立体几何一

合集下载

高中立体几何大量习题及答案1

高中立体几何大量习题及答案1

A BCDEFGH I J立体几何一、选择题1. 给出下列四个命题①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行;④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线。

其中假命题的个数是( ) A .1 B .2 C .3 D .4 2. 将正方形ABCD 沿对角线BD 折成一个120°的二面角,点C 到达点C 1,这时异面直线AD 与BC 1所成角的余弦值是( ) A .22B .21C .43D .43 3. 一个长方体一顶点的三个面的面积分别是2、3、6,这个长方体对角线的长为( )A .23B .32C .6D .64. 如图,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点.将△ABC 沿DE 、EF 、DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ) A .90° B .60° C .45° D .0°5. 两相同的正四棱锥组成如图所示的几何体,可放棱长 为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有( ) A .1个 B .2个 C .3个 D .无穷多个6. 正方体A ′B ′C ′D ′—ABCD 的棱长为a ,EF 在AB 上滑动,且|EF |=b (b <a =,Q 点在D ′C ′上滑动,则四面体A ′—EFQ 的体积( ) A .与E 、F 位置有关 B .与Q 位置有关 C .与E 、F 、Q 位置都有关 D .与E 、F 、Q 位置均无关,是定值7. 三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶2∶3,PO=214,则P 到这三个平面的距离分别是( ) A .1,2,3 B .2,4,6 C .1,4,6 D .3,6,98. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1, S 2,则必有( ) A .S 1<S 2 B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定 9. 条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条件甲是条件乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10. 已知棱锥的顶点为P ,P 在底面上的射影为O ,PO=a ,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是( )CC .b =222a- D .b =222a+ 11. 已知向量a =(2,4,x),b =(2,y ,2),若|a |=6,a ⊥b ,则x+y 的值是 ( )12. 一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是( )A.12πB. 18πC.36πD. 6π13. 已知某个几何体的三视图如下,图中标出的尺寸(单位:cm),则这个几何体的体积是( ) A .34000cm 3 B .38000cmC .32000cm D.34000cm14. 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 ( )A.1200B.1500 C.1800 D.240015. 在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )16. 正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( ) A .6 B .10 C .12 D .不确定17. 已知三棱锥O -ABC 中,OA 、OB 、OC 两两互相垂直,OC =1,OA =x ,OB =y ,若x+y=4,则已知三棱锥O -ABC 体积的最大值是 ( )A.1B.13 C.23 D.318. 如图,在正四面体A -BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是 ( ) A .①③ B .②③④ C .③④ D .②④19. S,那么圆柱的体积等于 ( ) A.S 2S B.πS 2S C.S 4SD.πS 4S 20. 已知直线AB 、CD 是异面直线,AC ⊥AB ,AC ⊥CD ,BD ⊥CD ,且AB=2,CD=1,则异面直线AB 与CD 所成角的大小为 ( )A .300B .450C .600D .750(1,1,0)a = (1,0,2)b =- 正视图 侧视图 B A D C A BC DA 1B 1C 1D 1P Q R NM ① ② ③ ④A B C ∙∙∙EF GA B C DA 1B 1C 1D 1 αA A .1 B .51 C .53 D .57 22. 在四棱锥的四个侧面中,直角三角形最多可有 ( )A.4个B.2个C.3个D.1个23. 三棱锥A-BCD 中,AC ⊥BD ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 是( )A.菱形B.矩形C.梯形D.正方形24. 在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A.BC//平面PDFB.DF ⊥平面PAEC.平面PDF ⊥平面ABCD.平面PAE ⊥平面ABC25. 一棱锥被平行于底面的平面所截,若截面面积与底面面积的比为1:3,则此截面把一条侧棱分成的两线段之比为( )A.1:3B.1:2C.1: 3D.1: 3 —126. 正四面体P —ABC 中,M 为棱AB 的中点,则PA 与CM 所成角的余弦值为( )A. 3 2B. 3 6C. 3 4D. 3 327. 一个三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为1, 6 ,3已知该三棱锥的四个顶点都在一个球面上,则这个球的表面积为( ) A.16π B.32π C.36π D.64π28. 在棱长为a 的正方体ABCD —A1B1C1D1中,P 、Q 是对角线A 1C 上的点,PQ=a2,则三棱锥P —BDQ的体积为( ) A.318a 3 B.324a 3 C.336a 3 D.不确定 29. 若三棱锥P —ABC 的三条侧棱两两垂直,且满足PA=PB=PC=1,则P 到平面ABC 的距离为( )A. 6 6B. 6 3C. 3 6D. 3 330. 将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )A. 3 +2 6 3B.2+2 6 3C.4+ 2 6 3D.4 3 +2 6 331. PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A.12 B. 2 2 C. 3 3 D. 6 332. 正方体ABCD —A 1B 1C 1D 1中,任作平面α与对角线AC 1垂直,使得α与正方体的每个面都有公共点,设得到的截面多边形的面积为S ,周长为l ,则( ) A.S 为定值,l 不为定值 B.S 不为定值,l 为定值 C.S 与l 均为定值 D.S 与l 均不为定值二、填空题33. 若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=______.34. 多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:( )①3; ②4; ③5; ④6; ⑤7以上结论正确的为______________.(写出所有正确结论的编号)35. 如图,已知正三棱柱111ABC ABC -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为.36. 如图,表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有_____对37. 如图是一个长方体ABCD-A 1B 1C 1D 1截去一个角后的 多面体的三视图,在这个多面体中,AB=4,BC=6, CC 1=3.则这个多面体的体积为 .38. 如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等D 是A 1C 1的 中点,则直线AD 与平面B 1DC 所成角的正弦值为_______ . 39. 如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 1,P是BC 1上一动点,则CP +PA 1的最小值是_________. 40. 已知平面α和平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 ___________ .41. 若三角形内切圆半径为r ,三边长为a,b,c ,则三角形的面积S= 12r (a+b+c ) ,根据类比思想,若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V=______________.42. 四面体ABCD 中,有如下命题:①若AC ⊥BD ,AB ⊥CD ,则AD ⊥BC ;②若E 、F 、G 分别是BC 、AB 、CD 的中点,则∠FEG 的大小等于异面直线AC 与BD 所成角的大小;③若点O 是四面体ABCD 外接球的球心,则O 在面ABD 上的射影为△ABD 的外心;④若四个面是全等的三角形,则ABCD 为正四面体 _ (填上所有正确命题的序号). 三、解答题43. 在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示).44. 如图,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段。

第十一讲 立体几何(一) 平行与垂直.

第十一讲 立体几何(一) 平行与垂直.

第十一讲立体几何(一)平行与垂直【内容要点】垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.直线与平面是立体几何的核心内容,主要包括:三条公理、三个推论、三线平行公理(公理4)、三垂线定理及其逆定理、三种位置关系(直线与直线、直线与平面、平面与平面)。

其中“平行问题”与“垂直问题”是两类重要的证明问题。

【例题剖析】例1. 如图,已知平面α∥β∥γ,A,C∈α,B,D∈γ,异面直线AB和CD分别与β交于E和G,连结AD和BC分别交β于F,H.(2)判断四边形EFGH是哪一类四边形;(3)若AC=BD=a,求四边形EFGH的周长.需经过分别与AB(或CD)共面的直线(例如AD)进行过渡,再利用平面几何知识达到论证的目标。

(2)在(1)的基础上,不难判断EFGH四边形的类型。

(3)利用(1)、(2)的结果再进一步进行探索。

解:(1)由AB,AD确定的平面,与平行平面β和γ的交线分别为(2)面CBD分别交β,γ于HG和BD.由于β∥γ,所以HG∥BD.同理EH∥AC.故EFGH为平行四边形。

评述此问题的最终解决都是利用平面几何的有关知识进行的,这里利用了辅助平面ABD和ADC是关键所在,本题也是利用线面、面面、线线平行的互相转化这一基本思想得到最后结果的.例2. 正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN 求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC中与MN平行的直线。

