专题06 导数中的构造函数解不等式-2019年高考数学总复习之典型例题突破(压轴题系列)(解析版)
2019年高考导数问题常见的分类讨论典型例题

高考导数问题常见的分类讨论典型例题1.需对函数c bx ax x f ++=2)(是否为二次函数进行讨论或需对一元二次方程的判别式进行讨论的问题。
由于许多问题通过求导后转化为二次函数或二次不等式,它们对应的二次方程是否有解,就要对判别式讨论。
例1、已知函数32()3(0),()()2f x x ax bx c b g x f x =+++≠=-且是奇函数.(Ⅰ)求a ,c 的值; (Ⅱ)求函数f (x )的单调区间.例2、设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.例3、已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性. 例4、已知函数)0.()1ln()(2≤++=a ax x x f ,讨论)(x f 的单调性;例5、设函数2()(0)f x ax bx k k =++>在0x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线垂直于直线210x y ++=.(Ⅰ)求,a b 的值;(Ⅱ)若函数()()xe g xf x =,讨论()g x 的单调性. 例6、函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围.练习:设函数()()2ln 1f x x b x =++,其中0b ≠,求函数()f x 的极值点。
2、需对一元二次方程两根大小为标准分类讨论的问题。
由于求单调区间通常要解一元二次不等式,要写出它的解,就必须知道它两根的大小,否则就要对两根大小分类讨论。
求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,从而引起讨论。
导数中的构造函数问题

专题:导数中的构造函数问题一:填空题1.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0, 则不等式f (x )g (x )<0的解集是变式.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )-f (x )g ′(x )>0,且f (-3)=0, 则不等式f (x )g (x )<0的解集是2.已知定义域为R 的函数()f x 满足(1)3f =,且的导数()21f x x '<+,则不等式2(2)421f x x x <++的解集为▲ . 变式1.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,集为 ▲.),1(+∞变式2.函数()f x ()x ∈R 满足(1)1f =,______. 【答案】(,1)(1,)x ∈-∞-+∞3,若对任意两个不等的正实数12,x x 都有恒成立,则a,对任意两个不等的正实数12,x x 都有,则max ()a g x ≥,为开口方向向下,对称轴为1x =的抛物线,.即a 的取值范围是[1,)+∞. 若在区间(0,1)内任取两个实数p ,q ,且p≠q ,不等式a 的取值范围是 .【答案】[15,)+∞ 【解析】表示点(1,(1))p f p ++ 与点(1,(1))q f q ++连线的斜率,因实数p ,q在区间(0,1)内,故1p + 和1q +在区间(1,2)内.∵不等式区间(1,2)内任意两点连线的斜率大于1,由函数的定义域知,1x >-,∴f′(x )=﹣2x >1 在(1,2)内恒成立.成立.由于二次函数2231y x x =++在[1,2]上是单调增函数,故2x =时,2231y x x =++ 在[1,2]上取最大值为15,∴15a ≥,故答案为[15,)+∞.考点:不等式;函数恒成立问题.4.设)(x f 、)(x g 分别是定义在R 上的奇函数和偶函数,当x <0时,0)()()()(>'+'x g x f x g x f , 且0)3(=g ,则不等式0)()(<⋅x g x f 的解集是 . 【答案】(,3)(0,3)-∞- 【解析】 试题分析:根据题意可知()()()()(()())'0f x g x f x g x f x g x ''+=⋅>,令()()()F x f x g x =⋅,可知(3)0F =,函数()F x 在(,0)-∞上是增函数,又根据条件可知()F x 是奇函数,根据函数图像的对称性,可知不等式0)()(<⋅x g x f 的解集是(,3)(0,3)-∞- .考点:函数的奇偶性,函数单调性,数形结合思想.5.已知函数()f x (R x ∈)满足()11f =,且()f x 的导数【答案】11-∞-+∞ (,)(,)6.函数y=f (x )是定义在R 上的偶函数,当x<0时,f (x )+x·f′(x )<0,且f (-4)=0,则不等式xf (x )试题分析:'0,[()]0()x xf x xf x <<∴在x<0时单调递减,f (-4)=0,由f (x )是偶函数得xf (x )是奇函数,所以()0xf x >的解集是()(),40,4-∞-⋃ 考点:构造函数研究单调性,解抽象不等式.7.函数()f x 是定义在R 上的偶函数,(2)0f -=,且0x >时,()()0f x xf x '+>,则不等式()0>xf x 的解集是 . 【答案】()()2,02,-+∞【解析】试题分析:令()()g x xf x =,则()g x 为R 上的奇函数,且(2)0g -=,由题意得:0x >时,()0g x '>;所以0x >时,()0g x >解集为()2,+∞,0x <时,由奇函数性质知()0g x >解集为()2,0.-考点:函数性质综合应用8.已知()f x 为定义在()0,+∞上的可导函数,且()()f x xf x '>试题分析:()()'f x xf x > ,()()'0xf x f x ∴-<,()'0g x ∴<,()g x ∴在()0,+∞上为减函数,,0x >,,01x <<∴. 2用单调性解不等式.