数列,圆锥曲线,导数综合题2完整版

合集下载

圆锥曲线综合测试题(含详细答案)

圆锥曲线综合测试题(含详细答案)

圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改)的全部内容。

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )D 。

2。

椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A 。

1或5 B. 1或9 C 。

1 D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )。

C. 21 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C )4 8.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A 。

圆锥曲线综合练习题(有答案)

圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A.4 B.5 C .7 D.8【解析】由242(10)()2m m ---=,得8m =,故选:D2.直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B.12 C D .23【解析】直线220x y -+=与坐标轴的交点为(20)(01)-,,,,依题意得21c b ==,,a所以e . 3.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A.4 B.3 C .2 D .1 答案:C4.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B D 答案:D5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A 答案:D6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A.0 B.1 C .2 D .答案:C7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2 B.7 C.22 D.2【解析】由双曲线定义知,12||||||10PF PF -=,所以1||22PF =或2||2PF =,故选A .8.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则||||PM PN -的最大值为( ) A.6 B .7 C.8 D.9【解析】设双曲线221916x y -=的左、右焦点分别为12F F ,,则圆22(5)4x y ++=的圆心为1F ,半径12r =.圆22(5)1x y -+=的圆心为2F ,半径21r =.所以max 111||||||2PM PF r PF =+=+,min 222||||||1PN PF r PF =-=-. 由双曲线定义得12||||6PF PF -=,所以max 12(||||)||2(||1)9PM PN PF PF -=+--=.故选:D9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( )A .2 B.4 C.8 D .16【解析】准线方程为x p =-,由已知得810p +=,所以2p =,所以焦点到准线的距离为24p =.10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) AB1 C11 【解析】设正ABC △的边长为2,向量12DE BC =,则D E ,分别是AB AC ,的中点.由双曲线定义知||||2BE EC a -=,所以a 1c =所以离心率1ce a=.故选:D 11.两个正数a b ,的等差中项是92,一个等比中项是且a b >,则抛物线2by x a=-的焦点坐标是( ) A .5(0)16-, B.2(0)5-, C .1(0)5-, D .1(0)5, 【解析】依题意得920a b ab a b +=⎧⎪=⎨⎪>⎩,解得54a b ==,,所以抛物线方程为254y x =-,其焦点坐标为1(0)5-,,故选:C12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A.49 B .23 C .595【解析】设00()P x y ,,则000049y y x a x a ⋅=-+-,化简得220022149x y a a+=,可以判断2249b a =,2451()19b e a =--故选:D13.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=,若椭圆的离心率等于22, 则直线AB 的方程是( ) A. 2y = B .2y = C.3y = D .3y 答案:A14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为 A .3 B 17 C5 D .92答案:B15.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于ﻩﻩ( )A .m p +ﻩB .p m - C.m p - D .22m p -答案:C16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( )A.右支上 B .上支上 C .右支上或上支上 D.不能确定 答案:A17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A.3 ﻩB.1 ﻩC .32D.2答案:A【解析】设c AB 2||=, 则在椭圆中,而在双曲线中,18.221+=表示的曲线是( )A.焦点在x 轴上的椭圆 B.焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线【解析】即又方程表示的曲线是椭圆。

圆锥曲线综合训练题(分专题-含答案)

圆锥曲线综合训练题(分专题-含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -=(2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). (2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 】解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+b y a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-k y k x . ,由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为∴所求椭圆方程为1315422=+yx 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即(1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. — 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,<即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=, 2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即;则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. ,9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

数列-圆锥曲线-导数 专题训练

数列-圆锥曲线-导数   专题训练

数列、圆锥、导数1. 已知椭圆125100:22=+y x E 的上顶点为A ,直线4-=y 交椭圆E 于点B ,C (点B 在点C 的左侧),点P 在椭圆E 上。

(Ⅰ)求以原点为顶点,椭圆的右焦点为焦点的抛物线的方程;(Ⅱ)若四边形ABCP 为梯形,求点P 的坐标;(Ⅲ)若n m ⋅+⋅=(m ,n 为实数),求n m +的最大值及对应的P 的坐标。

解:(Ⅰ)设此抛物线的方程为22y px =…1 分,椭圆的右焦点为2p∴=即p =…2分,∴此抛物线的方程为2y =…3分(Ⅱ)(0,5),(6,4),(6,4)A B C ---…4分,要使四边形ABCP 为梯形,当且仅当||CP AB 32AB k =∴直线CP 的方程为34(6)2y x +=-即3132y x =-…5分,把3132y x =-代入22110025x y +=得:25782880x x -+=…6分 ,解得:6x =或485(由韦达定理求得也可…7分487(,)55P ∴…8分 (Ⅲ)方法一:设(,)P x y ,易知(6,9),(12,0),(6,4)BA BC BP x y ===++n m ⋅+⋅=6612,49x m n y m ∴+=++= …9分,则432103226,,93636y x y x y m n m n +-+++==+= …10分令32x y t +=,由2232110025x y tx y +=⎧⎪⎨+=⎪⎩消y 得:221061000x tx t -+-=…11分,由0∆≥得:223640(100)0t t --≥即21000t ≤,t ∴-≤≤…12分max ()m n ∴+==,…13分,此时x y ==即P …14分方法二:设(,)P x y ,易知(6,9),(12,0),(6,4)BA BC BP x y ===++n m ⋅+⋅=6612,49x m n y m ∴+=++=…9分则432103226,,93636y x y x y m n m n +-+++==+=…10分 由(,)P x y 在22110025x y +=上可设10cos 5sin x y θθ=⎧⎨=⎩,(θ为参数,02θπ≤<)3230cos 10sin )x y θθθα∴+=+=-, (11)分,其中cos 1010αα==(α为锐角)max (32)x y ∴+=…12分,max 2613()3618m n ∴+== …13分 此时θα=,即2x y ==即2P ……………14分 2. 巳知数列{}n a 中,1(),{}n a t t a =为非零常数的前n 项和n S 满足13n n S S +=.(Ⅰ)当1t =时,求数列{}n a 的通项公式;(Ⅱ)若对任意*n N ∈,都有(1)nn n a λ+>,求实数λ的取值范围。