证明(一):作NK∥AB交BE于K,作MH∥AB交BC于H∴MH∥NK∵ABCD与ABEF是两个有公共边AB的正方形∴它们是全等正方形∵AM=FN ∴CM=BN又∠HCM=∠KBN,∠HMC=∠KNB∴△HCM≌△KBN ∴MH=NK∴MHKN是平行四边形∴MN∥HK∵HK⊂平面BEC MN⊄平面BEC∴MN∥平面BEC证明(二):分析:利用面面平行⇒线面平行过N作NP∥BE,连MP,∵NP∥AF∴FN/FB=AP/AB∵AM=FN,AC=BF∴FN/FB=AM/AC ∴AP/AB=AM/AC∴MP∥BC ∴平面MNP∥平面BCE∴MN∥平面BCE解题中经常需要作互相平行的直线,为了使作直线的位置符合要求,构造成平行四边形,利用平行四边形对边这一关系是作平行线的依据之一。

2020年高考数学专题讲解:立体几何(一)

2020年高考数学专题讲解:立体几何(一)

年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。

高一数学立体几何讲义

高一数学立体几何讲义

I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。

高中立体几何(全一册)

高中立体几何(全一册)

高中立体几何 (全一册)第一章直线和平面第三单元空间直线和平面一、教法建议【抛砖引玉】本单元主要研究空间直线与平面的位置关系,是立体几何基础中的支柱.通过研究空间直线与平面位置关系的判定和性质,用以解决立体几何中的计算和证明问题.空间直线和平面的位置关系共分为两类:一是直线在平面内,如果一条直线上有不同的两点落在同一个平面内,那么整条直线就落这个平面内.此时直线这个点集是平面点集的真子集;二是直线在平面外,直线在平面外又分为两种情况:直线与平面平行,这里有平行的定义、平行的判定和平行的性质;还有直线与平面相交,当直线与平面有且仅有一个交点时,直线就与平面相交,相交时又有两种不同的位置关系,第一是直线与平面垂直,垂直的定义、垂直的判定和垂直的性质,同时提出了立体几何中最重要的定理──三垂线定理及其逆定理,为后续知识的学习奠定坚实的基础;第二是直线与平面斜交,有直线在平面内的射影和直线与平面所成角的概念.本单元的重点之一是研究直线与平面的平行.平行的定义是直线与平面没有公共点;如何判定直线与平面的平行呢?如果平面外的一条直线和这个平面内的某一条直线平行,那么这条直线就平行于这个平面.这就是判定定理,简称为“线线平行,线面平行”.直线和平面平行以后又有些什么性质呢?当直线a平行于平面α以后是否有平面内任何一条直线都平行于直线a呢?结论是否定的,我们有如下的性质定理:如果一条直线和一个平面平行,经过这条直线的一个平面与已知平面相交,那么这条直线就和交线平行.这是直线与平面平行的性质定理,简称为“线面平行,线线平行.”这两种简称都要在理解原定理的意思中说出各个线和面的意义.本单元重点之二是研究直线与平面的垂直.垂直的定义要求很高,一条直线如果垂直于一个平面内的任何一条直线,那么称这条直线垂直于这个平面.有了这个要求很高的定义以后,判定就变行相对宽松一些,如果一条直线垂直于平面内的两条相交直线,那么称这条直线垂直于已知平面.注意它的证明纯粹应用平面几何中等腰三角形的性质和判定.此外,还有两条平行直线与平面垂直的判定和性质的两个定理.平面的斜线与平面所成的角是指斜线和它在平面上的射影所成的锐角,特别地当直线垂直于平面时,直线与平面成直角;当直线平行于平面时,直线与平面成零角.因此,设Q是直线l与平面α所成的角时,角θ的取值范围是θ∈[0,2 ].本单元的重点之三是三垂线定理及其逆定理,它们都是研究直线与直线关系的.在研究空间图形时,常常利用它们把某些空间图形的计算问题转化为平面图形的计算问题,证明问题也的这样,所以三垂线定理及其逆定理是立体几何的重要支柱.这两个定理的证明仅仅用到直线与平面垂直的判定和定义,是不难掌握的,同学们在学习过程中应特别注意的是搞清三垂线定理及其逆定理的区别,应用定理时,说清究竟是用三垂线定理,还是三垂线定理的逆定理.【指点迷津】本单元的知识,既重要,又难学.教师对学生的指导必须在给学生认真讲清概念关键的同时,用模型给学生摆清各种直线和平面的位置关系,解决好使学生建立空间概念的问题.在教学过程中使学生的空间想象能力逐步得到培养;同时还要学会把空间想象出来的线面关系在二维平面上表示出来.在纸面上画出来.也就是要做到:第一,直线与平面的位置要想得出,能理解,会比划;第二是把想象出的位置关系画到平面上.这是有一定难度的.因为平面几何研究的是二维的平面图形的性质,学生从初中升入高一,本来就对想象三维空间的线面关系感到困难,又要把想象出来的三维线面关系重新表示到二维纸面上来,画好图,画得直观、生动,关键是符合科学性,而且看到图又要能想象出位置关系,而这个过程是必须要过的,而且一定要过好,这就叫做空间想象能力的培养.二、学海导航【思维基础】学习本单元的知识,主要抓住空间直线与平面的平行、斜交和垂直三种主要位置关系.每一种位置关系都要搞清一系列问题.例如,怎样定义直线与平面平行?如何判定直线与平面平行,有几种方法?直线与平面平行以后,有些什么性质?又例如,怎样定义直线与平面的垂直?如何判定直线与平面垂直,有几种方法?直线与平面垂直以后,又有些什么性质?都必须通过整理,弄懂弄通,运用自如,才真掌握了这些知识;还比如,平面的斜线中有一个斜线长和射影长的定理,这是必须注意定理的条件、前提,必须是以平面外一点出发的诸多斜线和一条垂线,如果遗忘这个条件,结论虽然是不对的.所以要求同学们认真地阅读理解定理中的原文原句,正确地掌握其内在含意.试完成以下各题:1.直线和平面平行的充要条件是这条直线和平面内的()(A)一条直线不相交(B)两条直线不相交(C)任意一条直线都不相交(D)无数条直线不相交2.设a、b是两条异面直线,下列命题中,正确的是()(A)有且仅有一条直线与a、b都垂直(B)有一个平面与a、b都垂直(C)过直线a有且仅有一个平面与b平行(D)过空间任何一点必可作一条直线与a、b都相交3.正方体AB CD—A1B1C1D1中,E、F分别是AA1和AB的中点,则EF与对角面AA1C1C 所成的角是()(A)300 (B)450(C)600(D)15004.设P是△AB C所在平面外一点,则点P在此三角形所在平面内的射影是△AB C的垂心的主要条件是()(A)P A=P B=PC (B)P A⊥B C且P B⊥A C(C)点P到△AB C三边的距离相等(D)P A、P B、PC与△AB C所在平面所成的角相等5.已知△AB C 在平面α的同侧,顶点A 、B 、C 到平面α的距离分别是11、7、3,G 是△AB C 的重心,则G 到平面α的距离等于 .6.已知长方体AB CD —A ′B ′C ′D ′中,AA ′=5,AB =12,那么直线B ′C ′′与平面A ′B CD ′的距离等于 .7.在长方体AB CD —A 1B 1C 1D 1中,AB =6,A D=8,AA 1=3.6,A E 与低面对角线B 1D 1垂直于点E .(1)求证 A 1E B 1D 1;(2)求 A E 的长.【学法指要】例1.四棱锥的四个侧面中,直角三角形的个数最多的是 ( )(A )1个(B )2个 (C)3个 (D)4个 解:如图,当四棱锥P —AB CD 的侧棱P A 垂直于底面AB CD 时,P A ⊥AB ,P A ⊥A D ,△P AB 和△P A D 都是直角三角形;当底面AB CD 是矩形时,∵B C ⊥AB ,由三垂线定理知B C ⊥P B ,∴△P B C 也是直角三角形,同理△PCD 也是直角三角形,因此侧面中直角三角形的个数最多是4个,选(D ).例如2.等腰直角三角形△AB C 中,AB =A C=1,P A ⊥平面AB C ,且P B =2.求P A 与平面P B C 所成角的正弦值. ( )解:如图,在AB C 中作A C ⊥B C 于D ,则D 是B C 中点,且A D=22,又因为P A =2,PD=412322+=, ∵A D ⊥B C ,由三垂线定理知PD ⊥B C ,∴B C ⊥平面P A D ,平面P A D ⊥平面P B C , 过A 作A O ⊥PD 于O ,则A O ⊥平面P B C .∠A PO=θ就是P A 与平面P B C 所成的角,在Rt △P A D 中,A O=PA AD PD ⋅=23, ∴sin θ=AO PA =13.即P A 与平面P B C 所成角的正弦值等于13. 例3.异面直线a 、b 分别与平面α平行,且a 、b 到平面α的距离相等,A 是直线a 上任意一点,B 是直线b 一的任意一点,求证线段AB 被平面α平分.证明:设CD 是异面直线a 、b 的公垂线段,CD 交平面α于点O ,则CO=DO ,如图,过D 作直线a ′∥a ,则相交直线a ′与b 确定的平面与平面α平行.过点A 作A ′A ⊥直线a ′,交直线a ′于点A ′,则AA ′⊥面α,设AA ′交平面α于点M ,则由于异面直线a 、b 到平面α的距离相等,所以A M=M A ′,即M 是AA ′的中点,又设AB 交平面α于点P ,连MP 、A ′B . 由于相交直线a ′与b 所确定的平面与平面α平行,这两个平行平面被平面AA ′B 所截,截得的交线MP 与A ′B 平行,由M 是AA ′的中点,知PM 是△AA ′B 的中位线,故P 是AB 的中点,即线段AB 被平面α平分.