大学生数学竞赛空间解析几何练习题

合集下载

解析几何竞赛题选

解析几何竞赛题选

25.[决赛试题](13 分)已知两直线的方程: L : x = y = z , L ' : x = y = z − b 。(1)问: 1a 1
参数 a, b 满足什么条件时, L 与 L ' 是异面直线?(2)当 L 与 L ' 不重合时,求 L ' 绕 L 旋转 所生成的旋转面 π 的方程,并指出曲面 π 的类型。
=
(1 a
, 0, −
1)× c
(0,1, 0)
=
(1 c
, 0,
1 ). a
若π
平行于l2 ,则λ
=

1 a
.在直线l2上取点M
(a,
0, 0),则M 到平面π的距离
即为l1与l2的距离2d,即
(2d )2 =
22
,⇒ 1 = 1 + 1 + 1 .
1 a2
+
1 b2
+
1 c2
d 2 a2 b2 c2
t 可以是任意的,所以,这时, π 的方程为:
⎧ x+y+z=b

⎨ ⎪⎩
x
2
+
y2
+
z2

5 6
b2

π 的类型: a = 1 且 b ≠ 0 时, L 与 L ' 平行,π 是一柱面; a ≠ 1且 b = 0 时, L 与 L ' 相交, π 是一锥面( a = −2 时 π 是平面);当 a ≠ 1且 b ≠ 0 时,π 是单叶双曲面( a = −2 时,π 是
+ +
(z (z
+ 1) 2 −1)2

空间解析几何习题

空间解析几何习题

空间解析几何习题习题0—11.在空间直角坐标系中,画出下列各点:)2,1,2(),4,3,0(),4,0,0(-。

2.求点),,(c b a 关于(1)各坐标面,(2)各坐标轴,(3)坐标原点的对称点的坐标。

3.自点),,(0000z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。

4.一边长为a 的立方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标。

5.求点)5,3,4(-P 到各坐标轴的距离。

6.在yOz 面上,求与三个已知点)2,1,3(A ,)2,2,4(--B 和)1,5,0(C 等距离的点。

7.证明:以三点)9,1,4(A ,)6,1,10(-B ,)3,4,2(C 为顶点的三角形是等腰三角形。

习题0—21.设向量a 与x 同和y 轴的夹角相等,而与z 同的夹角是前者的两倍,求向量a 的方向余弦。

2.设向量的方向余弦分别满足下列条件,试问这些向量与坐标轴、坐标面的关系如何?(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα3.分别求出向量)5,3,2(),1,1,1(-==b a 及)2,1,2(--=c 的模,并写出单位向量000,,c b a 。

4.设向量)1,0,0(),0,1,0(),0,0,1(===k j i ,证明k j i ,,两两正交。

习题0—31.设b a ,为非零向量,问它们分别满足什么条件时,下列等式成立?(1)||||b a b a -=+;(2)||||b ba a =。

2.设c b a v c b a u -+=+-=3,2,试用c b a ,,表示v u 32-。

3.在A B C ?中,设M ,N ,P 分别为BC ,CA AB 的中点,试用AB CA BC ===c b a ,,表示向量AM ,N B ,CP 。

4.设MB AM =,证明:对任意一点O ,有)(21+=。

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。

选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。

2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。

对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。

二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。

答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。

将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。

2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。

答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。

这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。

三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。

空间解析几何的实际问题

空间解析几何的实际问题

空间解析几何的实际问题当然可以!以下是根据标题“空间解析几何的实际问题”设计的20道试题,包括选择题和填空题,并且每道题目都有详细的序号介绍。

1. 选择题:1.在三维空间中,以下哪个选项最准确地描述了直线和平面的交点情况?A. 不存在交点B. 有一个交点C. 有无穷多个交点D. 有两个交点2. 填空题:2. 给定平面方程 \( 2x - 3y + 4z = 5 \),直线方程 \( \frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{4}\),它们的交点坐标为________。

