2019-2020学年度最新高二数学上学期期末考试试题 理(普通班,含解析)
2019-2020学年高二上学期期末考试数学试卷(理科)(解析版)

2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知命题p:,,命题q:,,则A. 命题是假命题B. 命题是真命题C. 命题¬是真命题D. 命题¬是假命题【答案】C【解析】解:当时,成立,故命题p为真命题;当时,,故命题q为假命题,故命题是真命题,故A错误;命题是假命题,故B错误;命题¬是真命题,故C正确;命题¬是真命题,故D错误;故选:C.举出正例可知命题p为真命题;举出反例可知命题q为假命题,进而根据复合命题真假判断的真值表得到结论.本题以命题的真假判断与应用为载体,考查了复合命题,全称命题,特称命题,难度基础.2.在中,,,,则边c等于A. B. C. D.【答案】D【解析】解:,,,,则,即得,故选:D.根据三角形的内角和,求出C的大小,结合正弦定理进行求解即可.本题主要考查解三角形的应用,利用正弦定理是解决本题的关键比较基础.3.若实数x,y满足,则的最小值为A. 2B. 1C. 0D.【答案】D【解析】解:画出实数x,y满足表示的平面区域,如图所示;平移目标函数知,当目标函数过点A时,z取得最小值,由,解得,的最小值为.故选:D.画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z的最小值.本题考查了简单的线性规划问题,是基本知识的考查.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A. 1盏B. 3盏C. 5盏D. 9盏【答案】B【解析】解:设塔的顶层共有盏灯,则数列公比为2的等比数列,,解得.故选:B.设塔的顶层共有盏灯,则数列公比为2的等比数列,利用等比数列前n项和公式能求出结果.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知实数a,,a,b的等差中项为,设,则的最小值为A. 3B. 4C. 5D. 6【答案】C【解析】解:,,a,b的等差中项是,又当且仅当时,等号成立,取得最小值5故选:C.先由等差中项求得,又,再构造基本不等式求解.本题主要通过数列知识来考查基本不等式求最值,属于基础题.6.已知四棱锥的底面是正方形,且底面ABCD,,则异面直线PB与AC所成的角为A.B.C.D.【答案】B【解析】解:建立以点A为空间直角坐标系原点,AB,AD,AP所在直线分别为x,y,z轴的坐标系,设,则0,,1,,0,,0,,则1,,0,,设,,夹角为,则,所以,即异面直线PB与AC所成的角为,故选:B.由异面直线所成角及空间向量的坐标运算得:建立以点A为空间直角坐标系原点,AB,AD,AP所在直线分别为x,y,z轴的坐标系,设,则0,,1,,0,,0,,则1,,0,,设,,夹角为,则,即,即异面直线PB与AC所成的角为,得解.本题考查了异面直线所成角及空间向量的坐标运算,属中档题.7.若不等式对一切实数x都成立,则实数a的取值范围为A. 或B. 或C.D.【答案】C【解析】解:不等式对一切实数x都成立,则,即,解得,所以实数a的取值范围是.故选:C.根据题意得出,由此列出不等式组求出a的取值范围.本题考查了利用判别式求不等式恒成立问题,是基础题.8.过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则A. B. 1 C. 3 D. 4【答案】C【解析】解:由题意可知过焦点的倾斜角为直线方程为,与抛物线方程联立,得,消去y可得:,,,解得:.故选:C.写出过焦点的倾斜角为直线方程,与抛物线方程联立,消去y得关于x的一元二次方程,由根与系数的关系和抛物线的定义写出的值,列方程求得p的值.本题主要考查了抛物线的定义与性质的应用问题,是中档题.9.如图,已知顶角A为的三角形ABC满足,点D,E分别在线段AB和AC上,且满足,当的面积取得最大值时,DE的最小值为A. 1B.C.D.【答案】B【解析】解:的面积.当且仅当时取等号,此时三角形ABC为等边三角形,设,则,当时,取得最小值,故DE的最小值为,故选:B.易得且仅当时取等号,此时三角形ABC为等边三角形,设,则,,故DE的最小值为,本题考查了三角形面积的最值,函数思想,属于中档题.二、填空题(本大题共4小题,共20.0分)10.已知不等式的解集为,则______.【答案】3【解析】解:不等式的解集为,和b为的解,将代入方程得:,即,方程化为,将代入方程得:,解得:不合题意,舍去或,则.故答案为:3由不等式的解集,得到方程的解为1和b,将与代入求出a 与b的值,即可求出的值.