例4.在正方形SG 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 及EF 把正方形折成一个四面体,使G 1、G 2、G 3三点重合,重合后记为G ,那么在四面体S-EFG 中必有 ( )(A )SG ⊥△EFG 所在平面(B )SD ⊥△EFG 所在平面(C )GF ⊥△SEF 所在平面(D )GD ⊥△SEF 所在平面解:由于在平面图形SG 1G 2G 3中,SG 1⊥G 1G 2,SG 3⊥G 2G 3,所以折成四面休SGEF 中,∠SGE=∠SGF=Rt ∠,GE 、GF 、相交于点G ,因此SG ⊥△EFG 所在平面.故应选(A )例5.已知∠BA C 在平面α内,P A 是平面α的斜线,若∠P AB =∠P A C=∠BA C=600,P A =a .求点P 到坪面α的距离.解:过点P 作PO 平面α,∵∠P A C=∠P AB ,∴A O 平分∠BA C ,在平面α内,作OC ⊥A C于点C ,连PC ,由三垂线定理知PC ⊥A C .又∵∠P A C=600,P A =a ,∴A C=a 2∴A O=AC a cos30330= 在Rt △P A O 中,PO=PA AO a a a 22221363-=-= 故点P 到平面α的距离为63a . 例6.如图,AB CD 是边长为2a 的正方形,M 、N 分别是AB 、A D 的中点,PC ⊥平面AB CD ,PC=a .(1)求证:B D ∥平面PMN ;(2)求点B 到平面PMN 的距离.解:(1)∵M 、N 分别是正方形AB CD 的边AB 、A D 的中点,∴MN ∥B D ,MN ∈平面PMN ,∴B D ∥平面PMN .(2)∵AB CD 是正方形,∴B D ⊥A C ,MN ∥B D∴MN ⊥A C又∵PC ⊥平面AB CD ,MN ⊂平面AB CD ,∴MN ⊥PC .又PC ∩A C=点C .∴MN ⊥平面EPC .在平面EPC 内,作O H ⊥PE 于点H ,则MN ⊥O H ,∴O H ⊥平面PMN ,由于B D ∥平面PMN ,所以O H 的长就是点B 到平面PMN 的距离.在Rt △PCE 中,PC= a ,EC=()∴PE=222a ,又EO=22a ∵△E H O ∽△ECP ,∴O H :PC=EO :PE , ∴O H =PC EO PE a ⋅=1111. 故点B 到平面PMN 的距离为1111a . 例7.如图,A D 是△AB C 中B C 边上的高,在A D 上取一点E ,使A E=12ED ,过E作直线MN 平行于B C ,交AB 于M ,交A C 于N ,现将△A MN 沿MN 折过去,此时点A 到了A ′的位置,如果∠A ′ED=600,求证:E A ′⊥平面A ′B C .证明:连结A ′B 、A ′C 、A ′D ,∵A E=12ED ,A ′E=A E , ∴A ′E=12ED ,∠A ′ED=600, 在A ′ED 中,由余弦定理求得A ′D =32ED . ∴E A ′D=900,即E ′A ⊥A ′D .又A D ⊥B C ,MN ∥B C ,∴MN ⊥A D .即MN ⊥A ′E ,MN ⊥ED .因此MN ⊥平面E A ′D ,即B C ⊥平面E A ′D .E A ′⊂平面E A ′D∴E A ′⊥B C ,E A ′⊥A ′D ,A ′D ∩B C=点C∴E A ′⊥平面A ′B C评注:通常是知道位置关系,如平行,垂直等来进行计算,这里的关键在于利用A E=12ED 和∠A ED=600这两个数量关系来推断E A ′⊥A ′D ,这个位置关系,同学们应该学会.例8.已知平面α、β相交于直线PQ ,线段O A 、O B 分别垂直于平面α、β,其中A 、B 为垂足.求证:(1)PQ ⊥平面A O B(2)PQ ⊥AB .证明:(1)∵O A ⊥平面α⇒ O A ⊥PQPQ ⊥平面αO B ⊥平面β ⇒ PQ ⊥平面A O B⇒ O B PQPQ ⊂平面βO A ∩O B =点O(2)∵PQ ⊥平面A O BPQ ⊥ABAB ⊂平面A O B评注:同学们在推理论证的学习达到一定的熟练程度的时候,可以学习运用推出符号“⇒”来进行论证,这样的证明因果关系清晰,简洁明了.但是应注意两点,第一是条件必须具备齐全,然后直接运用定理便可推出;第二是必须按序一步一步地推得,不能把条件全部罗列,一个推出符号“⇒”就得到最后结论,这是不对的,请同学们学习时注意.例9.如图,地平面上有一竖直的旗杆OP ,为了测得它的高度h ,在地面上选一条基线AB ,AB =20米,在A 点处测得点P 的仰角为∠O A P=300,在B 点处测得点P 的仰角为∠O B P=450,又测得∠A O B =600.求旗杆的高(结果可以保留根号).解:设旗杆的高OP =h ,在Rt △P A O 中,∴∠P A O=300,∴A O=3h ,在Rt △P B O 中,∵∠P B O=450,∴B O=h ,在△A O B 中,∠A O B =600,由余弦定理知AB 2=A O 2+B O 2-2A O ·B O cos600,∴400=3h 2+h 2-23·h 212 ∴(4-3)h 2=400.H =2043-(米).答:旗杆的高度为h =2043-米.例10.在四面体AB CD 中,已知棱AB ⊥CD ,棱A C ⊥B D .求证棱A D ⊥B C .证明:设顶点A 在平面B CD 内的射影为O ,即 A O ⊥平面B CD 于点O ,则因为AB ⊥CD ,由三垂线逆定理知B O ⊥CD ,同理CO ⊥B D . 因此O 时△B CD 的垂心,连DO ,则DO ⊥B C ,由三垂线定理知A D ⊥B C .评注:应用三垂线定理时,正定理和逆定理不能搞错.已知平面内的直线与斜线在这个平面内的射影垂直,得到平面内的直线与斜线垂直是三垂线定理.反之,已知平面内的直线与平面的斜线垂直,推得这条直线和斜线在已知平面内的射影也垂直,是三垂线定理的逆定理.例11.已知Rt △AB C 的斜边AB 在平面α内,两直角边A C 、B C 与平面α分别成θ1和θ2角,若平面AB C 与平面α成二面角为.求证:sin 2θ1+sin 2θ2=sin 2φ证明:设直角顶点C 在平面α内的射影为O ,连结A O 、B O ,则∠C A O=θ1,∠C B O=θ2.设CO=h ,则sin θ1=h AC, sin θ2=h BC在平面AB C 中,作CD ⊥AB 于D ,连结OD ,由三垂线逆定理知OD ⊥AB 且∠CDO=φ就是平面AB C 与平面α所成二面角的平面角,而且sin φ=h CD∵sin 2θ1+sin 2θ2 =h AC h BC h AC BC AC BC 22222222+=⋅+⋅ =h AB AC BC 2222⋅⋅ 在Rt △AB C 中,∵CD ·AB =A C ·B C ,∴⋅⋅AB AC BC =1CD. ∴sin 2θ1+sin 2θ2=h AB AC BC 2222⋅⋅=h CD22=sin 2φ. 故有结论成立.例12.平面M 的一条斜线与平面M 所成的角为α,该平面内过斜足的一条直线与斜线在平面内的射影所成的角为β,与斜线所成的角为γ.求证:cos γ=cos α·cos β.证明:如图,PO 是平面M 的垂线,P A 是平面M 的斜线,O A 就是斜线P A 在平面M 内的射影,∠P A O=α就是斜线P A 与平面M 所成的角.AB 是平面M 内过斜足A 的直线,它与射影O A 所成的角为,即∠O AB=β,AB 与斜线P A 所成的角为γ,所以∠P AB =γ.在平面M 内,作O B ⊥AB 于点B .连结P B ,则由三垂线定理知P B ⊥AB ,因此,在Rt△P A O ,Rt △A O B 和Rt △P B O 中,有cos α=OA PA ,cos β=AB OA ,cos γ=AB PA因此有 cos γ=cos α·cos β.例13.已知三棱锥P —AB C 的三条侧棱P A 、P B 、PC 两两互相垂直.(1)求证点P 在平面AB C 内的射影G 是△AB C 的垂心;(2)求证△A P B 、△B PC 、△CP A 的面积平方和等于△AB C 面积的平方;(3)设二面角P —AB —C 、P —B C —A 、P —C A —B分别为α、β、γ,求证cos α·cos β·cos γ≤39 证明:(1)P A ⊥P BP A ⊥PC ⇒P A ⊥平面PB C⇒ P A ⊥B C ⇒A G ⊥B CP B ∩P B =点P PC ⊂平面P B C A G 是P A 的射影同理 B G ⊥A C ,CG ⊥AB 所以G 是△AB C 的垂心.(2)延长A G 交B C 于H ,连结P H ,∵P A ⊥平面P B C ,P H ∈平面P B C ,∴P A ⊥P H 即∠A P H =900.在Rt △P AH 中,P H 2=AH ·G H .∴(S △B PC )2=14B C 2·P H 2=14B C 2·AH ·G H =(12B C ·AH )(12B C ·G H )=S △AB C ·S △G B C . 