解析几何竞赛题求解的几种常见策略
(完整版)解析几何考点和答题技巧归纳

解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
浅析高考解析几何压轴题解答策略

探究是 否存在 的问题 是 20 年 高考解析 几何 的一个 09
涉 及位 置关 系 的判 定 、 长问题 、 弦 最值 问题 、 称 问题 、 对 轨 重点 考查 内容 , 很多 省市也 加强 了对 这种半开放 性试题 的
迹问题等, 突出考查数形结合 、 分类讨论 、 函数与方程、 等 考查力度。 这类问题主要就是假设存在然后求解。 湖北卷 、 价转化等数学思想方法, 因此直线与圆锥曲线的问题往往
|
i; | 高 0 |专 考21 建 0
全 文理解 的生 词 , 可以放过去 , 务求理解 。 不必 碰到 阅读 理 解 的难 题时 , 千万不 要钻牛角 尖 , 误太多时 间。 耽 一时做 不 出的 阅读 理解 的题 , 果断 舍弃 , 要 以免影 响解别 的较有 把 握 的阅读理解题 。待全部 阅读理解题 解完后 , 有剩余 时 如
都有 2到 3个 问组成 , 中的第 一个 问 比较基 础 , 值在 体 , 轨迹 方程 , 合考 查平 面 向量的 加法 与减法 及其 几 其 分 求 综
6 以 内, 分 主要考察 曲线方程 。后一个 问难度 大 , 4 6 何 意义 、 面 向量的数 量积 及其 几何 意义 、 有 到 平 圆锥 曲线 的定 分 较难 部分 , 常是最 值或 取值 范 围问题 , 题 时通 常用 通 解
分 。学生不 联系语文 阅读理解 问题 的要 求来 回答 , 我们称 之为乱答 题 , 本质上 是与学生 不答 题一 样 , 乱答 没有成 绩 。 我 们在语 文阅读理解训 练 中强调学生要 答满线格 , 并不 但
பைடு நூலகம்
浅析高考解析几何压轴题解答 策略
■ 通 化市 实验 中学 杨 睿
解析几何大题的解题步骤和策略

解析几何大题的解题步骤和策略
当涉及解析几何大题时,下面是一般的解题步骤和策略:
1.阅读理解:仔细阅读题目,理解问题陈述、已知条件和要求,
确保对问题的要求和约束有清晰的理解。
2.建立坐标系:根据题目描述和已知条件,确定合适的坐标系。
选择适当的坐标可以简化问题的计算和分析。
3.列出方程:根据题目的几何关系,用已知条件建立方程。
可
以利用距离公式、斜率公式、点斜式等几何关系公式来列出方程。
4.解方程组:利用求解方程组的方法来找到未知变量的值。
可
以使用代入法、消元法、梯度下降法等方法来求解方程组。
5.分析图形特征:通过计算、分析和绘制图形,找出图形的性
质和特征。
可以利用角度、长度等几何性质来推断和解答问题。
6.检查和回答:在得出计算结果之后,进行合理性检查,确保
计算的准确性。
最后,回答问题,给出相应的解释和结论。
在解析几何大题时,要善于运用几何知识和创造性思维,注意问题的合理性和准确性。
同时,从不同的角度分析和解决问题,灵活运用几何性质和解题策略,可以更好地应对解析几何大题。
根据具体的题目和难度,可能需要使用不同的方法和技巧,因此灵活性和实践经验也是很重要的因素。
数学竞赛中解析几何问题的解法(一)-最新教育资料

数学竞赛中解析几何问题的解法(一)
解析几何是各种考试中的重点和难点内容,解析几何题的运算量往往较大,所以很多同学容易出错或者做着做着就做不下去了.所以减少运算量、降低难度常常是解析几何题能否顺利做出来的关键.本文就选了近年的部分考题,来说明解好解析几何题的一些方法.
一、抓住定义解题――要熟练掌握圆锥曲线的两个定义,很多考题都是从定义出发求解的
二、用好韦达定理――韦达定理是解题的重要工具,圆锥曲线问题中恰当运用韦达定理可以减少不必要的运算
三、结合向量――近年解析几何题常常安一个向量的外壳,所以熟练运用向量知识在解这类题中至关重要
例6对于两条互相垂直的直线和一个椭圆,已知椭圆无论如何滑动都与两条直线相切,求椭圆中心轨迹.(上海交大自主招生考试)
解以两条直线的交点为原点,两条直线为坐标轴建立直角坐标系.设椭圆的长轴长与短轴长分别为2a,2b(a>b>0).中心为P(x,y),两个焦点分别为F1,F2.
1/ 1。
攻克解析几何综合题的几种策略