【思路点晴】将()()'f x xf x >变形可得()()'0xf x f x -<,求()'g x ,根据()'g x 的正负可得函数 9.已知定义域为R且()f x 的导数()21f x x '<+,则不等式2(2)421f x x x <++ 化为()21f t t t <++,设()()21g t f t t t =--- ()()()''210g t f t t g x ∴=--<∴单调递减,()()1130g f =-= ()0g t ∴<的解集为考点:1.函数导数与单调性;2.不等式与函数的转化10.已知函数()f x 的定义域是R ,()f x '是()f x 的导数,()1f e =,()()()g x f x f x '=-,()10g =,()g x 的导数恒大于零,函数()()x h x f x e =-( 2.71828e =⋅⋅⋅是自然对数的底数)的最小值是 .【答案】0 【解析】,因为()g x 的导数恒大,所以()1f e '=,在,所以在区间(,1]-∞上,()F x 单调递减,二解答题:1.已知函数f(x)=21x 2-ax+(a -1)ln x ,1a >。
高考数学选填压轴题 第20讲 导数中的构造函数(解析版)

第20讲导数中的构造函数近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;…………………()()0xf x nf x ->',构造()()nf x F x x =.()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,………………()()f x nf x '-,构造()()e nxf x F x =,奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是()A .1x y <<B .1y x <<C .1x y<<D .1y x<<【来源】广东省佛山市2021届高三下学期二模数学试题【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =,当1x >时,由()1f x >,则()1g y >,可得1y >,当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x-=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减,又()2110ln 2h '=-+>,()1230ln 2h '=-+<,则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<,又因为()()()()010,10,412480h h x h h =>==-+=-<,所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<,当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能.故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性.【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=()A .22B C .322D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题【答案】C【解析】 ()ln 1g x x x =--,1()1g x x'=-,()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈,∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-121a b =-,221ln ln(2)ln a a a b b b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b +-=-,又21ab =(不等式取等条件),解得:2,2a b ==,322a b ∴+=,故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为()A .11[,22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞-D .1[,)2+∞【答案】D【解析】由()()1f m f m --()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为()A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为()A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->,()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________.【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x x x-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,.类型二巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是()f x ¢,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为()A .(1,1)-B .(),1-∞-C .()1,+¥D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟)【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦,∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<.∴()()10xf x f ->的解集为(1,1)-.