同理(S △A P B )2=S △AB C ·S △GBC ,(S △CP A )2=S △AB C ·S △GC A ,将三式相加,便得(S △B PC )2+(S △CP A )2+(S △A P B )2=(S △AB C )2(3)∵cos=S S GAB PAB ∆∆,cos=S S GBC PBC ∆∆,cos=S S GCA PCA∆∆, ∴cos 2+cos 2+cos 2=1 ∵cos cos cos (cos cos cos )22232221313αβγαβγ⋅⋅≤++= ∴cos cos cos 222127αβγ⋅⋅≤ ∵α、β、γ为锐角.∴cos cos cos αβγ⋅⋅≤39【思维扩散】空间的直线与平面是立体几何第一章的重点.每种位置关系展开都有一系列判定定理和性质定理,学习过程中对定理的条件,定理应用的适用范围必须作周密的考虑和判定,不能一概而论,肓目应用.看下面的两个命题:命题1.已知平面α∩平面β=直线l ,直线b ∥平面α,直线b ∥平面β,则直线∥b .命题2.已知P A 是平面α的斜线,PO 是平面α的垂线,如果直线l 垂直于斜线P A ,那么直线l 一定垂直于其射影PO .命题1中的结论显然是正确的,可以这样来证明:过直线b 作平面γ,设γ∩β=直线a ,则因为直线b ∥平面β,所以直线b ∥直线a ,又因为直线b ∥平面α,直线a 在平面α外,所以,直线a ∥平面α,平面β是经过a 且与平面α相交于直线l 的平面,所以直线a ∥直线l ,由三线平行公理知直线b ∥直线l .命题2中的结论显然是错误的.平面α的垂线,斜线摆好以后,三垂线定理说的是“平面α内”的直线l ,这个条件省略以后,命题就可能是不正确的.因为垂直于斜线P A 的直线许多种不同的位置,只要在垂直于P A 的 平面内的直线都垂直于P A ,但显然不能都与射影O A 垂直.思想问题首先应该严格按照命题的条件,题目的已知,其次是在允许范围内多方位、多角度地思考问题,可以为我们创造性思维的培养奠定坚实的基础.三、智能显示【心中有数】本单元直线与平面的位置关系是立体几何第一章线面关系的重点,主要是空间直线与平面平行、空间直线与平面垂直及空间直线与平面斜交三种位置关系,每种位置关系都有定义、判定、性质等一整套理论,必须熟练地掌握,正确地使用.【动脑动手】解答下列一组题目,以检查学习效果:1.已知直线a 、b 和平面α,以下四个命题中,①a ∥b②a ⊥α ⇒b ⊥α⇒ a ∥b a ⊥αb ⊥α ③a ⊥α④a ∥α ⇒ b ∥α⇒ b ⊥α a ⊥ba ⊥b 其中正确命题是(A ) ①、②(B )①、②、③ (C) ②、③、④ (D )①、②、④2.已知直线m 、n 和平面,则α⊥β的一个充分条件是(A )m ⊥n ,m ∥α,n ∥β(B )m ⊥n ,α∩β=m ,n ⊂α(C )m ∥n ,m ⊂α,n ⊥β(D)m ∥n ,m ⊥α,n ⊥β3.如果直线l 是平面α的斜线,那么在平面内(A )不存在与l 平行的直线(B)不存在与l垂直的直线(C)与l垂直的直线只有一条(D)与l平行的直线无数多条4.在下列命题中,偶命题是()(A)若a、b是异面直线,则一定存在平面α,过a且与b垂直(B)若a、b是异面直线,则一定存在平面α,过a且与b垂直(C)若a、b是异面直线,则一定存在平面α,与a、b所成的角相等(D)若a、b是异面直线,则一定存在平面α,与a、b的距离相等5.如图,点P是三棱锥S—AB C的面S B C内一点.(1)过P作PQ∥平面AB C;(2)过(1)中得到的PQ作平面α∥平面AB C;(3)在面AB C内求一点R,使PR∥平面S AB,且R到A C和B C的距离相等.6.已知M、N是棱长为a的正方体AB CD—A1B1C1D1中棱A1B1和A1D1的中点.(1)求证B D∥平面A MN;(2)求点B到平面A MN的距离.【创新园地】正四棱柱AB CD—A1B1C1D1中,AB=a,AA1=b (b>a),A M⊥A1B,交B1B于点M.(1)求证:B D1⊥平面M A C;(2)求点B到平面M A C的距离.证明:(1)D1A1是平面AA1B1B的垂线,B D1是平面AA1B1B的斜线,A1B是斜线B D1在平面AA1B1B内的射影,A M是平面AA1B1B内的一条直线,因为A M⊥A1B,由三垂线定理知B D1⊥A M;又D1B⊥A C,A C∩A M=点A,所以B D1⊥平面M A C.(2)解法(一),作对角面BB1D1D,交A C于O,连OM,则OM就是对角面BB1D1D 与平面M A C的交线,∵A C⊥平面BB1D1D,∴平面A MC⊥平面BB1D1D,在平BB1D1D内,作BH⊥OM于点H则BH就是点B到平面M A C的距离.∵AB=a,AA1=b,Rt△AB M∽Rt△A1AB,∴BMABABAA=1,∴B M=ab2.又∵B O=22a,∴MO=BM BOaba b2222242+=+.因此BH=BM BOMOa a ba b⋅=++2222222.解法(二):∵AB=a, AA1=b,同理求得B M=ab2.因为AB C的面积为12a2,所以三棱锥M—AB C的体积是V SH a a b a b==⋅⋅=1313126224. 另一方面,因为B O=a 22a ,MO=2222b a b a +, 所以A MC 的面积为 S A MC=12A C ·MO=22222b a ba +. 设B 到平面A MC 的距离为x ,则三棱锥M —AB C 的体积又可以这样计算:x S V A M C ⋅=∆31 所以 ba b a b a x 622314222=+⋅ 即 x =2222222ba b a a ++ 因此点B 到平面A MC 的距离为2222222b a b a a ++. 评析:求点到平面的距离,方法很多,可能直接作出这个距离来求,一般要用到平面与平面的垂直.因为两个平面互相垂直,在一个平面内垂直于它们交线的直线,垂直于另一个平面.点到平面的距离就可以求出来了.另一种方法是不作出距离,而是利用体积法换法,直接求出点到平面的距离.(本单元完)【思维基础】答案:1.C ;2.C ; 3.A ; 4.B ; 5.7;6.1360; 7.A E=6.【动脑动手】答案:1.A ;2.C ; 3.A ; 4.B ; 5.略; 6.a 32.四、同 步 题 库A 组(一)选择题1.下面说法中,正确的是( )(A )若一条直线与一个平面不相交,则这条直线和这个面平行;(B )若一条直线与一个平面内任何一条直线都不相交,则此直线与这个平面平行; (A ) 若直线上有无数个点不在平面内,则这条直线与平面平行;(B ) 若直线与平面内无数条直线平行,则这条直线与这个平面平行.2.直线与平面垂直是指( )(A ) 直线与平面只有一个公共点;(B ) 直线与平面内的两条直线都垂直;(C )直线与平面内无数条直线都垂直; (D )直线与平面成90°角.3.和一个平面成等角的两条直线的位置关系( )(A )平行; (B )相交; (C )异面; (D )以上都可能 4.P 是△ABC 所在平面外一点,若PA=PB=PC ,则P 在平面ABC 内的射影是△ABC 的( )(A )外心; (B )内心; (C )垂心; (D )重心 5.下列命题中正确的是( ) (A )⎩⎨⎧⊥⇒⊥b a a b a α//; (B )⎩⎨⎧⇒⊥⊥b a a b a //α(C )⎩⎨⎧⇒⊥⊥αα//a b a a (D ) ⎩⎨⎧⊥⇒⊥ααb ba a //6.如图,AD 是Rt △ABC 斜边BC 上的高,PA ⊥D 面ABC ,图中共有直角三角形有( )7.直角三角形ABC 的斜边AB 在平面α内,直角项点C 在α上的射影为C′,△ABC′是( ) (A )直角三角形 (B )锐角三角形;(C )钝角三角形 (D )锐角或钝角三角形8.在矩形ABCD 中,AB=3,BC=4,PA ⊥平面ABCD ,且PA=1,则P 到对角线BD 的距离是( )(A )2921; (B )513; (C )517; (D )119519.长方体的一条对角线与各个面所成的角为α、β、γ,则下列等式正确的是( ) (A )sin2α+sin2β+sin2γ=32; (B)cos2α+cos2β+cos2γ=1 (C) sin2α+sin2β+sin2γ=2; (D)cos2α+cos2β+cos2γ=210.对两条异面直线在同一平面内的射影,下列说法中正确的是( )(A )不可能是两点; (B )不可能是一直线和一点(C )不可能是两平行线; (D )不可能是两相交直线 (二)填空题1.a ∥b,b ⊂a,则直线a 、b 的位置关系是 .2.已知点A 和直线l ,A ∉l,则过点A 与直线l 平行的直线有 条;过点A 与直线l 垂直的直线有 条;过点A 作与直线l 平行的平面有 个;过点A 作与直线l 垂直的平面有 个.3.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,点A 到C 1D 的距离为 ;点A 到B 1C 的距离为 ;点A 到平面BB 1D 1D 的距离为 ;AA 1到平面BB 1D 1D 的距离是 ,AA 1与BD 1的距离是 .4.若PO ⊥平面AOB ,∠AOB=90°,AB=a ,∠PAO=∠PBO=α,C 是AB 的中点,则PC= .5.l 是平面α内直线,A 是α外一点,设A 到α的距离为d 1,A 到l 的距离为d 2,则d 1 d 2.6.AB ∥平面α,AA′⊥α于A′,BB′是α的斜线,B′是斜足,若AA′=9,BB′=36,则BB′与α所成角为 .7. ∠XOY=60°在平面α内,OA=α是α的斜线,∠AOX=∠AOY=45°,则点A 到α的距离是 .8.