高考数学数列、导数、圆锥曲线综合题

高考数学数列、导数、圆锥曲线综合题

综合题(答案在文章最后面)1、设n S 为数列}{n a 的前n 项和,对任意的∈n N *,都有()1n n S m ma =+-m (为常数,且0)m >.(1)求证:数列}{n a 是等比数列;(2)设数列}{n a 的公比()m f q =,数列{}n b 满足()1112,n n b a b f b -==(2n ≥,∈n N *),求数列{}n b 的通项公式;(3)在满足(2)的条件下,求数列12n n b +⎧⎫⎨⎬⎩⎭的前n 项和n T .2、已知函数)0,()(≠+=a b a bax xx f 为常数且满足1)2(=f 且x x f =)(有唯一解。

(1)求)(x f 的表达式;(2)记)1)((1>∈=-n N n x f x n n 且,且1x =()f 1,求数列{}n x 的通项公式。

(3)记1n y +⋅=n n x x ,数列{n y }的前n 项和为n S ,求证34<n S3、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明存在k *∈N ,使得11n k nk a a a a ++≤对任意n *∈N 均成立.4、设数列).(3,3,3}{},{*111N n n P P P b b P b n n n n nn n n ∈+===++且满足(1)求数列}{n b 的通项公式;(2)若存在实数t ,使得数列})21({,1)41(n C n n n C n n t b C ⋅++⋅-=记数列成等差数列的前n 项和为n T ,证明:3(1)nn n T b -<(3)设25,}{,)1(1<+=n n n n n S S n A T n n A 求证项和为的前数列5、已知函数32()3f x x ax x =--.(1)若()f x 在区间[1,)+∞上是增函数,求实数a 的取值范围; (2)若13x =-是()f x 的极值点,求()f x 在[1,]a 上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数()g x bx =的图象与函数()f x 的图象恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,试说明理由.6、已知函数(),()2ln mf x mxg x x x=-=. (1)当2m =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)当m=1时,求方程f(x)=g(x)实数根个数;(3)若(1,]x e ∈时,不等式()()2f x g x -<恒成立,求实数m 的取值范围.7、已知函数2(2)()().x x x x e f x g x e e-==, (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:当1x >时,()()f x g x >;(Ⅲ)如果21x x <,且12()()f x f x =,求证:12()(2)f x f x >-.8、设函数()e x f x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++(*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤(*n ∈N ).9、已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且15PA PB ≤,求2212S S -的取值范围。

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。

4B。

5C。

7D。

82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。

若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。

圆锥曲线与导数综合练习题

圆锥曲线与导数综合练习题

圆锥曲线与导数综合练习题:1、已知直线20ax by --=与曲线3y x =在点P (1,1)处的切线互相垂直,则ab为( D )A .13B .23 C .23- D .13- 2、设动直线x m =与函数3()f x x =,()ln g x x =的图象分别交于点M 、N ,则||MN 的最小值为( A )A .1(1ln 3)3+ B .1ln 33 C .1(1ln 3)3- D .ln 31-3、设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a =( B )A.2B.2-C.12-D.124、三次..函数3()f x mx x =-在(,)-∞+∞上是减函数,则m 的取值范围是 ( A ) A .0m < B .1m < C .0m ≤ D .1m ≤5、已知直线1+=x y 与曲线)ln(a x y +=相切,则a 的值为_________22【解析】()''1y x a x a x a =+=++,设切点为()00,1x x +,则()00011, 2.1ln x a a x x a ⎧=⎪+=⎨⎪+=+⎩ 6、已知函数f (x )的图像在点M (1,f (1))处的切线方程是2x -3y +1=0,则f (1)+f ′(1)= .537、已知点12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是(D ) A .)3,1( B .)22,3( C .),21(+∞+ D .)21,1(+【解析】22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,22222,,2,.b b F A c F B c a a ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭22222240,210,11b F A F B c e e e a ⎛⎫⋅=->--<<<+ ⎪⎝⎭8、以坐标轴为对称轴,原点为顶点且过圆222690x y x y +-++=圆心的抛物线方程是(D ) A .2233y x y x ==-或 B .23y x = C .2293y x y x =-=或 D .22-9y x y x ==或9、已知实数m 是2,8的等比中项,则双曲线221y x m-=的离心率为 ( A ) ABCD10、与椭圆2214x y +=共焦点且过点(2,1)P 的双曲线方程是 ( B )A .2214x y -=B .2212x y -=C .22133x y -=D .2212y x -=11、设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 ( C ) A .21B .1C .2D .不确定12、点P 是曲线2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值是 ;213、已知正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率为_______31-;14、双曲线的渐近线方程为34y x =±,则双曲线的离心率是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档