此题考查了一元二次不等式的解法,根据题意得出方程的解为1和b 是解本题的关键.11.设等差数列的前n项和为,若,,则______.【答案】45【解析】解:,,所以,则.故答案为:45由减得到的值,然后利用等差数列的性质找出的和与的和即与的关系,由的值即可求出等差d的值,然后再利用等差数列的性质找出与d和的关系,把d和的值代入即可求出值.此题考查学生灵活运用等差数列的性质化简求值,是一道中档题.12.一艘轮船从港口A处出发,以15海里小时的速度沿着北偏西的方向直线航行,在港口A处测得灯塔M在北偏东方向,航行40分钟后,轮船与灯塔的距离是海里,则灯塔M与港口A的距离为______海里.【答案】5【解析】解:设轮船航行40分钟后到达B点,由题意可知海里,海里,,由正弦定理可得:,即,解得,,海里.故答案为:5.利用正弦定理计算得出是直角三角形,再计算AM即可.本题考查了解三角形的应用,属于基础题.13.如图,双曲线C:上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足,,则双曲线的离心率e的值为______.【答案】【解析】解:,可得,在中,,,在直角三角形ABF中,,可得,,取左焦点,连接,,可得四边形为矩形,,.故答案为:运用三角函数的定义可得,,取左焦点,连接,,可得四边形为矩形,由双曲线的定义和矩形的性质,可得,由离心率公式,即可得到所求值.本题考查双曲线的离心率的求法,注意运用双曲线的定义和锐角三角函数的定义,考查化简整理的运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)14.已知命题p:实数x满足,命题q:实数x满足.Ⅰ当且为真命题时,求实数x的取值范围;Ⅱ若p是q的必要不充分条件,求实数m的取值范围.【答案】解:Ⅰ当时,由得得,由得,若为真命题时,则p,q同时为真命题即,得,即实数x的取值范围是Ⅱ由,得,若p是q的必要不充分条件,则,则,即,即实数m的取值范围是.【解析】Ⅰ当时,求出p,q为真命题的等价条件,结合为真命题时,则p,q同时为真命题进行求解即可Ⅱ利用充分条件和必要条件转化为对应集合关系进行求解即可本题主要考查充分条件和必要条件的应用以及复合命题真假关系的应用,根据条件转化为集合关系是解决本题的关键.15.在中,角A,B,C的对边分别为a,b,c,已知,.Ⅰ若的面积为,求a,b的值;Ⅱ若,求的面积.【答案】本题满分为12分解:Ⅰ,,由余弦定理,可得:,的面积为,解得:,由可得:,分Ⅱ,,又由余弦定理,可得:,解得:,,,分【解析】Ⅰ由余弦定理可得,利用三角形的面积公式可得,联立即可得解a,b的值.Ⅱ利用正弦定理可求,又由余弦定理可得,解得a,b的值,根据三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.16.设是公比为正数的等比数列,.Ⅰ求的通项公式;Ⅱ设,求证:数列的前n项和.【答案】解:Ⅰ设是公比为q的等比数列,,,,可得,解得,则,;Ⅱ证明:,则,可得前n项和,由,可得.【解析】Ⅰ设是公比为q的等比数列,,运用等比数列的通项公式,解方程可得公比q,即可得到所求通项;Ⅱ求得,再由数列的裂项相消求和,结合不等式的性质即可得证.本题考查等比数列的通项公式的运用,考查数列的裂项相消求和,考查化简整理的运算能力,属于基础题.17.某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为万元,经销甲,乙两种商品所获得的收益分别为万元与万元,其中,,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.Ⅰ求实数a的值;Ⅱ若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.【答案】解:Ⅰ:依题意可得,解得,Ⅱ设投入B商品的资金为x万元,则投入A商品的资金为万元,设收入为万元,当时,,,则,当且仅当,解得时,取等号.当时,则,此时.,最大收益为17万元,答:投入甲商品的资金为8万元,投入乙商品的资金为2万元,此时收益最大,为17万元.【解析】根据条件,表示为分段函数形式,利用基本不等式或者一元二次函数的最值,进行求解即可本题主要考查函数的应用问题,利用分段函数,分别求解,利用基本不等式和一元二次函数的最值是解决本题的关键.18.如图,平面平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,、,,.Ⅰ求证:平面ABF;Ⅱ求二面角的正弦值.