如果平面外的一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是 .9.△ABC 的面积为S ,BC α,点A 到面平α的距离等于点A 到BC 的距离的53,则△ABC 在α上的射影的图形面积是 .10.点P 到平面α的垂线段PO=12cm ,斜线段PA 、PB 分别为13cm 和20cm ,则A ,B 两点的最大距离是 .最小距离是 .(三)解答题1.已知P 是□ABCD 所在平面外一点,M 是PD 的中点(如图),求证:PB ∥平面MAC.2.已知直线l ∥平面α,l ∥平面β,且α β=m ,(如图).求证:l ∥m.3.在空间四边形ABCD 中,AB ⊥CD ,AD ⊥BC ,求证:BD ⊥AC.4. 如图,线段AB=α,在平面α内,CA ⊥α,BD 与α所成角为30°,BD ⊥AB ,C 、D 在α同侧CA=BD=b ,求:(1)CD 的长; (2)直线CD 与α所成角的正切值.5.如图,三棱柱ABC-A 1B 1C 1中,AB=2,BC=CA=AA 1=1,A 1在底面ABC 上的射影是O 点.(1)O 与B 能否重合?试证明你的结论;(2)若O 在AC 上.求BB 1与侧面AC 1的距离.B 组(一)选择题1.下列四个命题中 (1)若a ∥α,b ∥α, 则a ∥b ;(2)若a ∥b, a ∥α,则b ∥α; (3)若a ∥α,则a 平行于α内的任意直线;(4)若a 平行于α内的无数条直线,则a ∥α.其中正确的命题个数是( )(A )0; (B )1; (C )2; (D )3 2.下列命题中正确的是( ) (A )若a ⊥α,b ⊥α,c ⊥α,则直线α平行于过直线b 、c 的平面;(B ) 若a ∥α,b ∥α,且a 、b 到平面α的距离不相等. 则a 、b 是异面直线; (C ) 若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则a 、b 相交或平行;(D )若a ∥α, b ∥α,且a 、b 到平面α的距离相等,则与a 、b 都相交的直线在平面α外.3.在同一平面α的射影等长的两条线段是( ) (A )如果有一公共端点,则它们必等长;(B ) 如果等长,则它们必有公共点;(C )如果平行,则它们必等长; (D )如果等长,则它们必平行.4.与空间四边形ABCD 四个顶点距离相等的平面有( )(A )4个; (B )5个; (C )6个; (D )7个5.AB 是⊙O 的直径,SA 垂直于⊙O 所在的平面M ,平面M 内有一动点P ,使PB ⊥PS ,则P 的位置( ) (A )⊙O 外; (B )⊙O 上; (C )⊙O 内; (D )不能确定6.如图,正方形SG 1G 2G 3中,E ,F 分别是G 1G 2,G 2G 3的中点,D 是EF 中点. 现沿SE 、SF ,及EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合,记作G 则(A )SG ⊥FEG ; (B )SD ⊥面EFG ; (C )GF ⊥面SEF ; (D )GD ⊥面SEF7.直角△ABC 的两直角边BC=3,AC=4,PC ⊥面ABC ,且PC=59,则P 到斜边AB 的距离是( ) (A )3; (B )4; (C )15; (D )428.斜线AB 与平面M 成θ角,BC M ,AA′⊥M ,A′是垂足,若∠ABC=α,∠A ′BC=β,则( ) (A )sinα=sinθsinβ; (B) sinβ=sinθsinα(C) cosα=cosθcosβ; (D) cosβ=cosθcosα(二)填空题1.将矩形ABCD沿着平行于BC的线段EF折起,连结AB和CD(如图),则AB与EF 所成角等于,BC与AE所成角等于,点A到BC的距离等于线段的长,若AE=EB=4cm,∠AEB=120°,则AD与BC的距离等于. AD与平面BCFE的距离等于, EF到平面BD的距离等于.2.Rt△ABC,∠C=90°,CA=12,BC=5,BC 平面αA到α的距离是10,则△ABC的垂心、内心到α的距离分别为.3.过平面α外一点引两条斜线,它们与α所成角分别是30°,45°,且它们在α内的射影互相垂直,则这两条线夹角的余弦值为.4.P是等腰梯形ABCD外一点,且PA=PB=PC=PD,若P在面ABCD的射影P′在梯形ABCD 外,则应满足.5.AC是平面α内的一条射线,P为α外一点,PA=2,P到α的距离为1,设∠PAC=θ,m=tgθ,则m的取值范围是.(三)解答题1.如图,两个全等正方形ABCD和ABEF,所在平面相交于AB,M∈AC,N∈FB,求证:MN∥平面BCE.2.已知AB是异面直线a、b公垂线,AB=2cm,a、b所成角为30°,在直线a上取一点P 使PA=4cm,求P到直线b的距离.3.空间四边形ABCD中,△ ABC是正三角形,AD⊥面ABC,H是A在面BCD上的射影. 求证:H不可能是△BCD的垂心.4.如图,已知斜边为AB的Rt△ABC,过点A作AP⊥平面ABC,AE⊥PB于点E,AF⊥PC 于点F,(1)求证:PB⊥平面AEF.(2)若AP=AB=2,试用tgθ(θ是∠BPC)表示△AEF 的面积.当tgθ取何值时,△AEF 的面积最大?最大面积是多少?C 组(一)选择题1.在空间中,给出如下命题 (1)垂直于同一直线的两直线平行;(2) 平行于同一平面的两直线平行;(3)与同一平面成等角的两直线平行; (4) 与同一平面内的射影是两条平行线的两直线平行,其中真命题的个数是( )(A )0; (B )1; (C )2; (D )3.2.从平面外一点向平面引垂线和若干斜线,若斜线与平面所成的角相等,则( )(A )斜足一定是正多边形的顶点; (B )垂足是斜足为顶点的多边形的内心;(C )垂足是斜足为顶点的多边形的外心; (D )垂足是斜足为顶点的多边形的垂心.3.如图,PC ⊥面α,垂足为C ,AB α,CB ⊥AB ,垂足为B ,则线段PA 、PB 的大小关系是( )(A )PA<PC<PB; (B) PC>PB>PA;(C) PA<PB<PC; (D) PB>PA>PC.4.若a ∥α,且a 和α的距离为d ,则平面α内( )(A )有且只有一条直线与l 的距离为d ; (B )所有直线与l 的距离都等于d ;(C ) 有无数条直线与l 的距离都等于d ; (D )所有直线与l 的距离都不等于d.5.线段AB 两端点到平面α的距离分别是6cm 和10cm ,则它的中点到α的距离是( ) (A )6cm; (B)8cm; (C)2cm; (D)8cm 或2cm6.异面直线a 、b 互相垂直,它们与平面β都相交,若α与β所成角为38°,则b 与β所成角大小()(A)一定是52°;(B)最大是52°;(C)最小是52°;(D)可以是0°90°中的任意角度(二)填空题7.直线与平面所成的角α的取值范围.8.若P是△ABC所在平面外一点,且PA、PB、PC两两垂直,则P在△ABC内的射影是△ABC的.9.直线EF平行于平面α内的两直线AB、CD,EF与α的距离为15,与AB的距离是17,又AB与CD间的距离是28,则EF和CD的距离是.10.如图,在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O是底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是.(第10题)(三)解答题11.如图,已知AB和CD是异面直线,AB⊥平面α于B,CD⊥平面β于D,且AC是AB 和CD的公垂线,α β=l.求证:AC∥l12.PA⊥矩形ABCD所在平面,M、N分别是AB和PC的中点. (1)求证:MN∥平面PAD.(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.(第11题) (第13题)13.如图,正方体,ABCD-A1B1C1D1的棱长为1,O、O1分别是ABCD与A1B1C1D1的中心;(1)求证:OD1∥平面A1C1B1.(2)求D1O与平面A1C1B的距离;(3)求BD 与平面A 1C 1B 所成角.答案与提示同步题库A 组(一)选择题1.B2.D3.D4.A5.B6.B7.C8.B9.D 10.A (二)填空题 1.异面成平行2.1; 无数; 无数;13.a; a; a a a 22;22;22. 4.α2212tg a+; 5.≤; 6.60° 7.a 338. 平行或相交 9.S 5410.21cm; 11cm (三)解答题 1.(略) 2.(略) 3.(略)4.(1)CD=22b a +; (2)2234ba b +5.(1)不垂直,(2)BB 1与侧面AC 1的距离即为BC 长即BC=1.B 组(一)选择题 1.A 2.D 3.C 4.D 5.B 6.A 7.A 8.C(二)填空题1. 90°; 90°; AB;43cm; 23cm; 2cm.2.310cm; 35cm 3.42 4.∠ABD>90°(或∠ACD=90°) 5.m≥33。