( ) c 与 Y轴 的交 点为 ,过 坐标原 点 0的直线 z C 2设 2 与
相 交 于 点 A、日,直 线 M A、MB 分别 与 C 相 交 于 点 D、E 。 .
① 证 明 :MD上ME .
② 记 AMA B、AMD E的面 积分 别是 S 、S,问 :是否存 在 :
直线 l ,使得 1=— ?请说 明理 由. 5
考研 究专 家,主要从 事 中学数 学教 育与高考研 究.
37
又直线 MB的斜率为一 1 一 k l
,
例 2 (0 1 浙江卷 ‘ 2) 如 图 2 21年 理 1 , 已知抛物线 C : z , : , C: : ( 一 ):1 ,圆 2 + y 4
)i
同理可得 点B的 坐标为 1, 一 1— ) 1.
一
直线 z C相交问题. 1问易得 C、C 的方程分别为莩 + 与 : 第() 。 :
=
1, Y =
1 .
、
全面审题 ,分部转化
第 () 2 问② ,通过审 图形 、审条件 ,抓住问题 的本质是 直线
与 2 由于解析几 何综合 题具有 信息量 大 、字母 符号 多 、图形 复 z c 相交于点 A、曰,实施 如下转化 即可使 问题获得解决 :
可 以 说 ,这 几 乎 是 所 有 学 生 的 一 个 难 点 ,很 多 学 生 对 其 有 惧 怕
图 1 椭圆 c: +善 = > > ) , 1 b0
0一
E
二= 二
.
的离心率为
:
一
, 轴被曲线 C :Y : =
M
// ; /
图
b截得 的线段长等于 C 的长半轴长. ( ) C 、C 的方程 ; 1求 。 z
数学竞赛中解析几何问题的解法(一)-最新教育资料

数学竞赛中解析几何问题的解法(一)
解析几何是各种考试中的重点和难点内容,解析几何题的运算量往往较大,所以很多同学简易出错或者做着做着就做不下去了.所以减少运算量、降低难度常常是解析几何题能否顺利做出来的关键.本文就选了近年的部分考题,来说明解好解析几何题的一些方法.
一、抓住定义解题――要烂熟掌握圆锥曲线的两个定义,很多考题都是从定义出发求解的
二、用好韦达定理――韦达定理是解题的严重工具,圆锥曲线问题中恰当运用韦达定理可以减少不必要的运算
三、结合向量――近年解析几何题常常安一个向量的外壳,所以烂熟运用向量知识在解这类题中至关严重
例6对于两条互相垂直的直线和一个椭圆,已知椭圆无论如何滑动都与两条直线相切,求椭圆中心轨迹.(上海交大自主招生考试)
解以两条直线的交点为原点,两条直线为坐标轴建立直角坐标系.设椭圆的长轴长与短轴长分别为2a,2b(a>b>0).中心为P(x,y),两个焦点分别为F1,F2.
1/ 1。
高考数学如何应对解析几何的难题

高考数学如何应对解析几何的难题解析几何是高考数学中一个相对较为复杂和困难的知识点,无论是平面解析几何还是空间解析几何,都需要同学们具备较高的数学思维和分析能力,才能够顺利解决问题。
在高考中,解析几何常常是一道能够考察学生综合运用多种数学知识与技巧的题目,因此,如何应对解析几何的难题成为学生备战高考的重要环节。
本文将从几个方面为同学们介绍高考数学解析几何题目的解题技巧与策略。
一、充分理解题意在解析几何的难题中,题目通常会给出一定的几何条件或图形描述,并要求求解一些未知的几何性质或者计算一些几何量。
因此,同学们首先要做的就是充分理解题目中给出的条件和要求,举一反三,将所学知识与题目相结合,形成自己的解题思路。
二、熟练掌握基本几何定理与公式解析几何的难题往往需要建立几何模型,运用几何定理和公式来求解。
因此,同学们需要熟练掌握基本的几何定理与公式,例如平面解析几何中的点与直线的关系、直线与直线的关系、平面与平面的关系等,还有空间解析几何中的点与直线的关系、直线与平面的关系、平面与平面的关系等。
只有当我们熟练掌握了这些基本的几何定理与公式,才能在解析几何的题目中游刃有余。
三、灵活应用坐标系在解析几何的题目中,坐标系是一种非常重要的工具。
通过建立适当的坐标系,可以把几何问题转化为代数问题,更加方便理解和计算。
同学们需要熟练掌握直角坐标系和参数方程两种坐标系的应用,能够根据题目的要求选择适当的坐标系,简化问题的求解过程。
四、细心分析图形性质在解析几何的题目中,图形性质的分析是非常重要的一步。
同学们需要根据题目给出的条件和要求,利用已知信息推导出更多的图形性质,从而为问题的解决提供更多线索。
同时,同学们还需要判断出哪些性质是关键性质,哪些是次要性质,避免陷入无用的计算中。
五、多做题,总结经验解析几何需要一定的练习积累,通过多做题目,可以更加熟悉各种典型的解题方法和技巧。
在解题过程中,同学们要注意总结分析,归纳各种解题的模式,形成自己的解题经验。
(完整版)解析几何的解题思路、方法与策略分析