【答案】证明:Ⅰ平面平面ADEF,其中四边形ABCD为矩形,,平面ADEF,,四边形ADEF为梯形,、,,平面ABF.解:Ⅱ以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系.平面ABF的法向量1,,,,0,,0,,,0,,,设平面BDF的法向量y,,则,取,得,设二面角的平面角为,则,,二面角的正弦值.【解析】Ⅰ推导出,平面ADEF,从而,由此能证明.Ⅱ以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系利用向量法能求出二面角的正弦值.本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.已知椭圆:的一个焦点与抛物线:的焦点重合,且椭圆的离心率为.Ⅰ求的方程;Ⅱ过点的动直线l与椭圆相交于A,B两点,O为原点,求面积的最大值.【答案】解:Ⅰ抛物线:的焦点坐标为,则,又,,,故椭圆的方程为;易知直线l的斜率k存在,设其方程为.设,则由消去y得:,由,得.则,.则又原点到直线l的距离为,且,所以设,则,当且仅当,即,即时等号成立,所以面积取得最大值.【解析】Ⅰ抛物线:的焦点坐标为,则,再根据离心率求出a,即可求出b,可得椭圆的方程Ⅱ易知直线l的斜率k存在,设其方程为,设,根据韦达定理和弦长公式,原点到直线l的距离可求d从而可求,利用换元法根据基本不等式即可求出面积的最大值.本题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.。
2019-2020学年高二上学期期末考试数学试卷(理科)含解答解析

2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 在一次数学测试中,成绩在区间上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,q是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为A. ¬¬B. ¬C. ¬¬D.【答案】A【解析】解:由题意值¬是“甲测试成绩不优秀”,¬是“乙测试成绩不优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”,则用¬¬表示,故选:A.求出¬,¬,结合或且非的意义进行求解即可.本题主要考查逻辑连接词的应用,结合复合命题之间的关系是解决本题的关键.2. 抛物线的焦点坐标是A. B. C. D.【答案】C【解析】解:在抛物线--,即,,,焦点坐标是,故选:C.先把抛物线的方程化为标准形式,再求出抛物线的焦点坐标.本题考查抛物线的标准方程和简单性质的应用,比较基础.3. 的一个必要不充分条件是A. B. C. D.【答案】D【解析】解:的充要条件为对于A是的充要条件对于B,是的充分不必要条件对于C,的不充分不必要条件对于D,是的一个必要不充分条件故选:D.通过解二次不等式求出的充要条件,通过对四个选项的范围与充要条件的范围间的包含关系的判断,得到的一个必要不充分条件.解决一个命题是另一个命题的什么条件,应该先化简各个命题,再进行判断,判断时常有的方法有:定义法、集合法.4. 已知双曲线C:的离心率为,则C的渐近线方程为A. B. C. D.【答案】D【解析】解:由题意可得,即为,由,可得,即,双曲线的渐近线方程为,即为.故选:D.运用双曲线的离心率公式可得,由a,b,c的关系和双曲线的渐近线方程,计算即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和双曲线的方程,考查运算能力,属于基础题.5. 四面体OABC中,M,N分别是OA,BC的中点,P是MN的三等分点靠近,若,,,则A. B. C. D.【答案】B【解析】解:根据题意得,故选:B.运用平面向量基本定理可解决此问题.本题考查平面向量基本定理的简单应用.6. 点到直线的距离为d,则d的最大值为A. 3B. 4C. 5D. 7【答案】A【解析】解:直线即,令,解得,.可得直线经过定点.则当时,d取得最大值..故选:A.直线即,令,解得直线经过定点则当时,d取得最大值.本题考查了直线经过定点、相互垂直的直线,考查了推理能力与计算能力,属于基础题.7. 如图:在直棱柱中,,,P,Q,M分别是,BC,的中点,则直线PQ与AM所成的角是A.B.C.D.【答案】D【解析】解:以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系.设,则0,,2,,0,,1,.,..直线PQ与AM所成的角是.故选:D.