高一 立体几何知识点+例题+练习 含答案

高一 立体几何知识点+例题+练习 含答案

1.空间几何体的结构特征 (1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. (2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. 2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1. (3)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × ) (4)圆柱的侧面展开图是矩形.( √ )(5)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是________.①相等的角在直观图中仍然相等; ②相等的线段在直观图中仍然相等; ③正方形的直观图是正方形;④若两条线段平行,则在直观图中对应的两条线段仍然平行. 答案 ④解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.故④正确. 2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________ cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).3.(2014·陕西改编)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是________. 答案 2π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.4.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为________. 答案212a 3解析 O 是AC 的中点,连结DO ,BO ,△ADC ,△ABC 都是等腰直角三角形.因为DO =BO =AC 2=22a ,BD =a ,所以△BDO 也是等腰直角三角形.又因为DO ⊥AC ,DO ⊥BO ,AC ∩BO =O ,所以DO ⊥平面ABC ,即DO 就是三棱锥D -ABC 的高.因为S △ABC =12a 2,所以三棱锥D -ABC 的体积为13×12a 2×22a =212a 3.5. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是__________________________________________.答案 ①解析平面图形的直观图为正方形,且其边长为1,对角线长为2,所以原平面图形为平行四边形,且位于x轴上的边长仍为1,位于y轴上的对角线长为2 2.题型一空间几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是________.(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)0(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二 空间几何体的直观图例2 已知△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,求△ABC 的面积.解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,边A ′B ′在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.引申探究1.若本例改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”,应如何求?解 由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a , 故其面积S △A ′B ′C ′=12a ×68a =616a 2.2.本例中的直观图若改为如图所示的直角梯形,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原图形的面积为________. 答案 2+22解析 如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB =1,∠ABE =45°, ∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1.∴BC =BE +EC =22+1. 由此可还原原图形如图②,是一个直角梯形.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴原图形的面积为S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连结而画出.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. ①正方形; ②矩形;③菱形; ④一般的平行四边形. 答案 ③解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm. ∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,∴四边形OABC 是菱形.题型三 求空间几何体的表面积例3 (1)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 由题意知该六棱锥为正六棱锥,∴设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积. 解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,又由题意知A ′E ⊥AB ,A ′F ⊥AC , 得Rt △A ′AE ≌Rt △A ′AF , ∴A ′E =A ′F ,∴DE =DF , ∴AD 平分∠BAC ,又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′, 而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2.思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积.解 (1)设O 1、O 分别为正三棱台ABC —A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32,因O 1D 1=36×3=32,OD =36×6=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3(cm). 故三棱台斜高为 3 cm.(2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732 (cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732 cm 2,表面积为9934cm 2.题型四 求空间几何体的体积例4 (2015·山东改编)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________. 答案42π3解析 如图,设等腰直角三角形为△ABC ,∠C =90°,AC =CB =2,则AB =2 2.设D 为AB 中点,则BD =AD =CD = 2.∴所围成的几何体为两个圆锥的组合体,其体积V =2×13×π×(2)2×2=42π3.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(2014·课标全国Ⅱ改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 在正△ABC 中,D 为BC 的中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , AD ⊥BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴V 三棱锥A -B 1DC 1=13S △DB 1C 1·AD =13×3×3=1.题型五 与球有关的切、接问题例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________. 答案132解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52, OM =12AA 1=6, 所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π, V 内切球=43πr 3=43π×23=32π3. 2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为 (32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案 2 解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径), ∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.15.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案96温馨提醒(1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练(时间:45分钟)1.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.答案 ①2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数为________.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为________________________________________________________________________. 答案 100π解析 依题意,设球半径为R ,满足R 2=32+42=25,∴S 球=4πR 2=100π.4.(2015·课标全国Ⅰ改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.答案 22解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 5.如图,在三棱柱ABC —A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.答案 2 解析 因为AA 1⊥平面AB 1C 1,AB 1⊂平面AB 1C 1,所以AA 1⊥AB 1,又知AA 1=1,A 1B 1=2,所以AB 1=22-12=3,同理可得AC 1=3,又知在△AB 1C 1中,B 1C 1=2,所以△AB 1C 1的B 1C 1上的高为h =3-1=2,其面积S △AB 1C 1=12×2×2=2,于是三棱锥A —A 1B 1C 1的体积V 三棱锥A —A 1B 1C 1=V 三棱锥A 1—AB 1C 1=13×S △AB 1C 1×AA 1=23,进而可得此三棱柱ABC —A 1B 1C 1的体积V =3V 三棱锥A —A 1B 1C 1=3×23= 2. 6.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 7.(2015·课标全国Ⅱ改编)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为________.答案 144π解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.8.(2015·盐城一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3. 又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3,则其体积比为932. 9.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和 30 cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.10.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.解 方法一 连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.∵平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高.∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a . ∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF=13·S △C 1EF ·(h 1+h 2)=16a 3. B 组 专项能力提升(时间:30分钟)11.已知某圆锥体的底面半径r =3,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是________.答案 36π解析 由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为2πr =6π,从而其母线长为l =6π2π3=9,从而圆锥体的表面积为S 侧+S 底=12×9×6π+9π=36π. 12.三棱锥P —ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D —ABE 的体积为V 1,P —ABC的体积为V 2,则V 1V 2=________. 答案 14解析 V 1=V D —ABE =V E —ABD =12V E —ABP =12V A —BEP =12×12V A —BCP =12×12V P —ABC =14V 2. 13.已知圆台的母线长为4 cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是________cm 2.答案 24π解析 如图是将圆台还原为圆锥后的轴截面,由题意知AC =4 cm ,∠ASO =30°,O 1C =12OA ,设O 1C =r , 则OA =2r ,又O 1C SC =OA SA=sin 30°,∴SC =2r ,SA =4r , ∴AC =SA -SC =2r =4 cm ,∴r =2 cm.∴圆台的侧面积为S =π(r +2r )×4=24π cm 2.14.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt △AEC中,可得EG=32x. 由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.15.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.解 (1)如图,连结OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33. ∴S =4πr 2=43π. (2)∵△ABC 中,∠ACB =90°,∠ABC =30°,BC =3, ∴AC =1.∴V =V 圆锥-V 球=13π×AC 2×BC -43πr 3 =13π×1×3-43π×39=5327π.。

