防雷装置安全检测技术规范
建筑物防雷装置检测技术规范(GBT21431-2015)

注:接地的目的是:a.使连接到地的导体具有等于或 近似于大地(或代替大地的导电体)的电位;b.引导入地 电流流入和流出大地(或代替大地的导电体)。
接地的种类
1、防雷接地:(30,10,10Ω)
为把雷电迅速引入大地,以防止雷害为目的的接地。 防雷装置如与电报设备的工作接地合用一个总的接地网时,接地电阻 应符合其最小值要求。
5.插入损耗
由于在传输系统中插入了一个SPD所引 起的损耗。它是在SPD插入前传递到后面的 系统部分的功率与SPD插入后传递到同一部 分的功率之比。插入损耗通常以dB(分贝) 表示。
6.耐冲击电压额定值Uw
220/380V三相系统各种设备耐冲击过电压额定值
设备的位置
耐冲击过电压类别 耐冲击电压额定值
建筑物防雷装置检测技术规范 (GB/T 21431-2015)
甘肃无为防雷技术有限责任公司 2018年12月
(李磊:13893428204)
●了解内容
建筑物与构筑物
所谓构筑物就是不具备、不包含或不 提供人类居住功能的人工建造物,比如水 塔、水池、过滤池、澄清池、沼气池等。
一般具备、包含或提供人类居住功能 的人工建造物称为建筑物 。
7.1 等电位连接的基本要求 1) 62305-3中:钢结构的电气连续性由焊接、
夹接、搭接和绑扎来保证,重叠部分为Φ的20倍。 2)在自然连接不能获得电气连续性的地方,
采用导线连接 3)在用导线连接不可行的地方,采用SPD连
接
7.2 等电位连接的检查和测试 62305中规定:电气连续性测试,最上部和地
2、交流工作接地 (4Ω)
将电力系统中的某一点,直接或经特殊设备与大地作金属连接。 工作接地主要指的是变压器中性点或中性线(N线)接地。N线必须 用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子 一般均在箱柜内。必须注意,该接线端子不能外露;不能与其它接地 系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与PE线连 接。
GBT 21431-2008 防雷装置安全检测技术规范

防雷装置安全检测技术规范GB/T21431-20081范围本标准规定了防雷装置的检测项目、检测要求和方法、检测周期、检测程序和检测数据整理。
本标准适用于防雷装置的检测。
高压电力输配电线路、大中型高压变电所防雷装置的检测及离岸飞行器、离岸船舶的防雷装置的检测尚应符合现行国家有关标准的规定。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修订单(不包括勘误的内容)或修正版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可以使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T17947.1—2000接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分常规测量GB 18802.1-2002低压配电系统的电涌保护器(SPD)第1部分性能要求和试验方法GB 50057—1994建筑物防雷设计规范(2000年版)GB 50174—1993电子计算机机房设计规范GB 50303—2002 建筑电气工程施工质量验收规范GB/T 50312—2000建筑与建筑群综合布线系统工程验收规范IEC 61024—1:1990建筑物防雷第1部分通则IEC 61024—1—2:1998建筑物防雷第1部分通则第2分部分:指南B—防雷装置的设计、安装、维护和检查IEC 61312—1:1995雷击电磁脉冲防护第1部分通则IEC/TS 61312—2:1999雷击电磁脉冲的防护第2部分建筑物的屏蔽,内部等电位连接和接地IEC 61643—21/Ed.1.0:2000连接至电信网络及信号网络的电涌保护器第21部分性能要求和试验方法ITU TS K11:1990过电压和过电流防护原则ITU TS K31:1993用户大楼内电信装置的连接结构和接地3术语和定义下列术语和定义适用于本标准。
3.1防雷装置lightning protection system,LPS接闪器、引下线、接地装置、电涌保护器及其他连接导体的总合。
建筑物防雷装置检测技术规范

建筑物防雷装置检测技术规范一、适用范围本标准规定了建筑物防雷装置检测的术语和定义、基本要求、检测内容、检测方法与数据处理等,并给出了建筑物防雷装置的检测数据。