3. 选择题:3. 下列哪种情况下,两个平面一定平行?A. 法向量相互垂直B. 法向量共线但不平行C. 法向量平行但不共线D. 法向量相互平行4. 填空题:4. 给定直线上的一点 \( P(1, -2, 3) \) 和平面方程 \( 3x - 2y + 4z = 6 \),点 \( P \)到该平面的距离为________。

5. 选择题:5. 以下哪种情况下,两条直线一定相交于一点?A. 平行且重合B. 相交但不共面C. 共面但不相交D. 不共面且不相交6. 填空题:6. 给定直线方程 \( \frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{4} \) 和平面方程 \( x + 2y - 3z = 4\),它们的交点坐标为________。

7. 选择题:7. 一个平面与另一个平面垂直,它们的法向量分别为 \(\mathbf{n}_1 = (2, -1, 3) \) 和 \( \mathbf{n}_2 = (-1, 3, 2) \),则它们之间的关系是:A. 平行B. 垂直C. 不共面D. 共面8. 填空题:8. 给定直线上的一点 \( Q(2, 1, -3) \) 和平面方程 \( 2x - 3y + 4z = 5 \),点 \( Q \)到该平面的距离为________。

空间解析几何练习与答案

空间解析几何练习与答案

空间解析几何与向量代数测试题一、 选择题(每小题6分,共24分 )1.点)1,3,2(-M 关于xoy 平面的对称点是( )(A ))1,3,2(-- (B ))1,3,2(--- (C ))1,3,2(-- (D ))1,3,2(-2.设向量,+=,则必有( )(A )=- (B )=+ (C )0=⋅ (D )=⨯3.向量{}z y x a a a ,,=,{}z y x b b b ,,=,{}z y x c c c ,,=, 则p n m a -+=34在x 轴上投影是( )(A )x x x c b a -+34 (B )()x x x c b a -+±34(C )x x x c b a -+34 (D )y y y c b a -+344.平面0=+++D Cz By Ax 过x 轴,则( )(A )0==D A (B )0,0≠=D A (C )0,0=≠D A (D )0==C B二、填空题 (每小题6分,共30分 )1.向量{}z y x a a a ,,=与三坐标轴正向夹角分别为γβα,,,则的方向余弦中的=αcos _____________2.平面0218419=++-z y x 和0428419=++-z y x 之间的距离等于__________3.球面2222R z y x =++与a z x =+交线在xoy 平面上投影曲线的方程是______________(其中R a <<0)4.设向量a 的方向角3πα=,β为锐角,βπγ-=,且4=,则=___________.5.方程14222=+-z y x 表示的曲面是______________ 三、解答下列各题(46分 )1.(12分) 求经过原点且垂直于两平面 0352:1=++-z y x π,073:2=--+z y x π的平面方程。