名师辅导 立体几何 第1课 平面的概念与性质(含答案解析)

名师辅导 立体几何 第1课  平面的概念与性质(含答案解析)

名师辅导立体几何第1课平面的概念与性质(含答案解析)●考试目标主词填空1.平面(1)平面是理想的、绝对的平且无限延展的.(2)平面是由它内部的所有点组成的点集,其中每个点都是它的元素.2.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且这些公共点的集合是一条过这个公共点的直线.(3)公理3:经过不在同一直线上的三点,有且只有一个平面.推论1 经过一条直线和这条直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.●题型示例点津归纳【例1】在空间内,可以确定一个平面的条件是 ( )A.两两相交的三条直线B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点E. 两条直线【解前点津】 A中的两两相交的三条直线,它们可能相交于同一点,也可能不交于同一点;若交于同一点,则三直线不一定在同一个平面内.∴应排除A.B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,三条直线是不能确定一个平面的.∴应排除B.对于C来说,三个点的位置可能不在同一直线上,也可能在同一直线上,只有前者才能确定一个平面,后者是不能的.∴应排除C.条件E中的两条直线可能共面,也可能不共面.∴应排除E.只有条件D中的三条直线,它们两两相交且不交于同一点,可确定一个平面.【规范解答】 D.【解后归纳】平面的基本性质(三个公理及公理3的三个推论)是研究空间图形性质的理论基础,必须认真理解,熟练地掌握本题主要利用公理3及其推论来解答的.【例2】把下列用文字语言叙述的语句,用集合符号表示,并画直观图表示.(1)点A在平面α内,点B不在平面α内,点A、B都在直线l上;(2)平面α与平面β相交于直线l,直线a在平面α内且平行于直线l.【解前点津】注重数学语言(文字语言、符号语言、图形语言)间的相互转化训练,有利于提高分析问题、解决问题的能力.正确使用⊂、⊄、∈、∉、⋂等符号表示空间基本元素之间的位置关系是解决本题的关键.【规范解答】 (1)A ∈α,B ∉α,A ∈l ,B ∈l ,如图(1);(2)α∩β=l ,a ⊂α,a ∥l ,如图(2).例2题解图【例3】 如图,已知:l 不属于α,A 、B 、C …∈l ,AA 1⊥α,BB 1⊥α,CC 1⊥α.求证:AA 1、BB 1、CC 1…共面.【解前点津】 证明n 条直线共面,首先,选择适当的条件,确定一个平面,然后分别证明直线都在此平面内.【规范解答】 证法一 ∵AA 1⊥α,CC 1⊥α,∴AA 1∥CC 1.∴AA 1与CC 1确定平面β,且β⊥α.∵AC ⊂β,即l ⊂β,而B ∈l,∴B ∈β,又知BB 1⊥α,∴BB 1⊂β.∴AA 1、BB 1、CC 1…共面.证法二 反证法由证法1得β⊥α于A 1C 1,假设BB 1不属于β,在β内作BB ′⊥A 1C 1(如图).∴BB ′⊥α,已知BB 1⊥α,与过一点引面的垂线,有且只有一条矛盾.∴BB 1不属于β是不可能的,∴BB 1⊂β,∴AA 1、BB 1、CC 1…共面.【解后归纳】 证明共面的一般方法有直接法和间接法两种.【例4】 设平行四边形ABCD 的各边和对角线所在的直线与平面α依次相交于A 1,B 1,C 1,D 1,E 1,F 1六点,求证:A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【规范解答】 设平行四边形ABCD 所在平面为α,∵A ∈β,B ∈β,∴AB ⊂β,又A 1∈AB,∴A 1∈β,又A 1∈α∴A 1在平面α与平面β的交线上,设交线为l ,则A 1∈l ,同理可证B 1,C 1,D 1,E 1,F 1都在直线l 上,∴A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【解后归纳】 证明点共线通常证明这些点都在两平面的交线 上,或先由某两点作一条直线再证明其他点也在这条直线上,选此题的意图,就是使学生掌握证点共线的一般方法.●对应训练 分阶提升一、基础夯实1.α、β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面的个数为 ( ).32 C 例3题图例4题图2.下列说法正确的是 ( )A.如果两个平面α、β有一条公共直线a ,就说平面α、β相交,并记作α∩β=aB.两平面α、β有一公共点A ,就说α、β相交于过A 的任意一条直线C.两平面α、β有一个公共点,就说α、β相交于A 点,并记作α∩β=AD.两平面ABC 与DBC 交于线段BC3.下列命题正确的是 ( )A.一点和一条直线确定一个平面B.两条直线确定一个平面C.相交于同一点的三条直线一定在同一平面内D.两两相交的三条直线不一定在同一个平面内4.设α、β是不重合的两个平面,α∩β=a ,下面四个命题:①如果点P ∈α,且P∈β,那么P ∈a ;②如果点A ∈α,点B ∈β,那么AB α;③如果点A ∈α,那么点B ∈β;④如果线段AB α,且AB β,那么AB a .其中正确命题的个数是 ( ).1 C5.空间四点A 、B 、C 、D 共面但不共线,那么这四点中 ( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线6.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长为1的等腰梯形,则这个平面图形的面积是 ( ) A.221+ B. 222+ C.21+ D.22+ 7.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原三角形ABC 的面积为 ( )A.223aB. 243aC. 223a D.26a 8.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的什么条件 ( )A.充分不必要B.必要不充分C.充要D.不充分不必要二、思维激活9.如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有 个.10.不重合的三个平面把空间分成n 个部分,则n 的可能值为 .11.四条线段首尾相连,它们最多确定平面的个数是 .12.与空间不共面四点距离相等的平面为 个.13.四边形ABCD 中,AB =BC =CD =DA =BD =1,则成为空间四面体时,AC 的取值范围是 .三、能力提高14.如图,已知l 1∥l 2∥l 3,l ∩l 1=A,l ∩l 2=B,l ∩l 3=C .求证:l 1、l 2、l 3、l 共面.第14题图15.四个点不共面,证明它们中任何三点都不在同一条直线上.它的逆命题正确吗 已知:A 、B 、C 、D 是不共面四点.求证:它们中任何三点都不共线.16.已知△ABC 的三个顶点都不在平面α上,它的三边AB 、AC 、BC 的延长线交平面α于P 、R 、Q 三点.求证:P 、R 、Q 三点共线.17.已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF .求证:直线EF 、GH 、AC 交于一点.18.已知直线a,b,c ,其中b,c 为异面直线,试就a 与b,c 的不同位置关系,讨论可以确定平面的情况.第1课 平面的概念与性质习题解答C 24C 13+C 23C 13+2=32. 排除法.有三个交点或只有一个交点.②③错在条件不充分.分有三点共线和只有两点共线两类.第17题图根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1.容易求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形.再由“竖取半”知,直腰长为2,∴S=2211++·2=2+2. 按斜二测画法还原.充分性根据公理2进行判断,必要性用反证法得到证明.公共点最多1个,否则直线在平面内,得知直线上所有的点在平面内.,6,7,8.个 可确定C 24-2=4个.个 这四点构成一个四面体,当平面平行于四个面中某一个面时有四个;当平面平行于三对异面直线时有三个.13.(0,3) AC>0,ABCD 为菱形时AC =3.14.由l 1∥l 2,知l 1与l 2确定一个平面α,同理l 2、l 3确定一个平面β,由A ∈l 1,l 1α,知A ∈α,同理B ∈α,又A 、B ∈l ,故l α,同理l β.由上知l ∩l 2=B,且l 、l 2α,l 、l 2β,因两相交直线l 、l 2确定一个平面,故α与β重合,所以l 1、l 2、l 3、l 共面.15.证明:假设其中有三点共线,如A 、B 、C 在同一直线a 上,点D ∉a .∴点D 和a 可确定一平面α,∴A 、B 、C 、D ∈α.与A 、B 、C 、D 不共面矛盾.逆命题是:如果四点中任何三点都不共线,那么这四点不共面.逆命题不正确.16.如图,∵AP ∩AR =A ,∴AP 与AR 确定平面APR又P 、R ∈α,∴α∩平面APR =PR .又B ∈平面APR ,C ∈平面APR ,∴BC 平面APR ,即Q ∈平面APR .又Q ∈α,∴Q ∈α∩平面APR =PR .∴P 、Q 、R 三点共线.点评:欲证三点共线,可以证明某点在经过其余两点的直线上即可.17.∵E 、H 分别是AB 、AD 的中点,∴EH ∥BD ,EH =21BD , ∵F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF , ∴EH ∥FG ,EH ≠FG ,∴四边形EFGH 为梯形,则EF 与GH 必相交,设交点为P .∵EF 平面ABC ,∴P ∈平面ABC .又P ∈平面DAC ,平面BAC ∩平面DAC =AC .故P ∈AC ,即EF 、GH 、AC 交于一点P .18.(1)若a 与b,c 都相交,a 与b ,a 与c 都能确定平面,故可确定两个平面.(2)若a 与b ,c 之一相交,不妨设a 与b 相交.①a ∥c ,a 与b ,a 与c 都可确定平面故可确定两个平面.②a 与c 不平行,只a 与b 确定平面,故可确定一个平面.(3)若a 与b ,c 都不相交. 第16题图解①若a与b,c之一平行,不妨设a与b平行,只a与b可确定平面,故确定一个平面.②若a与b,c都不平行,又因为都不相交,故不能确定平面.点评:此题应用启发、引导、归纳法讲解,这样才能达到使学生建立空间概念,加强严密的逻辑思维,并达到复习,巩固“分类讨论”的思想方法.本资料来源于《七彩教育网》。