故选:A.【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是()A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()x g x e f x =,则()(()())0x g x e f x f x '+'=<,所以(2)(3),g g >即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是()A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B .4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当成立(是函数的导数),若,则的大小关系是()A .B .C .D .【答案】A【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+ ,,∞∞B .()()2002- ,,C .()()202-+ ,,∞D .()()202-- ,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减,()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+ ,,∞.故选C .点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<- ,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001- ,,B .()()11--+ ,,∞∞C .()()101-+ ,,∞D .()()101-- ,,∞【答案】D.【解析】设()ln ()g x x f x = ,当0x >时,1()()ln ()0g x f x xf x x '=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->;当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<,∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->.综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101-- ,,∞【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则()A .()0f x >B .()0f x <C .()f x 为减函数D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0x g x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]x g x xf x =。
数学高考知识点构造函数

数学高考知识点构造函数近年来,数学在高考中的重要性日益凸显。
高考数学试题涉及了多个知识点,其中构造函数作为重要的概念之一,经常在考试中出现。
掌握构造函数的基本概念及其应用是学生提高数学成绩的关键之一。
本文将从构造函数的定义、常见题型以及解题方法等方面进行讨论,帮助读者理解和掌握这个知识点。
什么是构造函数?简单来说,构造函数是一个能够根据给定条件构造出特定对象的函数。
在数学中,我们经常需要根据某种规律或特定的条件来构造出符合要求的函数。
例如,要求构造一个一次函数,过点(2,3),斜率为2。
我们可以通过构造函数y=2x-1来实现这个要求。
这个函数就是一个构造函数。
常见的构造函数题型包括:线性函数的构造、反比例函数的构造、复合函数的构造等。
线性函数的构造要求根据给定的条件确定斜率和截距,例如给定一个点和斜率,要求构造出线性函数。
反比例函数的构造则要求根据给定的条件,构造出满足反比例关系的函数。
复合函数的构造则需要将两个或多个简单的函数进行组合,构造出满足特定条件的复合函数。
在解决构造函数的问题时,我们可以通过观察给定条件,找到规律,进而构造出满足要求的函数。
以线性函数的构造为例,假设已知函数过点(2,3),斜率为2。
我们可以根据一次函数的一般式y=kx+b,将已知条件代入得到3=2×2+b,解方程得b=-1。
进而可以构造出满足要求的函数y=2x-1。
除了观察和找规律外,我们还可以使用数学工具和方法来解答构造函数的问题。
例如,反比例函数的构造常常用到消元法。
假设我们已知反比例函数的特点是x和y的乘积为2,并且给定了一个点(1,2)。
我们可以设反比例函数的一般式为y=k/x,将已知条件代入得2=k/1,解方程得到k=2。
进而可以构造出满足要求的函数y=2/x。
除了以上的基本构造函数题目之外,还存在一些更加复杂和有趣的构造函数问题。
例如,有时我们需要构造出满足特定性质的函数,如多个抛物线的交点等。
导数中的构造函数(最全精编)

f (x) enx
,
F
'(x)
f
' (x)enx nenx e2nx
f
(x)
[
f
' (x) nf enx
(x)]
;
结论:1、出现 f '(x) nf (x) 形式,构造函数 F (x) enx f (x) ;
2、出现
f '(x) nf (x) 形式,构造函数
F(x)
f (x) enx
f
(x) ex
是比较简单常见的
f (x) 与ex 之间的函数关系式,如果碰
见复杂的,我们是否也能找出此类函数的一般形式呢?
F (x) enx f (x) , F ' (x) n enx f (x) enx f ' (x) enx [ f ' (x) nf (x)];
F (x)
f (2 x) f (x)e22 x F (2 x) F (x) F (x) 关于 x 1 对称,根据单调性和图像, 可知选 C.
5
(3) 利用 f (x) 与 sin x, cos x 构造.
sin x, cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一 起看看常考的几种形式.