建筑物防雷装置检测是在各级气象主管机构指导下,依据相关规范的要求对建筑物的防雷装置进行检测,以确保建筑物能够安全运行。
建筑物防雷装置是否合格直接关系到人们的生命财产安全,因此做好检测工作至关重要。
二、基本要求1。
检测报告:检测机构及其人员应按照《检测和校准实验室能力认可准则》( CNAS- CL01)的要求进行建筑物防雷装置检测,制作并向委托人提供检测报告,内容应包括检测方法、检测数量、检测结论等。
检测报告应真实反映检测的实际情况。
2。
检测项目:检测机构应根据《建筑物防雷装置检测技术规范》 DBJ25/T0— 20至25和《民用建筑电气设计规范》 GB50144的要求进行建筑物防雷装置检测,检测内容应包括:二、基本要求1。
检测报告:检测机构及其人员应按照《检测和校准实验室能力认可准则》( CNAS- CL01)的要求进行建筑物防雷装置检测,制作并向委托人提供检测报告,内容应包括检测方法、检测数量、检测结论等。
检测报告应真实反映检测的实际情况。
2。
检测项目:检测机构应根据《建筑物防雷装置检测技术规范》 DBJ25/T0— 20至25和《民用建筑电气设计规范》 GB50014的要求进行建筑物防雷装置检测,检测内容应包括:三、检测内容3.1建筑物的防雷装置应符合现行国家标准《建筑物防雷设计规范》 GB50054的有关规定。
建筑物防雷装置的材料和构造应符合现行国家标准《建筑物防雷设计规范》 GB50054的有关规定,现场应具备条件时应进行实体检测。
3.2当建筑物采用基础接闪器或基础外侧安装接闪器时,应对接闪器的接闪效果、引下线连接、焊接质量等进行检测,当采用均压环时还应对均压环、引下线焊接等进行检测。
3.3检测建筑物屋顶上部金属物体(如金属屋面板、金属门窗、金属栏杆等),应对金属物体与接闪器或引下线之间的连接、焊接等进行检测。
建筑物防雷装置检测技术规范

建筑物防雷装置检测技术规范一、引言随着现代建筑物高度的增加和智能化水平的提高,建筑物防雷装置的重要性不断凸显。
一方面,建筑物本身需要有效地保护其内部设备和人员免受雷电侵害;另一方面,雷电对建筑物的存在也构成了风险,因此,及时对建筑物防雷装置进行检测和维护是至关重要的。
本文将介绍建筑物防雷装置检测技术规范,旨在确保建筑物防雷装置的有效性和可靠性。
二、检测对象和方法2.1 检测对象建筑物防雷装置检测的对象包括但不限于:- 导线、避雷针、接地装置等构成的外部防雷系统;- 避雷器、漏电保护器、防雷保护器等构成的内部防雷系统;- 防火墙、屋顶、外墙等构成的建筑物外部结构。
2.2 检测方法建筑物防雷装置的检测方法应符合以下要求:- 对于外部防雷系统的检测,应采用全面检测方法,包括对导线、接地装置等的电气性能和机械外观进行检测。
- 对于内部防雷系统的检测,应采用综合检测方法,包括对避雷器、漏电保护器、防雷保护器等电气元件的检测,以及对内部接地系统的检测。
- 对于建筑物外部结构的检测,应采用结构检测方法,包括对防火墙、屋顶、外墙等结构的检测。
三、检测要求和标准3.1 检测要求建筑物防雷装置的检测应满足以下要求:- 安全性:建筑物防雷装置应具备良好的安全性能,能够有效地抵御雷击侵害。
- 可靠性:建筑物防雷装置应具备可靠的工作性能,能够稳定地工作一段时间而不出现故障。
- 维护性:建筑物防雷装置应具备较好的维护性能,能够方便地进行检修、更换和维护。
- 适应性:建筑物防雷装置应能适应不同区域和不同天气条件下的雷电频率和电压等因素的变化。
3.2 检测标准建筑物防雷装置的检测应参照以下标准进行:- GB 50057-2010《建筑物防雷设计规范》- GB 50343-2012《低压电气装置的设计与安装》- GB/T 16895.23-2008《电工设备的振动试验第23部分:吊装的振动试验》四、检测流程4.1 检测准备在进行建筑物防雷装置检测之前,应认真准备,包括但不限于以下内容:- 安全措施:确保检测现场的安全,并确保操作人员的人身安全。
DB31 T389-2007 防雷装置安全检测技术规范

DB31/T389-2007
防雷装置安全检测技术规范
1 范围
本标准规定了防雷装置安全检测的检测项目、检测要求、检测方法、检测周期、检测程序和检测数 据的判定。
本标准适用于建筑物及其电子信息系统防雷装置的安全检测(以下简称检测)准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的