2.(12分)已知ABC ∆的顶点分别为)3,2,1(A ,)5,4,3(B 、)7,4,2(C ,求ABC ∆的面积.3.(10分)设{}1,4,1-=,{}5,4,3-=,求∧),sin(b a4.(12分)一直线在xoz 坐标面上,且过原点又垂直于直线 152132-=-+=-z y x ,求它的对称式方程.空间解析几何与向量代数测试题答案一、1.C 解:y x ,坐标不变,z 坐标变为相反数2.C 解:由已知条件得22)()(b a b a +=- ⋅-=⋅∴22 即0=⋅3. A解:由向量的线性运算易得)34,34,34(z z z y y y x x x c b a c b a c b a a -+-+-+=又向量a 在x 轴的投影就是直角坐标系中的坐标x a即 x x a a j =Pr =x x x c b a -+344. A 解:平面必过原点故0=D ;0,}0,0,1{,},,{=⇒⊥==A i i C B A .二、1.222z y x xa a a a ++ 2.1 解:184194221222=++-=d3.⎩⎨⎧==-++0)(2222z R x a y x 解:⎩⎨⎧=+=++a z x R z y x 2222消去z 得:2222)(R x a y x =-++ 与0=z 联立得 ⎩⎨⎧==-++0)(2222z R x a y x 4.{}6,6,2- 解:43411)(cos cos ,21cos 22=-=-+=βπβα }6,6,2{}223,223,21{4223cos cos 83cos 2-=-⋅=⇒=-=⇒=⇒a γββ5.单叶双曲面三、解:1. 21,ππ法向量分别为{}5,1,21-=n ,{}1,3,12-=n …………….….4分 所求平面法向量为{}7,7,1421-=⨯=n n n ………………8分 又平面经过原点,故所求平面方程为 02=--z y x ……..………12分2.解:根据向量积的定义,可知三角形的面积A S ABC =∠=∆……………3分 由于{}{}421,2,2,2,,==,因此2642122+-==⨯ ………… 7分于是142)6(4216421222=+-+=+-=∆S ABC …………10分 3.()533018,cos -=-==∧ ………….5分 ()54,sin =∧ ……..…....10分 4.由直线在xoz 面上,可知此直线垂直于y 轴。

江苏省高等数学竞赛试题-解析几何部分

江苏省高等数学竞赛试题-解析几何部分

解析几何1.椭圆2226x y +=到直线4x y +=的最大和最小距离。

解2226x y +=上点(,)x y 到4x y +=的距离1d (,)42x y x y =+-,()221d (,)42x y x y =+-。

令()()22214262F x y x y λ=+-++-, ()()'''22420440260x y F x y x F x y x F x y λλλ⎧=+-+=⎪⎪=+-+=⎨⎪=+-=⎪⎩ 解得21x y =±⎧⎨=±⎩17d(2,1),d(2,1),22=--=所以71maxd ,mind 22==。

2.已知两平面曲线(,)0,(,)0f x y x y ϕ==,又(,)αβ和(,)ζη分别为两曲线上点,试证如果这两点是这两条曲线上相距最近或最远的点,则下列关系式必成立:(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-。

证 问题为求22201212()()u d x x y y ==-+-在条件11(,)0f x y =及22(,)0x y ϕ=下的最值。

20111222(,)(,)F d f x y x y λλϕ=++,则由111122221211211221222()02()02()02()0x x y y x x y y F x x f F y y f F x x F y y λλλϕλϕ⎧=-+=⎪=-+=⎪⎪⎨=--+=⎪⎪=--+=⎪⎩得1212112212121122(,)(,)(,)(,)x x y y f x y x y x x y y f x y x y ϕϕ-==-,若20u d =在1122,,,x y x y αβζη====处达到最值,其中(,)0,(,)f αβϕζη==,则必有1212(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-,即(,)(,)(,)(,)x x y y f f αβϕζηαζβηαβϕζη-==-,证毕。

空间解析几何(练习题(答案))

空间解析几何(练习题(答案))

1. 过点M (1, —1, 1)且垂直于平面x — y — z+1 = 0及2x+y + z+1 = 0的平面方程.39. y—z+2=03.在平面x—y—2z=0上找一点p, 使它与点(2,1,5), (4,邙,1)及(―2,—1,3)之间的距离相等.5.已知:A(1,2,3),B(5,—1,7),C(1,1,1),D(3,3,2),贝打// =A . 4B . 1C , -D . 227 .设平面方程为x - y = 0,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴.8 .平面x—2y+7z+3 = 0与平面3x+5y+z—1 = 0的位置关系()A .平行B .垂直C .相交D .重合9 .直线工二 =丫二9 与平面4x —2y —2z—3 = 0的位置关系()-2 -7 3A .平行B ,垂直C ,斜交D .直线在平面内—―、f—y+1 = 010 .设点A(0,—1,0)到直线,y的距离为( )、x + 2z - 7 = 0A . 75B . 1=C . 1 D,6 55. D 7 , D 8 . B 9 . A 10 . A.3.当m=时,2i _3j +5k 与3i+mj —2k互相垂直.4 .设a=2:+j+k , b=i—2j+2k , C = 3i—4j+2k , 则P c(a j b)= ----------------c4.过点(2, —8⑶且垂直平面x+2y—3z-2 = 0直线方程为10 .曲面方程为:x2 * 4 +y2 +4z2 =4,它是由曲线绕旋转而成的.。