e2
x
【变式提升】若定义在 R 上的函数 f (x) 满足 f ' (x) 2 f (x) 4 0, f (0) 1, 则不等式 f (x) e2 x 2 的解集为
❀❀❀思路点拨:利用通式构造函数时考虑 4 如何转化.构造函数 F (x) fe(2xx ) e22x
x
v
函 数导数计算的推广及应用,我们对u
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
专题06 函数、导数与数列、不等式的综合应用【解析版】

第一章函数与导数专题06 函数、导数与数列、不等式的综合应用【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.1.数列不等式问题,通过构造函数、应用函数的单调性或对不等式进行放缩,进而限制参数取值范围.如2.涉及等差数列的求和公式问题,应用二次函数图象和性质求解.3.涉及数列的求和问题,往往要利用“错位相减法”、“裂项相消法”等,先求和、再构造函数.【压轴典例】例1.(2018·浙江高考真题)已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.例2.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈例3.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 例4.(2010·湖南高考真题)数列中,是函数的极小值点(Ⅰ)当a=0时,求通项; (Ⅱ)是否存在a ,使数列是等比数列?若存在,求a 的取值范围;若不存在,请说明理由. 【答案】(1);(2)详见解析【解析】 易知.令.(1)若,则当时,单调递增;当时,单调递减;当时,单调递增.故在取得极小值.由此猜测:当时,.下面先用数学归纳法证明:当时,.事实上,当时,由前面的讨论知结论成立.假设当时,成立,则由(2)知,,从而,所以.故当时,成立.于是由(2)知,当时,,而,因此.综上所述,当时,,,.(Ⅱ)存在,使数列是等比数列.事实上,由(2)知,若对任意的,都有,则.即数列是首项为,公比为3的等比数列,且.而要使,即对一切都成立,只需对一切都成立.记,则令,则.因此,当时,,从而函数当时,可得数列不是等比数列.综上所述,存在,使数列是等比数列,且的取值范围为.例5.(2017·浙江高考真题)已知数列{}n x 满足: ()()*1n n 1n 1x =1x x ln 1x n N ++=++∈, 证明:当*n N ∈时 (I )n 1n 0x x +<<;(II )n n 1n 1n x x 2x -x 2++≤; (III) n n 1n-211x 22-≤≤【答案】(I )见解析;(II )见解析;(Ⅲ)见解析. 【解析】(Ⅰ)用数学归纳法证明: 0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则()110ln 10k k k x x x ++<=++≤,矛盾,故10k x +>. 因此()*0n x n N >∈.所以()111ln 1n n n n x x x x +++=++>,因此()*10n n x x n N +<<∈. (Ⅱ)由()11ln 1n n n x x x ++=++得,()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++≥,()()22'ln 10(0)1x x f x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()()0f x f ≥=0,因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=≥,故()*1122n n n n x x x x n N ++-≤∈. (Ⅲ)因为()11111ln 12n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥, 由1122n n n n x x x x ++≥-,得111112022n n x x +⎛⎫-≥-> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫-≥-≥⋅⋅⋅≥-= ⎪ ⎪⎝⎭⎝⎭, 故212n n x -≤.综上,()*121122n n n x n N --≤≤∈. 例6.(2019·湖南高考模拟(理))设函数()ln(1)(0)f x x x =+≥,(1)()(0)1x x a g x x x ++=≥+.(1)证明:2()f x x x ≥-.(2)若()()f x x g x +≥恒成立,求a 的取值范围; (3)证明:当*n N ∈时,22121ln(32)49n n n n -++>+++. 【答案】(1)见解析;(2)(,1]-∞;(3)见解析. 【解析】(1)证明:令函数()()2h x ln x 1x x =+-+,[)x 0,∞∈+,()212x xh x 2x 101x 1x+=+=++'-≥,所以()h x 为单调递增函数,()()h x h 00≥=, 故()2ln x 1x x +≥-.(2)()()f x x g x +≥,即为()axln x 11x+≥+, 令()()axm x ln x 11x=+-+,即()m x 0≥恒成立, ()()()()22a 1x ax 1x 1a m x x 11x 1x +-+-=-=++'+, 令()m x 0'>,即x 1a 0+->,得x a 1>-.当a 10-≤,即a 1≤时,()m x 在[)0,∞+上单调递增,()()m x m 00≥=,所以当a 1≤时,()m x 0≥在[)0,∞+上恒成立;当a 10->,即a 1>时,()m x 在()a 1,∞-+上单调递增,在[]0,a 1-上单调递减, 所以()()()min m x m a 1m 00=-<=, 所以()m x 0≥不恒成立.综上所述:a 的取值范围为(],1∞-. (3)证明:由(1)知()2ln x 1x x +≥-,令1x n=,*n N ∈,(]x 0,1∈, 2n 1n 1ln n n +->,即()2n 1ln n 1lnn n-+->,故有ln2ln10->,1ln3ln24->, …()2n 1ln n 1lnn n-+->, 上述各式相加可得()212n 1ln n 149n-+>+++. 因为()()22n 3n 2n 1n 10++-+=+>,2n 3n 2n 1++>+,()()2ln n 3n 2ln n 1++>+,所以()2212n 1ln n 3n 249n-++>+++. 