——金属板之间采用搭接时。其搭接长度应不小于100mm,板间的连接应是持久的电气贯通; ——金属板下面无易燃物品时,其厚度应不小于0.5mm; ——金属板下面有易燃物品时,其厚度铁板应不小于4mm,铜板应不小于5 mm,铝板应不小于7mm; ——金属板无绝缘被覆层。薄的油漆保护层或小于等于1.0 mm沥青层或小于等于0.5mm聚氯乙烯层 均不属于绝缘被覆层。 5.2.1.2.5 除第一类防雷建筑物和第二类防雷建筑物中突出屋面排放爆炸危险气体、蒸气或粉尘的放 散管、风管、烟囱等物体外,屋顶上永久性金属物作接闪器的,在其各部件之间连成电气通路的情况下, 应符合下列要求: ——旗杆、栏杆、装饰物等,其尺寸符合本标准5.2.1.2.1条和5.2.1.2.2条的规定; ——钢管、钢罐的壁厚不得小于2.5mm,但钢管、钢罐一旦被雷击穿,其内介质对周围环境造成危 险时,其壁厚不得小于4mm。固定顶或浮顶金属油(气)罐,利用罐体作为接闪器时,其钢板厚度不得 小于4mm。 5.2.1.2.6 接闪器应热镀锌或涂漆,在腐蚀性较强的场所,尚应采取加大截面或其他防腐措施。 5.2.1.3 接闪器的其他要求 5.2.1.3.1 接闪器支持件间距应均匀,水平直线部分 0.5m~1.5m;垂直部分 1.5m~3m;弯曲部分 0.3m-0.5m。接闪器应固定可靠,每个支持件应能承受大于 49N(5kg)的垂直拉力。 5.2.1.3.2 接闪器应焊接良好,且与避雷引下线可靠连接。焊接应采用搭接焊,搭接长度应符合下列 规定: ——扁钢与扁钢搭接为扁钢宽度的2倍,不少于三面施焊; ——圆钢与圆钢搭接为圆钢直径的6倍,双面施焊; ——圆钢与扁钢搭接为圆钢直径的6倍,双面施焊; ——扁钢与钢管,扁钢与角钢焊接,紧贴角钢外侧两面,或紧贴3/4钢管表面,上下两侧施焊。
建筑物防雷装置检测技术规范(GBT21431-2015)

4.电涌保护器 SPD 用于限制暂态过电压和分流浪涌电流
的装置。它至少应包含一个非线性电压限 制元件。也称浪涌保护器。
◆关于SPD的参数 ●最大持续运行电压Uc 允许持久地施加在SPD上的最大交流电压有 效值或直流电压。其值等于额定电压。 在TN和TT系统中,Uc≥1.15Uo ,Uo是低压 系统相线对中性线的标称电压,在220/380V三 相系统中,Uo=220V 。
☆ 对大型地网(如发电厂等)接地电阻的测量,用电位降 法的原理,通过其它设备来产生大的测试电流,用电压 表测量P点的电压,经过计算,得出接地电阻。
5 防雷分区的检查
防雷区的划分应按照GB50057-2010第6.2.1 条的规定将需要防雷击电磁脉冲的环境划分为 LPZ0A、LPZ0B、LPZ1……LPZn+1区,防雷区 定义见GB50057-2010中第6.2.1条。在进行防 雷区的划分后,应检查防雷工程设计中LPZ的划 分是否符合标准。
●本规范适用范围
本标准规定了建筑物防雷装置的检测项目、 检测要求和方法、检测周期、检测程序和检测数 据整理。
本标准适用于建筑物防雷装置的检测。以下 情况不属于本标准的范围: 铁路系统; 车辆、船舶、飞机及离岸装置; 地下高压管道;与建筑物不相连的管道、电力线 和通信线。
●重点术语
1.接地 一种有意或非有意的导电连接,由于
6 雷电电磁脉冲屏蔽
6.1 建筑物和线路的屏蔽要求
1.屏蔽的目的:为了减少电磁干扰的感应效应。
2.屏蔽措施:
a)建筑物和房间的外部设屏蔽措施;
b)以合适的路径敷设线路,线路屏蔽(穿金属 管埋地敷设,严禁使用PVC管敷设,强弱电必须 分开敷设);
c)为改进电磁环境,所有与建筑物组合在一起 的大尺寸金属件都应等电位连接在一起,并于防 雷装置相连。如屋顶金属表面、立面金属表面、 混凝土内钢筋和金属门窗框架;
防雷装置安全检测技术规范

防雷装置安全检测技术规范一、前言防雷装置是保护电气设备安全的重要手段,广泛应用于各种建筑、交通、通信等领域。
为确保防雷装置的有效性和安全可靠性,需要进行定期的安全检测。
本文旨在制定防雷装置安全检测技术规范,以保障使用单位和相关人员的安全。
二、检测对象及范围2.1 检测对象本规范适用于所有已建成的防雷装置,包括避雷针、避雷线、接地系统、防雷墙、避雷器等。
2.2 检测范围本规范要求对防雷装置进行全面检测,包括但不限于以下内容:1.防雷装置的材料、制作、安装和维护情况;2.防雷装置的接地电阻、接地网等电气参数;3.防雷装置与金属构件的接触情况;4.避雷针、避雷线、接地系统等的伤损情况;5.外部电源可能对防雷装置造成的影响。
三、检测方法3.1 视觉检查法视觉检查法是一种常见的检测方法,主要依靠人员的目视能力对防雷装置的外观及周围环境进行检查。