一4,3. m = 一;43且9,工匚2=",29 1 2 -3旋转而成.1 .设 a ={2-3,1 1b =^,-1,3)0 = {1-2,0},则(a = b)xC=( )A . 8B . 10C . fo ,-1,-1)D , {2,1,21}3 .若 a =6i +3j _2k,b//a,且月=14,则b =()A . ±(12i +6j -4k)B . ±(12i +6j jC . ±(12i -4k)D . ±(6j -4k) 4 .若 M 1(1,1,1),M 2(2,2,1),M 3(2,1,2),则 M 1M 2与M 1M 3的夹角中716 .求平面x — y +2z —6 = 0与平面2x + y + z —5 = 0的夹角(ooo5A . 30B . 60C . 90D . arcsin- 61. D 3 . A 4 . C 6. C 8. A 9 . D7.求与平面2x-6y+3z=4平行平面,使点(3,2,8)为这两个平面公垂线中点.3 .确定k 值,使三个平面:kx —3y + z = 2,3x + 2y + 4z = 1, x — 8y — 2z = 3通过同一条 直线.5.求以向量i + j, j + k, k+i 为棱的平行六面体的体积.7 .与平面2x+y+2z+5=0,且与三个坐标面所构成的四面体体积为1的平面方程8 98 .动点到点(0,0,5 )的距离等于它到 x 轴的距离的曲面方程为 .5.已知a ={-3,0,4}, b =0-2,-14},则两向量所成夹角的角平分线上的单位向JTM o (3,-1,2), 直线l 」x y -z 1 = 0 2x- y z-4=0M O 到l 的距离为(x -2 y -3与平面2x + y+z = 6夹角为 (2 2z = 2 -x - y22z=(x") (y-1)或两向量对应坐标成比例 。

空间解析几何练习题

空间解析几何练习题

。 3
x 5 y 8 0, x 15 y z 8 与直线 的夹角。 8 1 4 2 y 11z 1 0
x 4 y 4 z 1 x5 y 5 z 5 与直线 的距离。 2 1 2 4 3 5
y z x z 1, 1, 16.已知直线 L1 : b c 和 L2 : a c x 0 y 0.
7.求经过原点,且与两平面 x 2 y 3z 13 0 和 3x y z 1 0 都垂直的平面 方程。
3x 2 y z 1 0, 8.求过点 (2, 3, 1) 和直线 的平面方程。 2 x y 0
9.求过直线
x y z 1 x 1 y z 且平行于直线 的平面方程。 2 1 2 0 1 1
,使得 a b c 0 。
b 为满足 || a || 2 , 5. 设a, 且 a 与 b 的夹角为 || b || 1 的向量,
。 求以 m 5a b , 4
a (2, 1, 3) , b ( x, y, z ) ,若 a c b 有解 c ,问 x , y , z 应满足 什么条件? 7.证明:对任意向量 a , b 成立 || a b || 2 || a b || 2 2(|| a || 2 || b || 2 ) ,并说明 其几何意义。 8.设三个向量 a , b , c 满足 (a b) c 2 ,求 [(a b) (b c)] (c a) 。 9.问向量 a (2, 3, 1) , b (1, 1, 3) , c (1, 9, 11) 是否共面?
a c b c, 10.已知 a , b , c 都不是零向量,问 a b 与 是否等价? a c b c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。