例7.(2018·福建省安溪第一中学高三期中(文))公差不为零的等差数列中,,,成等比数列,且该数列的前10项和为100,数列的前n 项和为,且满足.Ⅰ求数列,的通项公式;Ⅱ令,数列的前n 项和为,求的取值范围.【答案】(I ),;(II ).【解析】Ⅰ依题意,等差数列的公差,,,成等比数列,,即,整理得:,即,又等差数列的前10项和为100,,即,整理得:,,;,,即,当时,,即,数列是首项为1、公比为2的等比数列,;Ⅱ由可知,记数列的前n项和为,数列的前n项和为,则,,,,,,记,则,故数列随着n的增大而减小,又,,.例8.(2019·江苏高考模拟)已知数列满足(),().(1)若,证明:是等比数列;(2)若存在,使得,,成等差数列.① 求数列的通项公式;② 证明:.【答案】(1)见解析;(2)①,②见解析【解析】(1)由,得,得,即,因为,所以,所以(),所以是以为首项,2为公比的等比数列.(2)① 设,由(1)知,,所以,即,所以.因为,,成等差数列,则,所以,所以,所以,即.② 要证,即证,即证.设,则,且,从而只需证,当时,.设(),则,所以在上单调递增,所以,即,因为,所以,所以,原不等式得证.【压轴训练】1.(黑龙江省哈尔滨三中高考模拟)已知1(1)32(1,2)n n n b b a b n b--+-=>≥,若对不小于4的自然数n ,恒有不等式1n n a a +>成立,则实数b 的取值范围是__________. 【答案】3+∞(,) 【解析】由题设可得1(1)(1)32(1)32n n n b b n b b b b-+-+--+->,即22(1)341n b b b ->-+,也即(1)31n b b ->-对一切4n ≥的正整数恒成立,则3141b b b -<≥-,即31444311b b b b -⇒---,所以3b >,应填答案(3,)+∞. 2.(2019·山东济南一中高三期中(理))(1)已知函数的图象经过点,如图所示,求的最小值;(2)已知对任意的正实数恒成立,求的取值范围.【答案】(1)最小值,当且仅当时等号成立;(2)【解析】⑴函数的图象经过点,当且仅当时取等号⑵①令,,当时,,递增当时,,递减代入时,②,令,,,综上所述,的取值范围为3.(2019·桃江县第一中学高三月考(理))已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,求n的最小值.【答案】6【解析】∵,∴,∵,∴,即,∴,∵,∴,∴,∴,∴,∴数列为等比数列,∴,∴,即,所以n的最小值为6.4.(2019·福建省漳平第一中学高三月考(文))已知数列的首项,前项和满足,.(1)求数列通项公式;(2)设,求数列的前项为,并证明:.【答案】(1);(2)见解析【解析】 (1)当时,,得. 又由及得,数列是首项为,公比为的等比数列,所以.(2),①②①②得: ,所以,又,故,令,则,故单调递减,又,所以恒成立,所以.5.(2019·江苏高考模拟(文))已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 6.(2019·黑龙江高三月考(理))已知数列的前n 项和为, 其中,数列满足.(1)求数列的通项公式;(2)令,数列的前n 项和为,若对一切恒成立,求实数k 的最小值.【答案】(1),;(2)【解析】 (1)由可得,两式相减得: ,又由可得,数列是首项为2,公比为4的等比数列,从而,于是.(2)由(1)知,于是,依题意对一切恒成立,令,则由于易知,即有,∴只需,从而所求k的最小值为.7.(2018·浙江高考模拟)已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.8.(2018·浙江镇海中学高三期中)已知数列的前项和为,且,(1)求证:数列为等比数列,并求出数列的通项公式;(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.【答案】(1)证明略;(2)【解析】证明:(1)已知数列{a n}的前n项和为S n,且,①当n=1时,,则:当n≥2时,,②①﹣②得:a n=2a n﹣2a n﹣1﹣+,整理得:,所以:,故:(常数),故:数列{a n}是以为首项,2为公比的等比数列.故:,所以:.由于:,所以:(常数).故:数列{b n}为等比数列.(2)由(1)得:,所以:+(),=,=,假设存在实数λ,对任意m,n∈N*,不等式恒成立,即:,由于:,故当m=1时,,所以:,当n=1时,.故存在实数λ,且.9.(2019·宁夏银川一中高三月考(理))(1)当时,求证:;(2)求的单调区间;(3)设数列的通项,证明.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)的定义域为,恒成立;所以函数在上单调递减,得时即:(2)由题可得,且.当时,当有,所以单调递减,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递减,当有,所以单调递增,(3)由题意知.由(1)知当时当时即令则,同理:令则.同理:令则以上各式两边分别相加可得:即所以:10.(2019·北京人大附中高考模拟(理))已知数列{a n}满足:a1+a2+a3+…+a n=n-a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n-1}是等比数列;(Ⅱ)令b n=(2-n)(a n-1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【答案】(Ⅰ)见解析. (Ⅱ).【解析】(Ⅰ)由题可知:,①,②②-①可得.即:,又.所以数列是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)可得,∴.由可得,由可得.所以,,故有最大值.所以,对任意,都有,等价于对任意,都有成立.所以,解得或.所以,实数的取值范围是.11.(2019·江苏高三月考)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,…,(,)为等差数列,求的最大值.【答案】(1),,;(2)详见解析;(3)3.【解析】(1)由,对任意的正整数,恒成立取,得,即,得.取,,得,取,,得,解得,.(2)取,得,取,得,两式相除,得,即,即.由于,所以对任意均成立,所以是首项为4,公比为2的等比数列,所以,即.时,,而也符合上式,所以.因为(常数),所以是等比数列.(3)由(2)知,.设,,成等差数列,则.