以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系,设,分别求出与的坐标,利用空间向量求解.本题考查异面直线所成角的求法,训练了利用空间向量求解空间角,是基础题.8. 《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?答曰:四万六千五百尺”所谓堑堵:就是两底面为直角三角形的直棱柱:如图所示的几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B.C. 50D.【答案】B【解析】解:几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,取的中点N,连结MN,BN,,,三棱台的表面积为:梯形梯形梯形.故选:B.取的中点N,连结MN,BN,则三棱台的表面积为梯形梯形梯形.本题考查三棱台的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9. 直线l过椭圆的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若是以OF为底边的等腰三角形,则直线l的斜率为A. B. C. D.【答案】B【解析】解:由,得,,.则,则左焦点.由题意可知,直线l的斜率存在且不等于0,则直线l的方程为.设l与椭圆相交于、,联立,得:.则PQ的中点M的横坐标为.是以OF为底边的等腰三角形,,解得:.故选:B.由椭圆方程求得椭圆的焦点坐标,设出直线方程和椭圆方程联立,由根与系数关系结合中点坐标公式求出M的坐标,由,求得直线l的斜率.本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,是中档题.10. 已知抛物线的焦点为F,准线为l,直线m过点F,且与抛物线在第一、四象限分别交于A,B两点,过A点作l的垂线,垂足为,若,则A. B. C. D. P【答案】C【解析】解:抛物线的焦点为,准线为l:,当直线m的斜率不存在时,,不满足题意;当直线m的斜率存在时,设直线m的方程为,与抛物线联立,得,消去y整理得,,又,,,.故选:C.讨论直线m的斜率不存在时,不满足题意;直线m的斜率存在时,设直线m的方程为,与抛物线联立消去y得的值;利用求出的值,再求的值,从而求得的值.本题考查了直线与抛物线方程的应用问题,也考查了分类讨论思想应用问题,是中档题.11. 已知椭圆C的两个焦点分别是,,短轴的两个端点分别为M,N,左右顶点分别为,,若为等腰直角三角形,点T在椭圆C上,且斜率的取值范围是,那么斜率的取值范围是A. B. C. D.【答案】C【解析】解:设椭圆方程为.由为等腰直角三角形,且,得,解得,.则椭圆C的方程为.则,.设,则,得,,,,又,,解得:.斜率的取值范围是.故选:C.由已知求得椭圆方程,分别求出,的坐标,再由斜率之间的关系列式求解.本题考查椭圆的简单性质,考查运算求解能力及推理运算能力,是中档题.12. 如图:已知双曲线中,,为左右顶点,F为右焦点,B为虚轴的上端点,若在线段BF上不含端点存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率e的取值范围是A.B.C.D.【答案】A【解析】解:由题意,,,则直线BF的方程为,在线段BF上不含端点存在不同的两点,使得构成以线段为斜边的直角三角形,,,,在线段BF上不含端点有且仅有两个不同的点,使得,可得,,,.故选:A.求出直线BF的方程为,利用直线与圆的位置关系,结合,即可求出双曲线离心率e 的取值范围.本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.二、填空题(本大题共4小题,共20.0分)13. “”是假命题,则实数m的取值范围是______.【答案】【解析】解:命题“”是假命题,则命题的否定是:,”是真命题,则,解得:故答案为:.特称命题与其否定的真假性相反,求解全称命题是真命题,求出m的范围即可.本题考查命题的真假判断与应用,考查等价转化思想与运算求解能力,属于基础题.14. 已知,若三向量共面,则实数______.【答案】【解析】解:,不平行,三向量共面,存在实数x,y,使,,解得,,.故答案为:.推导出不平行,由三向量共面,得存在实数x,y,使,列方程组能求出.本题考查的知识点是共线向量与向量及平面向量基本定理等基础知识,考查运算求解能力,是基础题.15. 如图,的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,则CD的长为______.【答案】【解析】解:由条件,知,.