视觉检查法可以直观地找到防雷装置存在的问题,但无法获取具体的电气参数。
3.2 电气参数测试法电气参数测试法是一种通过测量防雷装置的接地电阻、接地网等电气参数来评估防雷装置安全性的方法。
该方法可以客观地反映防雷装置在实际使用过程中的效果。
3.3 激光测距法激光测距法是一种通过激光测量避雷针、避雷线、接地系统等构件的高度、长度、横向等参数来评估其安全性的方法。
该方法可以直接反映防雷装置在实际使用过程中的状态。
四、检测周期防雷装置的安全检测周期应按照下表执行:检测对象检测周期避雷针3年避雷线3年接地系统3年防雷墙4年检测对象检测周期避雷器5年五、检测记录检测记录应包括但不限于以下内容:1.检测单位名称、检测人员姓名;2.检测时间、地点;3.检测方法;4.检测结果、存在问题及处理意见;5.报告编制时间、审核人签字。
六、检测结果处理对于检测发现的问题,应当及时进行整改。
整改后,应对整改情况进行检测,确保问题得到有效解决。
七、总结本文制定了防雷装置安全检测技术规范,对防雷装置的安全检测提出了具体要求,旨在保障使用单位和相关人员的安全。
建筑物防雷装置检测技术规范

建筑物防雷装置检测技术规范
随着现代社会的发展和科技进步,人们已经学会利用防雷装置来抵御雷击的威胁。
建筑物防雷装置检测是防雷装置保护人们的重要职责,因此越来越多的建筑物开始采用防雷装置检测技术规范。
建筑物防雷装置检测技术规范主要针对防雷装置的结构、固定方式、接线和检验等方面,提出了一系列检测要求。
根据防雷装置的结构、分类和安装位置,将防雷装置的检测分为初次检测和定期检测两大部分。
(1)初次检测
初次检测是指对防雷装置施工完毕后现场进行检测,主要检测防雷装置的外观情况、外部电气接线情况、位置固定连接是否正确、外壳接线情况等。
(2)定期检测
定期检测是指对防雷装置进行定期检查,以确保安装质量和性能。
定期检测包括定期检测和定期检查两个部分,定期检测主要检查防雷装置的结构和绝缘效果,定期检查主要检查防雷装置的接线和连接情况,以确保安全性。
建筑物防雷装置检测技术规范是一种专业的技术规范,不仅要求检测结果应当准确、可靠,同时对于检测过程应注意安全。
首先,检测应当严格按照建筑物防雷装置技术规范执行,且现场应做到卫生、整齐,以保证检测质量。
其次,专业人员要注意检测过程中的安全,尤其是进行带电检测时,要采取合理的安全措施,避免出现意外事件。
总之,建筑物防雷装置检测技术规范是保障防雷装置性能及形成安全环境的重要依据,必须全面、严格地执行。
今天,政府部门已经重视建筑物防雷装置的检测,并制定了相关的政策措施,要求建筑物防雷装置应当严格按照建筑物防雷装置检测技术规范进行检测,以确保其质量和性能,从而创造一个安全环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防雷装置安全检测技术规范2006-1-6 15:06:211 范围本标准规定了防雷装置的检测项目、检测要求和方法、检测周期、检测程序和检测数据整理。
本标准适用于防雷装置的检测。
高压电力输配电线路、大中型高压变电所防雷装置的检测及离岸飞行器、离岸船舶的防雷装置的检测尚应符合现行国家有关标准的规定。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修订单(不包括勘误的内容)或修正版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可以使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T17947.1—2000 接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分常规测量GB 18802.1-2002 低压配电系统的电涌保护器(SPD)第1部分性能要求和试验方法GB 50057—1994 建筑物防雷设计规范(2000年版)GB 50174—1993 电子计算机机房设计规范GB 50303—2002 建筑电气工程施工质量验收规范GB/T 50312—2000 建筑与建筑群综合布线系统工程验收规范IEC 61024—1:1990 建筑物防雷第1部分通则IEC 61024—1—2:1998 建筑物防雷第1部分通则第2分部分:指南B—防雷装置的设计、安装、维护和检查IEC 61312—1:1995 雷击电磁脉冲防护第1部分通则IEC/TS 61312—2:1999 雷击电磁脉冲的防护第2部分建筑物的屏蔽,内部等电位连接和接地IEC 61643—21/Ed.1.0:2000 连接至电信网络及信号网络的电涌保护器第21部分性能要求和试验方法ITU TS K11:1990 过电压和过电流防护原则ITU TS K31:1993 用户大楼内电信装置的连接结构和接地3 术语和定义下列术语和定义适用于本标准。