解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以
'223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=⨯=为基本向量
建立一个新的坐标系''''O X Y Z ,则坐标变换公式为
''
2222
''2222'/B A x x z A B A B A B
y D B x z A B A B z y ⎧=+⎪++⎪
⎪=--
+⎨++⎪
⎪=⎪⎩
在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2''''
22
22
2
2
2
2
6(
)(/)1
B A A
B
y x z D B x z A B A B A B A B ++
--
+
=+++
+
所以交线的方程为:
'2'
'''22
22
22
22
'6()(/)1
B A A B y x z D B x z A B A B A B A B z ⎧++--+
=⎪++++⎨
⎪=⎩
化简得:
'2'
'22
22
'6()(/)1
0B A y x D B x A B A B z ⎧+--=⎪++⎨
⎪=⎩
因为交线是圆,所以 226AB A B -=+ 解得
322A
B
=-.
试题2:求过点)0,1,0(P 并且和两条直线 ⎩

⎧=+=+++⎩⎨
⎧=+=++020
13:,0201:21y x z y x l y x y x l 均相交的直线的方程。

解:把直线的方程化为点向式方程为: ,1
11
2
:,1
20
1:21-+==-=+=-z y x l z y x l
设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=,
试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程.
解:设所求的直线的方程为:141x lt
y mt z nt =+⎧⎪=-+⎨⎪=+⎩
,又因为所求的直线在二次曲
面上,所以对任意的,t 有
2222(1
)(4)(1)
3(1)(
4)(1)(1
)6(1)
l t m t n t
l t m t l t n t n t ++--+++-+++-+=,
化简得;
2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以
222230
(1)7570l m n ml nl l m n ⎧+-++=⎨
++=⎩
由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得
220
(1)570
m n m n ⎧-=⎨
+=⎩
上述方程只有零解. (2): ,1=l 代入方程组(1)得
22230
(1)7570m n m n m n ⎧+-++=⎨++=⎩
解之得07/4
11/4
m m n n ==-⎧⎧⎨

=-=⎩⎩或者 所以所求的直线为
11447/411/4x t x t y y t z t z t =+=+⎧⎧⎪⎪
=-=--⎨⎨⎪⎪=-=+⎩⎩
或者
试题4:求过点)1,0,1(P 平行于y 轴并与曲面182=+xz y 的交线都是圆的所有平面的方程.
解:答案:0)1)(154(1=-++z x
试题5:求和下面三条直线都是相交的直线所构成的曲面。

52
4132:,1:,1:321+=
+=--⎩
⎨⎧-=-=⎩⎨
⎧==z y x L y z x L y z x L 答案:1222=-+z y x
试题6:确定实数m 的值,使平面0=-+mz y x 和单叶双曲面
1222=-+z y x 相交,交线分别是椭圆和双曲线.
解:令'3e 为所给的平面的单位法向量,即),1,1(212
'3m m
e -+=
,取
)2,.()
2(21),0,1,1(212'1'3'2'1---+=⨯=-=
m m m e e e e . 由于原点在所给的平面上,以'3'2'1,,e e e 为新的基本向量建立新的直角坐标系],,,['
3'2
'1e e e O ,那么新就坐标系之间的坐标变换公式为:
'''22'''22''2211
22(2)2
1,22(2)222(2)2m x x y z m m m m y x y z m m m z y z m m ⎧=-+⎪⎪++⎪

=--
+⎨++⎪
⎪⎪=--⎪++⎩
那么在新的坐标系中,所给的平面方程为:0'=z , 所给的单叶双曲面的和平面的交线的方程为:
1
222=-+z y x ''2''2'2
222
'112()()()1222(2)2(2)2(2)0m m x y x y y m m m z ⎧-+----=⎪+++⎨
⎪=⎩
化简得到:
2'2'2
2'21
20m x y m z ⎧-+=⎪+⎨
⎪=⎩
所以,当2m >时,交线是椭圆,当2m <时是双曲线,当2m =时是一对平行直线。

相关文档
最新文档