所以所以.故答案为:.由已知可得,,利用数量积的性质即可得出.本题考查面面角,考查空间距离的计算,熟练掌握向量的运算和数量积运算是解题的关键.16. 椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆C,其长轴的长为2a,焦距为2c,若一条光线从椭圆的左焦点出发,第一次回到焦点所经过的路程为5c,则椭圆C的离心率为______.【答案】或或【解析】解:依据椭圆的光线性质,光线从左焦点出发后,有如图所示三种路径:图1中:,则;图2中:,则;图3中,,则.椭圆C的离心率为或或,故答案为:或或.由题意画出图形,分类求解得答案.本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共6小题,共70.0分)17. 已知命题p:方程表示双曲线;命题q:,若¬是¬的充分不必要条件,求实数k的取值范围.【答案】解:p真:得或,q真:,¬是¬的充分不必要条件,若¬是¬的充分不必要条件,则q是p的充分不必要条件,,则有或,或,即实数k的取值范围是或.【解析】求出命题p,q为真命题的等价条件,结合充分条件和必要条件的定义进行转化即可.本题主要考查充分条件和必要条件的应用,求出p,q为真命题的等价条件以及利用逆否命题的等价性进行转化是解决本题的关键.18. 在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求,的极坐标方程;Ⅱ若直线的极坐标方程为,设与的交点为M,N,求的面积.【答案】解:Ⅰ由于,,:的极坐标方程为,故C:的极坐标方程为:,化简可得.Ⅱ把直线的极坐标方程代入圆:,可得,求得,,,由于圆的半径为1,,的面积为.【解析】Ⅰ由条件根据,求得,的极坐标方程.Ⅱ把直线的极坐标方程代入,求得和的值,结合圆的半径可得,从而求得的面积的值.本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19. 如图:直三棱柱中,,,,D为棱上的一动点,M,N分别是,的重心,求证:;若点C在上的射影正好为M,求DN与面ABD所成角的正弦值.【答案】证明:有题意知,,,两两互相垂直,以为原点建立空间直角坐系如图所示,则0,,2,,0,,2,设0,,0,,N分别为和,的重心,,,.解:在上的射影为M,面ABD,,又,,得,解得得,或舍,,,设面ABD的法向量为y,,则,取,得1,,设DN与平面ABD所成角为则,与平面ABD所成角的正弦值为.【解析】由,,两两互相垂直,以为原点建立空间直角坐系,利用向量法能证明.求出面ABD的法向量,利用向量法能求出DN与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 设抛物线C:,点,过点P作直线l,若l与C只有一个公共点,求l的方程过C的焦点F,交C与A,B两点,求:弦长;以A,B为直径的圆的方程.【答案】解:若l的斜率不存在,则l:,符合题意;分若l的斜率存在,设斜率为k,则l:;分由,消去y得,由,解得或,直线l的方程为:或;分综上所述,直线l的方程为:或或;分抛物线的焦点为,直线l的方程为:;设,,由,消去x得,;又,;分以AB为直径的圆的半径为;设AB的中点为,则,,圆心为,所求圆的方程为;综上所述,,所求圆的方程为分.【解析】讨论l的斜率不存在和斜率存在时,分别求出直线l的方程即可;写出直线l的方程,与抛物线方程联立求得弦长,再求以AB为直径的圆的方程.本题考查了直线与圆以及抛物线方程的应用问题,是中档题.21. 如图,在等腰梯形CDEF中,CB,DA是梯形的高,,,现将梯形沿CB,DA折起,使且,得一简单组合体ABCDEF如图示,已知M,N分别为AF,BD 的中点.Ⅰ求证:平面BCF;Ⅱ若直线DE与平面ABFE所成角的正切值为,则求平面CDEF与平面ADE所成的锐二面角大小.【答案】证明:Ⅰ连AC,四边形ABCD是矩形,N为BD中点,为AC中点.在中,M为AF中点,故.平面BCF,平面BCF,平面BCF.Ⅱ依题意知,且平面ABFE,在面ABFE上的射影是AE.就是DE与平面ABFE所成的角.故在中:.设且,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,则设分别是平面ADE与平面CDFE的法向量令,即取则平面ADE与平面CDFE所成锐二面角的大小为.运用椭圆的性质,合理地进行等价转化.【解析】连结AC,通过证明,利用直线与平面平行的判定定理证明平面BCF.