即,整理得,.若,则,因为,所以只能为2或4,所以只能为1或2.若,则.因为,故矛盾.综上,只能是,,,成等差数列或,,成等差数列,其中为奇数.所以的最大值为3.12.(2019·上海高考模拟)已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.⑴求,,并猜想不要求证明);⑵令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;⑶已知数列满足:,数列满足:,求证:.【答案】⑴,,;⑵;⑶详见解析【解析】,猜想,由,,,,对任意恒成立⑶证明:,记,则,记,则,当时,可知:,13.(2019·广西高考模拟(理))已知函数2()2ln 1()f x ax x x a =--∈R .(1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析 【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 14.(2019·宁夏高考模拟(文))已知函数()()ln 1(0)f x ax x a =->.()1求函数()y f x =的单调递增区间;()2设函数()()316g x x f x =-,函数()()h x g x =' .①若()0h x ≥恒成立,求实数a 的取值范围;②证明:()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈【答案】(1)单调递增区间为[)1,+∞.(2)①(]0,e .②见证明 【解析】()10a >,0x >.()()1'ln 1ln 0f x a x ax a x x=-+⋅=≥. 解得1x ≥.∴函数()y f x =的单调递增区间为[)1,+∞.()2函数()()316g x x f x =-,函数()()21h =x ln 2x g x a x '=-.()'ah x x x=-①,0a ≤时,函数()h x 单调递增,不成立,舍去; 0a >时,()('x x a h x x xx+=-=,可得x =()h x 取得极小值即最小值,()11ln 022h x ha a a ∴≥=-≥,解得:0a e <≤. ∴实数a 的取值范围是(]0,e .②证明:由①可得:a e =,1x ≥时满足:22ln x e x ≥,只有1x =时取等号.依次取x n =,相加可得:()222221232ln1ln2ln ln(12)en e n n +++⋯+>++⋯⋯+=⨯⨯⋯.因此()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈15.(2019·黑龙江高考模拟(理))已知函数2()2ln 2(1)(0)a f x ax x a a x-=-+-+>. (1)若()0f x ≥在[1,)+∞上恒成立,求实数a 的取值范围; (2)证明:11113521n ++++>-*1ln(21)()221nn n N n ++∈+.【答案】(1)[1,)+∞;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,+∞,()2222222a ax x a f x a x x x--+-=--=' ()221a a x x a x -⎛⎫-- ⎪⎝⎭=. ①当01a <<时,21aa->, 若21a x a -<<,则()0f x '<,()f x 在21,a a -⎡⎫⎪⎢⎣⎭上是减函数,所以21,a x a -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x ≥在[)1,+∞上不恒成立. ②当1a ≥时,21aa-≤,当1x >时,()0f x '>,()f x 在[)1,+∞上是增函数,又()10f =,所以()0f x ≥. 综上所述,所求a 的取值范围是[)1,+∞.(2)由(1)知当1a ≥时,()0f x ≥在[)1,+∞上恒成立.取1a =得12ln 0x x x --≥,所以12ln x x x-≥. 令21121n x n +=>-,*n N ∈,得2121212ln 212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭, 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭. 上式中1,2,3,,n n =,然后n 个不等式相加,得到()11111ln 213521221nn n n ++++>++-+. 16.(2019·江苏高考模拟)已知数列{}n a ,12a =,且211n n n a a a +=-+对任意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+(n N *∈);(2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满足211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+成立下证:当1n k =+时,112211k k k k a a a a a a +-+=+成立.因为()211211111k k k k k a a a a a +++++=-+-+=()()11221112211111k k k k k k k k a a a a a a a a a a a a +--+--=+=++-即:当1n k =+时,112211k k k k a a a a a a +-+=+成立由①、②可知,112211n n n n a a a a a a +--=+(n *N ∈)成立.(2)(ⅰ)当1n =时,221221311a >=-=++成立,当2n =时,()2322222172131112a a a a a =-+=-+=>⨯>++成立,(ⅱ)假设n k =时(3k ≥),结论正确,即:11kk a k +>+成立 下证:当1n k =+时,()1211k k a k ++>++成立.