解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。
解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。
在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。
下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。
一、用函数(变量)的观点来解决问题函数是描述客观世界中变量间依赖关系的重要数学模型。
抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。
在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。
【例1】(2010全国高中数学联赛试题)已知抛物线26y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值.【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把∆ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。
【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:12122212121206366--====-+-y y y y k y y x x y y y 线段AB 的中垂线方程:00(2)3-=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C直线AB 的方程:003(2)-=-y y x y ,联立抛物线方程消去x 可得:220022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以2200044(212)0∆=-->⇒-<<y y y弦长12|||=-==AB y y 点C(5,0)到直线AB的距离:||==h CM则1||2∆=⋅==ABCS AB h≤=当且仅当22009242+=-y y,即=y,点A B或A B时等号成立,所以∆ABC面积的最大值为。
【评析】在解答过程中用韦达定理代入消元转化,蕴含了“设而不求”的解题策略,把面积S表示为中点坐标y的函数,同时注意y的取值范围,体现了函数问题首先关注定义域,在对函数求最值的过程中运用了基本不等式,其实也可设29,[9,21)+=∈y t t,转化为一个t的三次函数,利用导数求最值也是一种常用技巧。
【例2】(2009全国高中数学联赛试题)设直线:l y kx m=+(其中k,m为整数)与椭圆2211612x y+=交于不同两点A,B,与双曲线221412x y-=交于不同两点C,D,问是否存在直线l,使得向量0AC BD+=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【分析】通过分析可以看出本题的根本变量是直线方程中的,k m,所以其余各量均可用,k m,所以我们这里可用一个二元函数(,)f k m来表示+AC BD,本题就转化为解二元方程(,)0=f k m.【解析】由2211612y kx mx y=+⎧⎪⎨+=⎪⎩消去y化简整理得:()2223484480k x kmx m+++-=设()11A x y,,()22B x y,,则122834kmx xk+=-+,()()()222184344480km k m∆=-+->①由221412y kx mx y=+⎧⎪⎨-=⎪⎩消去y化简整理得:()22232120k x kmx m----=设()34C x y,,()44D x y,,则34223kmx xk+=-,()()()2222243120km k m∆=-+-+>②因为0AC BD+=,所以()()4231x x x x-+-=,此时()()4231y y y y-+-=.由1234x x x x+=+得2282343km kmk k-=+-.所以20km=或2241343k k-=+-.由上式解得0k=或0m=.当0k=时,由①和②得m-<m是整数,所以m的值为3-,2-,1-,0,1,2,3.当0m=,由①和②得k<k是整数,所以1k=-,0,1.于是满足条件的直线共有9条.【评析】如果题目中的主变量需要用两个变量来表示时,可先把这个因变量表示为一个两元函数,如题设中有其他条件能找到这两个变量间的关系,那只需用一个两来表示另一个量,这时就可转化为一元函数,这也体现了解析几何中“设而不求”的思想;如题设条件不能直接给出两变量者之间的关系,我们可直接对二元函数进行处理.二、用平面几何的知识来解决问题解析几何是用坐标法把几何问题代数化,用代数的方法来解决几何问题,但说到底解析几何还是几何。
在解决某些解析几何问题的时候,如果其平面几何背景非常明显的时候,我们往往可以借助平面几何知识来快速准确解决问题。