先由线面垂直的判定定理可证得平面ABFE,可知就是DE与平面ABFE所成的角,解,可得AD及DE的长,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,求出平面ADE与平面CDFE的法向量,代入向量夹角公式,可得答案.本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定与性质,直线与平面平行的判定,线面夹角,是立体几何知识的综合考查,难度较大.22. 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率.Ⅰ求椭圆E的方程;Ⅱ过点作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.【答案】解:Ⅰ,所求椭圆E的方程为:分Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,把代入整理得:,分假设存在定点,使得为定值当且仅当,即时,为定值这时分再验证当直线l的倾斜角时的情形,此时取,,存在定点使得对于经过点的任意一条直线l均有恒为定值.【解析】Ⅰ,由此能导出所求椭圆E的方程.Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,由,整理得:,,假设存在定点,使得为定值由此入手能够推导出存在定点,使得对于经过点的任意一条直线l均有恒为定值.本题考查椭圆方程的求法和点M的存在性质的判断解题时要认真审题,注意挖掘题设中的隐含条件,灵活。
2019-2020年高二上学期期末考试数学理试题 含答案

2019-2020年高二上学期期末考试数学理试题含答案一、选择题:共8题,每小题3分,共24分。
1.命题“若则”的逆命题是(A)若则(B)若则(C)若则(D)若则【答案】:A2. 已知向量,,则等于(A)(B)(C)(D)【答案】:D3.已知命题,使得:命题,下列命题为真的是(A)(B)(C)(D)【答案】:A4. 已知椭圆的左右焦点为,离心率为,过的直线交于两点,若的周长为,则的方程为(A)(B)(C)(D)【答案】:B5. 在长方体中,(A)(B)(C)(D)【答案】:D6. 已知双曲线2222:1(0,0)x yC a ba b-=>>的离心率为,则的渐近线方程为()。
A、 B、 C、 D、【答案】:C7. 给定两个命题、,若是的必要而不充分条件,则是的()。
A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件【答案】:A8. 已知为坐标原点,为抛物线的焦点,为上一点,若,则的面积为()。
A、 B、 C、 D、【答案】:C二、填空题:共6小题,每题4分,共24分。
9. 命题“”的否定是10. 方程表示焦点在轴上的椭圆,则的取值范围是【答案】:11已知)1,4,1(),4,2,2(),1,5,2(---C B A ,则向量与的夹角为_________.【答案】:12直三棱柱中,,M,N 分别是的中点,,则BM 与AN 所成角的余弦值为_________.【答案】:13已知双曲线的两条渐近线与抛物线的准线分别交于A,B 两点,O 为坐标原点,若双曲线的离心率为2,的面积为,则p 的值为_________.【答案】:214已知3221:,0)1)(1(:<<<--+-x q m x m x p ,若p 是q 的必要不充分条件,则实数m 的取值范围是________.【答案】:三、解答题:本大题共6小题,共52分。
15.(本小题满分8分)已知(1)若,求实数k 的值(2)若,求实数k 的值【答案】:(1)(2)【解析】:(1))16,4,7(3),5,35,2(--=--+-=+k k k k(2)16.(本小题满分8分)求经过点,焦点为的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程【答案】:x y e 55,530252±==,, 【解析】:焦点在轴上,且,,带入点即可解得方程为17. (本小题满分8分)已知:函数在内单调递增,函数大于零恒成立,若或为真,且为假,求的取值范围【答案】:【解析】:为真,则,为真则,和一真一假,真假,假真,算出来之后取并集可得答案18.(本小题满分8分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1.