因为()()2211112111111kkkk k k k k k a a a a a k k kk +++++-+==-+>++=++要证()1211k k a k ++>++,只需证()12111k k k k k k +++>++只需证:()121k k k k ++>,只需证:()12ln ln 1k k k k ++>即证:()()12l l n n 10k k k k -++>(3k ≥) 记()()()2ln 11ln h x x x x x -++=∴()()()()2ln 1112ln 11ln ln x x x x h x +-++=-++⎡⎤⎦=⎣'21ln 1ln 12111x x x x ⎛⎫=+=++-+ ⎪++⎝⎭当12x +≥时,1111ln 121ln 221ln 1ln 10122x x e ⎛⎫⎛⎫++-+≥+-+=+>+= ⎪ ⎪+⎝⎭⎝⎭所以()()()2ln 11ln h x x x x x -++=在[)1,+∞上递增, 又()6423ln34ln3ln 34ln729ln2564l 0n h ⨯-=-=->=所以,当3x ≥时,()()30h x h ≥>恒成立. 即:当3k ≥时,()()30h k h ≥>成立.即:当3k ≥时,()()12l l n n 10k k k k -++>恒成立. 所以当3k ≥,()1211k k a k ++>++恒成立.由(ⅰ)(ⅱ)可得:对任意的正整数n *∈N ,不等式11nn a n +>+恒成立,命题得证.。
导数中构造函数的常见题型与方法归纳

导数中构造函数的常见题型与方法归纳高考中有一难点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度,下面总结其基本类型及其处理方法.题型一f′(x)g(x)±f(x)g′(x)型【例1】设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是() A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)【解析】令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2,由题意知,当x>0时,g′(x)<0 ,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)1=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,所求x的取值范围是(-∞,-1)∪(0,1).【例2】设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________________.【解析】借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由分析知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(0,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).【小结】(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x);(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0);(5)对于不等式xf′(x)+f(x)>0(或<0),构造函数F(x)=xf(x);(6)对于不等式xf′(x)-f(x)>0(或<0),构造函数F(x)=f(x)x(x≠0).题型二xf′(x)±nf(x)型【例3】设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>x D.f(x)<x【解析】法一:令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2],当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.法二:∵2f(x)+xf′(x)>x2,∴令x=0,则f(0)>0,故可排除B、D,不妨令f(x)=x2+0.1,则已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 不一定成立,故C也是错误的,故选A.【例4】已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)【解析】∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x).对任意正实数x满足xf′(x)>-2f(x),∴xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g(x)也是偶函数,当x∈(0,+∞)时,g′(x)=2xf(x)+x2f′(x)>0.∵g(x)在(0,+∞)上单调递增,∴g (x )在(-∞,0)递减.若g (x )<g (1),则|x |<1(x ≠0),解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1).【小结】(1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论), 特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ), 则F ′(x )=xf ′(x )+f (x )>0;(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论), 特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0. 题型三 λf (x )±f ′(x )(λ为常数)型【例5】已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)【解析】构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e-2 019>f (0)e 0⇒e 2 019f (-2019)>f(0);同理,h(2 019)<h(0),即f(2 019)<e2 019·f(0),故选D.【小结】(1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x);(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 导数中的构造函数解不等式
导数中经常出现给出原函数与导函数的不等式,再去解一个不等式,初看起来难度很大,其中这只是一种中等题型,只需根据原函数与导函数的关系式或者题目选项所给的提示构造函数,使得可根据原函数与导函数的关系式判断所构造函数的单调性,再将不等式化为两个函数值的形式,根据单调性解不等式即可。
【题型示例】
1、定义在上的函数满足:,,则不等式(其中为自然对数的底数)的解集为( )
