π
θ。

5.方程x e x y y y -=+'-''323的特解形式为 。

B
(A )x e b ax )(+ (B)x cxe b ax ++ (C )x ce b ax ++ (D )x xe b ax )(+
三、),(2
2
x y f z -=其中)(u f 有连续的二阶偏导数,求22x
z
∂∂.(8分)
解:)2(x f x z -⋅'=∂∂
)2()2(222-⋅'+-⋅''=∂∂f x f x z f f x '-''=242 例、设)](,[2
xy y x f z ϕ-=,),(v u f 具有二阶连续偏导数,求x
y z
∂∂∂2.
x f f y
z
⋅'⋅'+-⋅'=∂∂ϕ21)1(
]2[1211
2y f x f x
y z
⋅'⋅''+⋅''-=∂∂∂ϕx y f x f ⋅'⋅⋅'⋅''+⋅''+ϕϕ]2[2221ϕϕ'
⋅'+⋅⋅''⋅'+22f x y f 11
22)(f x xy f ''-''+'⋅'=ϕϕ222122)2(f xy f y x ''⋅'+''⋅'-+ϕϕ 四、计算⎰-+-L
x x dy y e dx y y e )2cos ()2sin (,L 为由点A (1,0)到B(0,1),再到
C(-1,0)的有向折线。

(8分)
解:2cos ,2sin -=-=y e Q y y e P x
x y e x Q y e y P x
x cos ,2cos =∂∂-=∂∂ .,,围成的区域为由设CA BC AB D 由格林公式
⎰-+-L
x
x dy y e dx y y e )2cos ()2sin (⎰⎰⎰-+--∂∂-∂∂=CA x x D
dy y e dx y y e dxdy y P
x Q )2cos ()2sin ()(
02-=⎰⎰dxdy D
=2
五、计算
⎰⎰

++dxdy zx dzdx yz dydz xy 2
22,其中∑为球体4222≤++z y x 及锥体22y x z +≥的公共部分的外表面。

(8分) 解:,围成的空间区域为由设∑Ω。

相关文档
最新文档