3.1防雷装置 lightning protection system,LPS接闪器、引下线、接地装置、电涌保护器及其他连接导体的总合。
3.2外部防雷装置 external lightning protection system由接闪器、引下线和接地装置组成,主要用以防直击雷的防雷装置。
3.3内部防雷装置 internal lightning protection system除外部防雷装置外,所有其他附加设施均为内部防雷装置,主要用来减小和防护雷电流在需防护空间内所产生的电磁效应。
3.4接闪器 air-termination system直接截受雷击的避雷针、避雷带(线)、避雷网,以及用作接闪的金属屋面和金属构件等。
3.5引下线 down-conductor system连接接闪器与接地装置的金属导体。
3.6(接)地 ground一种自然的或人工的电气连接,使电路或电气设备连接到大地或代替大地的某种较大的导电体。
注:对汽车、飞机、火箭等较大的移动体,不能与大地进行固定的接地,可把车身、机体代替大地,称为本体地(body earth)。
3.7接地装置 earth-termination system接地体和接地线的总合。
3.8接地体 earth electrode埋入土壤中或混凝土基础中作散流用的导体。
3.9接地线 earth conductor从引下线断接卡或换线处至接地体的连接导体;或从接地端子、等电位连接带至接地装置的连接导体。
3.10自然接地体 natural earth electrode利用与大地接触的金属物体,如金属管道、构架、建筑物基础内的钢筋等兼作的接地体。
3.11人工接地体 made earth electrode为接地需要而埋设的接地体。
人工接地体可分为人工垂直接地体和人工水平接地体。
3.12共用接地系统 common earthing system将各部分防雷装置、建筑物金属构件、低压配电保护线(PE)、设备保护地,屏蔽体接地、防静电接地和信息设备逻辑地等连接在一起的接地装置。
3.13等电位连接 equipotential bonding为减小雷电流产生的电位差,而将分开的装置、诸导电物体用等电位连接导体或电涌保护器实现的电气连接。
3.14等电位连接带 equipotential bonding bar将金属装置、外来导电物、电力线路、通信线路及其它电缆连于其上以能与防雷装置做等电位连接的金属带。
3.15等电位连接导体 equipotential bonding conductor将分开的装置诸部分互相连接以使它们之间电位相等的导体。
3.16等电位连接网络 bonding network由一个系统的诸外露导电部分做等电位连接的导体所组成的网络。
3.17接地基准点 earthing reference point,ERP一个系统的等电位连接网络与共用接地系统之间唯一的那一连接点。
3.18电涌保护器 surge protective device,SPD目的在于限制瞬态过电压和分走电涌电流的器件。
它至少含有一非线性元件。
3.19电压开关型SPD voltage switching type SPD无电涌出现时在线SPD呈高阻状态;当线路上出现电涌电压且达到一定的值时,SPD的阻抗突变为低阻抗的SPD。
通常采用放电间隙、充气放电管、闸流管和三端双向可控硅元件作这类SPD的组件。
有时称这类SPD为“短路开关型” SPD。
3.20限压型SPD voltage limiting type SPD无电涌出现时在线SPD呈高阻状态;随着线路上电涌电流和电压的增加,到一定值时SPD的阻抗跟着连续变小的SPD。
通常采用压敏电阻、抑制二极管做这类SPD 的组件。
有时称这类SPD为“箝压型”SPD。
3.21组合型SPD combination type SPD由电压开关型元件和限压型元件组合而成的SPD。
随着施加的电压特性不同,SPD 时而呈现电压开关型SPD的特性,时而呈现限压型SPD的特性,时而同时呈现开关型和限压型SPD的特性。
3.22无串联阻抗的 SPD(一个端口的SPD) SPD without impedance in series (one-port SPD)与被保护低压配电系统电路并联连接,在输入端和输出端之间没有附加串联阻抗的SPD(又称单口SPD)。