A. B. C. D.
【答案】A
2、设函数在上的导函数为,对有,在上,,若直线,则实数的取值范围是()
A..
B.
C.
D.
【答案】A
【解析】
令,则,所以函数为奇函数,当时,,所以函数在上是减函数,故函数在
上也是减函数,由,可得在上是减函数,
,解得,实数的取值范围是.
3、已知定义在上的函数满足,且的导函数,则不等式
的解集为()
A. B. C. D.或
【答案】B
【解析】
令,则,因为,所以,即在上为增函数,不等式可化为,即,又单调递增得,所以不等式的解集为.
4、定义在的函数的导函数为,对于任意的,恒有,,
,则的大小关系是()学科=网
A. B. C. D.无法确定
【答案】B
【解析】
构造函数,因,故在上单调递增,则,即,所以,应选B.
【专题练习】
1、设是定义在上的函数,其导函数为,若,,则不等式
(其中为自然对数的底数)的解集为()
A. B. C. D.
【答案】D
【解析】
构造函数,因,故是单调递减函数,所以等价于,解之可得,应选D.
2、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】D
3、定义在上的函数满足:恒成立,若,则与的大小关系
为()
A. B.
C. D.与的大小关系不确定
【答案】A
【解析】
设,则,由题意,所以单调递增,当时,,即,所以.
4、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】C
【解析】
由,得:,令,则当时,,即在是减函数,,,由题意:
又在是减函数,∴,即,故选C.
5、已知是定义在上的偶函数,其导函数为,若,且,
,则的解集为()
A. B. C. D.
【答案】D
【解析】
∵函数是偶函数,∴,∴,即函数是周期为的周期函数,∵,∴,
设,则函数的导数,
故函数是上的减函数,则不等式等价为,
即,解得,即不等式的解集为.
6、已知定义域为的偶函数,其导函数为,对任意正实数满足,若
,则不等式的解集是()
A. B. C. D.
【答案】D
【解析】
因为,所以,由题意知,当时,,所以,所以在上单调递增,又为偶函数,则也是偶函数,所以,由得,所以,则.故选D.
7、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】D
【解析】
因为函数是定义在上的函数,所以有,
所以不等式可变形为.
构造函数,则,
所以函数在上单调递增,
由,可得.
8、已知的定义域为,为的导函数,且满足,则不等式
的解集是()
A. B. C. D.
【答案】D
9、已知是定义在上的函数,是它的导函数,且恒有成立,则()
A. B. C. D.
【答案】D
【解析】
因为即,所以,所以函数在上单调递增,从而即.
10、若函数在上可导,且满足,则( )
A. B. C. D.
【答案】B
【解析】
由于,恒成立,因此在上时单调递减函数,∴,即,故答案为B。
11、已知定义域为R的函数满足,且的导数,则不等式的解集为()学科=网
A. B. C. D.
【答案】A
【解析】
设,则,,
,由题意,因此当时,,递减,当时,,递增,所以的解集为.。