【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,∴CC 1⊥平面ABC ,AC ⊂平面ABC ,∴CC 1⊥AC∵AC=3,BC=4,AB=5,∴AB 2=AC 2+BC 2,∴AC ⊥CB又C 1C ∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,∴AC ⊥BC 1(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,∴E 为C 1B 的中点又D 为AB 中点,∴AC 1∥DEDE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC1∥平面CDB 119.(本小题满分10分)设A (x 1,y 1).B (x 2,y 2)两点在抛物线y=2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论;(2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.【答案】:(1)x 1+x 2=0 (2)(,+∞)【解析】(Ⅰ)∵抛物线y=2x 2,即,∴,∴焦点为F(1)直线l 的斜率不存在时,显然有x 1+x 2=0(2)直线l 的斜率存在时,设为k ,截距为b ,即直线l :y=kx+b 由已知得:即l 的斜率存在时,不可能经过焦点F (0,)所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F(II )解:设直线l 的方程为:y=2x+b ′,故有过AB 的直线的方程为,代入抛物线方程有,得由A 、B 是抛物线上不同的两点,于是上述方程的判别式,也就是:,由直线AB 的中点为=则,于是:329321165165=->+='m b 即得l 在y 轴上的截距的取值范围是(,+∞).20.(本小题满分10分)已知点A (0,﹣2),椭圆E :(a >b >0)的离心率为,F 是椭圆E 的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【答案】:(Ⅰ)椭圆E 的方程为;(Ⅱ)△OPQ 的面积最大时直线l 的方程为:.【解答】解:(Ⅰ)设F (c ,0),∵直线AF 的斜率为,∴,解得c=.又,b 2=a 2﹣c 2,解得a=2,b=1.∴椭圆E 的方程为;(Ⅱ)设P (x1,y1),Q (x2,y2).由题意可设直线l 的方程为:y=kx ﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时, ,.∴|PQ|= ==,点O 到直线l 的距离d=.∴S △OPQ==,设>0,则4k2=t2+3, ∴142444442=≤+=+=tt t t S OPQ △,当且仅当t=2,即,解得时取等号. 满足△>0,∴△OPQ 的面积最大时直线l 的方程为:.。
2019-2020学年高二上学期期末考试数学试题(理)(解析版)

2019-2020学年高二上学期期末考试数学试题(理)一、选择题(本大题共12小题,共60.0分)1.命题p:,,则¬为A. ,B. ,C. ,D. ,【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题p:,,则¬为:,.故选:B.利用特称命题的否定是全称命题,写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.已知a,,若,则A. B. C. D.【答案】D【解析】解:a,,若,对A,,若,则;,则;,则,故A错误;对B,若,则;若,则;若,则,故B错误;对C,a,,则,若a,b中有负的,则不成立,故C错误;对D,在R上递增,可得,故D正确.故选:D.讨论b的符号,即可判断A,B,C;运用在R上递增,即可判断D.本题考查两式的大小比较,考查作差法和函数的单调性的运用,考查运算能力,属于基础题.3.设等比数列的公比是q,则”是“数列是为递增数列的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:若,时,递减,数列单调递增不成立.若数列单调递增,当,时,满足递增,但不成立.“公比”是“数列单调递增”的既不充分也不必要条件.故选:D.根据等比数列递增的性质以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用等比数列的性质是解决本题的关键,比较基础.4.不等式的解集是A. B.C. D.【答案】A【解析】解:不等式等价于如图,把各个因式的根排列在数轴上,用穿根法求得它的解集为,故选:A.原不等式等价于把各个因式的根排列在数轴上,用穿根法求得它的解集.本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.5.