3.23具有串联阻抗的SPD(两个端口的SPD) SPD with impedance in series(two-port SPD)具有两组输入和输出接线端子的SPD,并联接入低压配电系统电路中,在输入端和输出端之间有附加的串联阻抗(又称双口SPD)。
3.24过电流保护 over current protection安装在 SPD外部前端的一种用以防止SPD不能阻断工频短路电流而引起发热和损坏的后备过电流保护(如熔丝、断路器)。
3.25退耦元件 decoupling elements在被保护线路中并联接入多级SPD时,如果开关型SPD与限压型SPD之间的线路长度小于10m或限压型SPD之间的线路长度小于5m时,为实现多级SPD间的能量配合,应在SPD之间的线路上串接适当的电阻或电感,这些电阻或电感元件称为退耦元件。
注:电感多用于低压配电系统,电阻多用于信息线路中多级SPD之间的能量配合。
3.26SPD脱离器 SPD disconnector当SPD发生故障时,一个能把SPD从电路脱开的装置。
3.27状态指示器 status indicator指示SPD工作状态的器件。
3.28标称放电电流 nominal discharge currentIn流过SPD的8/20μs电流波的峰值电流。
3.29冲击电流 impulse currentIimp流过SPD的10/350μs电流波,其在10ms内通过的电荷量在数值上应等于幅值电流Ipeak的50%。
3.30冲击试验分类 impulse test classification3.30.1Ⅰ级分类试验class Ⅰ tests对SPD进行标称放电电流 In,1.2/50μs冲击电压和最大冲击电流Iimp 的试验。
Iimp 的波形为10/350μs 。
3.30.2Ⅱ级分类试验class Ⅱ tests对SPD进行标称放电电流 In,1.2/50μs冲击电压和最大放电电流Imax的试验。
Imax的波形为8/20μs 。
3.30.3Ⅲ级分类试验class Ⅲ tests对SPD进行混合波(1.2/50μs、8/20μs )的试验。
3.31最大持续运行电压 maximum continuous operating voltageUc可持续加于SPD上而不导致SPD动作的最大交流电压有效值或直流电压。
3.32箝位电压 clamping voltageUas当电涌电流到达在线SPD,SPD进入箝位状态的电压值。
3.33开关型SPD的放电电压 sparkover voltage of a voltage switching SPD开关型SPD击穿放电瞬间的最大电压值。
3.34残压 residual voltageUres当冲击电流通过 SPD时,在SPD端子间呈现的电压峰值。
Ures与冲击电流通过SPD时的波形和幅值有关。
3.35电压保护水平 voltage protection levelUP一个表征 SPD限制电压的性能参数,它可从一系列的推荐选用值中选取,该值应大于或等于限制电压的最大值,低于相应位置被保护设备的最小耐冲击电压值。
3.36SPD的直流参考电压 direct-current reference voltage of SPDU1mA当SPD上通过规定的直流参考电流时,从其两端测得的电压值。
一般将通过1mA 直流电流时的参考电压称为压敏电压(U1mA)3.37劣化 degradation当SPD长时间工作或处于恶劣环境工作时,或直接受雷击电涌而引起其性能下降、原始性能参数改变的现象。
也称退化或老化。
3.38泄漏电流 leakage currentIle除放电间隙外,SPD在并联接入电网后所通过的微安级电流。
3.39防雷区 Lightning protection zone,LPZ需要规定和控制雷击电磁脉冲环境的区域。
3.40电磁屏蔽 electromagnetic shielding用导电材料减少交变电磁场向指定区域穿透的屏蔽。
3.41防雷装置检查 lightning protection system check up对防雷装置的外观部分进行目测检查、对隐蔽部分利用原设计资料或质量监督资料核实的过程。
3.42防雷装置检测 lightning protection system check and measure按照建筑物防雷装置的设计标准确定防雷装置的使用达标情况而进行的检查、测量及信息综合分析处理全过程。