【例3】(2012全国高中数学联赛试题)抛物线22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l 上的投影为N ,则||||MN AB 的最大值是________【分析】根据梯形的中位线定理和抛物线的定义,|MN=|AF|+|BF|,结合3AFB π∠=,可用余弦定理得出等量关系。
【解析】由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得 2222cos3AB AF BF AF BF =+-⋅π2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +== 当且仅当AF BF =时等号成立.故MNAB的最大值为1. 【评析】一些解析几何客观题,往往需要借助圆锥曲线的定义和平面几何的一些性质进行解题。
【例4】(2005全国高中数学联赛试题)过抛物线y=x 2一点A (1,1)作抛物线的切线交x 轴于D ,交y 轴于B ,C 在抛物线上,E 在线段AC 上,1λ=EC AE ,F 在线段BC 上,2λ=FCBF,且λ1+λ2=1,线段CD 与EF 交于P ,当C 在抛物线上移动时,求P 的轨迹方程。
【分析】通过初略计算可知D 为AB 的中点,而题设中有很多的线段比例关系,可考虑用三角形的面积之比来解决问题。
【解析】AB 的方程为),0,21(),1,0(,12D B x y --=故D 是AB 的中点. 令,1,1,2211λλγ+==+===CFCBt CE CA t CP CD 则.321=+t t 因为CD 为ABC ∆的中线,.22CBD CAD CAB S S S ∆∆∆==∴ 所以,23,232)11(212212*********=∴=+=+=+==⋅⋅=∆∆∆∆∆∆γγγγγt t t t t t t t S S S S S S CB CA CF CE t t CBD CFP CAD CEP CAB CEF P ∴是ABC ∆的重心.设),,(),,(200x x C y x P 因点C 异于A ,则,10≠x 故重心P 的坐标为,3311),32(,31310202000x x y x x x x =++-=≠+=++=消去,0x 得.)13(312-=x y故所求轨迹方程为).32()13(312≠-=x x y 【评析】从函数的观点进行分析,易发现点C 的横坐标0x 为主变量,P 点的横坐标和纵坐标均表示成0x 的函数,在消去参数0x 就得到点P 的轨迹方程,思路虽然简单,但由于本题所含字母较多,进行代数运算时运算量大且容易出错。
如果我们能够分析其平面几何背景,运用平面几何的知识,就能比较快速准确的解决问题当解析几何题目。
三、用极坐标知识来解决解析几何问题解析几何中的坐标法是指建立直角坐标系,用这个点在两坐标轴上的射影,x y 来确定。
而极坐标是用角度和距离(很多时候就是长度)这两个量来确定一个点的位置,其几何意义很明显,如果在题目中涉及到的量能用角度和距离非常方便的表示出来,那么建立一个极坐标系进行运算,会比我们在直角坐标系下运算快速有效的多。
【例5】(2008江苏省数竞赛试题)A 、B 是椭圆22194x y +=上的两个动点,满足0OA OB ⋅=。
(1)求证:2211||||OA OB +为定值;(2)动点P 在线段AB 上,满足0OP AB ⋅=,求证:点P 在定圆上。
【分析】由0OA OB ⋅=可知OA OB ⊥,所以90AOB ∠=︒,而||,||OA OB 能用距离(长度)直接给表示出来,这里的问题都可以用角度和距离来表示,可以考虑建立极坐标系来解决。
【解析】(1)如图以原点为极点,x 轴正半轴为极轴建立极坐标系 设||,||,OA a OB b AOx ==∠=θ,则点(cos ,sin )A a a θθ, 则点(cos(),sin())(sin ,cos )22B b b b b ππθ+θ+=-θθ, 点A 、B 在椭圆上,把点坐标带入椭圆方程可得:222222cos sin 1cos sin ()19494a a θθθθ+=⇒=+同理可得: 2221sin cos 94b θθ=+,两式相加可得:221111139436a b +=+=为定值。
(2)由0O P A B ⋅=知OP AB⊥,所以||||||||||||||||OA OB OP AB OA OB OP AB ⋅⋅=⋅⇒====P 在以O【评析】本题也可利用OA OB ⊥,设他们的斜率分别为1,k k-,以k 为主变量进行运算,但||,||OA OB 用k 来表示比较麻烦。
如能观察到用角度和距离两个量非常简洁的表示||,||OA OB ,选用极坐标系,则解题可事半功倍。
【例6】(2012全国高中数学联赛试题)在平面直角坐标系xOy 中,菱形ABCD 的边长为4,且6O B O D ==.(1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时,求点C 的轨迹. 【分析】根据图中的菱形和等腰三角形的性质可知O 、A 、C 三点共线,结合菱形的对角线垂直可知边长关系,第(1)小题用平面几何方法可快速求解,由点O 、A 、C 三点共线知三点的角度是一样的,只有长度不一样,加上(1)的结论可知,|AO|与|OC|的长度之积为定值20,第(1)小题可以用极坐标(,ρθ)求解。