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何一
一、选择题
1.设a,b是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( )
A.若α⊥β,α⊥γ,则β⊥γ
B.若a,b与α所成的角相等,则a∥b
C.若a⊥α,a∥β,则α⊥β
D.若a∥b,a⊂α,则b∥α
2.已知两个平面垂直,下列命题中:
①一个平面内已知直线必垂直于另一个平面内的任意一条直线;
②一个平面内已知直线必垂直于另一个平面内的无数条直线;
③一个平面内的任意一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题的个数有( )
A.1 B.2 C.3 D.4
3.如图所示,观察四个几何体,其中判断正确的是( )
A.①是棱台 B.②是圆台 C.③是棱锥 D.④不是棱柱
4.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
A. B. C. D.
5.多面体MN﹣ABCD的底面ABCD为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长( )
A.B.C.D.
6.棱长都是1的三棱锥的表面积为( )
A.B.C.D.
7.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )
A.7πB.14π C. D.
8在四面体ABCD中,已知棱AC的长为,其余各棱长都为1,则二面角A﹣BD﹣C的余弦值为( ) A.﹣B.﹣C.﹣D.﹣
二、填空题
11.一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的
____ 倍.
12.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且
的值为.
13.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积V= .
14.已知矩形ABCD顶点都在半径为R的球O的表面上,且,棱锥O﹣ABCD的体积为,则R= .
三、解答题
15.如图,在四棱锥P ABCD -中,底面是边长为23的菱形,120BAD ∠=
且PA ABCD ⊥面,26PA =,,M N 分别为,PB PD 的中点.
(1)证明://MN ABCD 面
(2)设Q 为PC 的中点 ,求三棱锥M ANQ -的体积. M
N
A
D B P
C Q
16.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,
点E 在棱AB 上移动.
(1)证明:D 1E ⊥A 1D ;
(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;
17.长方体ABCD ﹣A 1B 1C 1D 1中,
,AB=BC=2,O 是底面对角线的交点.
(Ⅰ)求证:B 1D 1∥平面BC 1D ;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1﹣DBC1的体积.
18.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC 和A1C的中点.
(Ⅰ)求证:EF∥平面A1B1BA;
(Ⅱ)求证:平面AEA1⊥平面BCB1;
(Ⅲ)求直线A1B1与平面BCB1所成角的大小.
试卷答案
1.C
2.B
3.C
4.C
5.C
6.A
7.B
8.B
9.2
10. 11. 12.3
解: 13.
(2)因为高6h =,113363884MNQ ABCD S S ∆==⋅= 324
V = 14.(1)证一:A D 1是E D 1在平面1AD 上的射影,由三垂线定理,11AD D A ⊥,所以D 1E ⊥D A 1;
证二:建立如图的坐标系,则 ()1,0,11=DA ,设)0,,1(t E ,
则 ()1,,11-=t E D ,01111=-=⋅E D DA ,所以D 1E ⊥D A 1;
(2)此时,)0,1,1(E ,()1,1,11-=E D ,设平面ACD 1的法向量是()y x n ,,1=, ()1,0,11-=AD ,()0,2,1-=AC ,由0,01=⋅=⋅AC N AD n ,得⎪⎭

⎝⎛=1,21,1n 取()2,1,2=n ,31|||
|1=⋅=n E D n d ,求点E 到面ACD 1的距离是3
1. 15.【解答】解:(Ⅰ) 证明:依题意:B 1D 1∥BD,且B 1D 1在平面BC 1D 外.(2分) ∴B 1D 1∥平面BC 1D (3分)
(Ⅱ) 证明:连接OC 1
∵BD⊥AC,AA 1⊥BD
∴BD⊥平面ACC 1A 1(4分)
又∵O 在AC 上,∴A 1O 在平面ACC 1A 1上
∴A1O⊥BD(5分)
∵AB=BC=2∴

∴Rt△AA1O中,(6分)
同理:OC1=2
∵△A1OC1中,A1O2+OC12=A1C12
∴A1O⊥OC1(7分)
∴A1O⊥平面BC1D(8分)
(Ⅲ)解:∵A1O⊥平面BC1D
∴所求体积(10分)
=(12分)
16.【解答】(Ⅰ)证明:连接A1B,在△A1BC中,
∵E和F分别是BC和A1C的中点,∴EF∥A1B,
又∵A1B⊂平面A1B1BA,EF⊄平面A1B1BA,
∴EF∥平面A1B1BA;
(Ⅱ)证明:∵AB=AC,E为BC中点,∴AE⊥BC,
∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC,
∴BB1⊥AE,又∵BC∩BB1=B,∴AE⊥平面BCB1,
又∵AE⊂平面AEA1,∴平面AEA1⊥平面BCB1;
(Ⅲ)取BB1中点M和B1C中点N,连接A1M,A1N,NE,
∵N和E分别为B1C和BC的中点,∴NE平行且等于B1B,∴NE平行且等于A1A,∴四边形A1AEN是平行四边形,
∴A1N平行且等于AE,
又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,
∴∠A1B1N即为直线A1B1与平面BCB1所成角,
在△ABC中,可得AE=2,∴A1N=AE=2,
∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB,
又由AB⊥BB1,∴A1M⊥BB1,
在RT△A1MB1中,A1B1==4,
在RT△A1NB1中,sin∠A1B1N==,
∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°。

相关文档
最新文档