在等差数列中,,则A. 3B. 6C. 9D. 12【答案】B【解析】解:在等差数列中,由,且,得,即,.故选:B.由已知结合等差数列的性质可得,则答案可求.本题考查等差数列的性质,是基础的计算题.6.某些首饰,如手镯,项链吊坠等都是椭圆形状,这种形状给人以美的享受,在数学中,我们把这种椭圆叫做“黄金椭圆”,其离心率设黄金椭圆的长半轴,短半轴,半焦距分别为a,b,c,则a,b,c满足的关系是A. B. C. D.【答案】B【解析】解:因为离心率的椭圆称为“黄金椭圆”,所以是方程的正跟,即有,可得,又,所以.即b是a,c的等比中项.故选:B.通过椭圆的离心率,构造离心率的方程,然后推出a、b、c的关系,即可得到选项.本题考查椭圆的简单性质的应用,构造法是解得本题的关键,考查计算能力.7.已知曲线的切线过原点,则此切线的斜率为A. eB.C.D.【答案】C【解析】解:设切点坐标为,,,切线的斜率是,切线的方程为,将代入可得,,切线的斜率是;故选:C.设切点坐标为,求函数的导数,可得切线的斜率,切线的方程,代入,求切点坐标,切线的斜率.本题主要考查导数的几何意义,利用切线斜率和导数之间的关系可以切点坐标.8.若函数有极大值和极小值,则实数a的取值范围是A. B.C. D.【答案】B【解析】解:,;又函数有极大值和极小值,;故或;故选:B.由题意求导;从而化函数有极大值和极小值为;从而求解.本题考查了导数的综合应用,属于中档题.9.已知平面内有一个点,的一个法向量为1,,则下列点P中,在平面内的是A. B. C. D.【解析】解:由题意可知符合条件的点P应满足,选项A,0,,,故不在平面内;同理可得:选项B,,,故在平面内;选项C,2,,,故不在平面内;选项D,,,故不在平面内;故选:B.由题意可知符合条件的点P应满足,逐个选项验证即可.本题考查平面法向量的定义,属基础题.10.设数列的前n项和为,且,为常数列,则A. B. C. D.【答案】B【解析】解:数列的前n项和为,且,,为常数列,由题意知,,当时,,从而,,当时上式成立,.故选:B.由题意知,,当时,,由此能求出.本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累乘法的合理运用.11.下列命题正确的是若,则与、共面;若,则M、P、A、B共面;若,则A、B、C、D共面;若,则P、A、B、C共面.A. 1B. 2C. 3D. 4【答案】C【解析】解:对于,若,则由平面向量基本定理知与、共面,正确;对于,若,则、、共面,所以M、P、A、B四点共面,对于,若,则,这里系数,A、B、C、D不共面,错误;对于,若,则,所以P、A、B、C共面,正确.综上所述,正确的命题序号是,共3个.故选:C.在中,由平面向量基本定理知与、共面;在中,由平面向量基本定理判断、、共面,M、P、A、B四点共面;在中,由题意得,不能判断A、B、C、D四点共面;在中,由,能判断P、A、B、C四点共面.本题考查了平面向量基本定理的应用问题,是基础题.12.已知函数,,对任意存在使,则的最小值为A. B. C. D.【答案】D【解析】解:令,则,令,可得,则,.显然,是增函数,观察可得当时,,故有唯一零点.故当时,取得最小值为,故选:D.令,则,令,可得,利用导数求得取得最小值.本题主要考查对数函数的图象和性质的综合应用,利用导数求函数的最小值,属于中档题此题中导数零点不易用常规方法解出,解答时要会用代入特值的方法进行验证求零点二、填空题(本大题共4小题,共20.0分)13.若变量x,y满足约束条件,则取得最大值时的最优解为______【答案】【解析】解:画出约束条件的可行域,如图:由得:,显然直线过时,z最大,所以最优解为:故答案为:.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最优解.本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.14.平面内,线段AB的长度为10,动点P满足,则的最小值为______.【答案】2【解析】解:平面内,线段AB的长度为10,动点P满足,即,则点P在以为焦点,实轴长为6的双曲线的右支上,,.因此的最小值为.故答案为:2.平面内,线段AB的长度为10,动点P满足,即,可得点P在以为焦点,实轴长为6的双曲线的右支上,即可得出答案.本题考查了双曲线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为,再由点C沿北偏东方向走10米到位置D,测得,则塔AB的高是______米【答案】【解析】解:设塔高为x米,根据题意可知在中,,,,从而有,在中,,,,由正弦定理可得,可得,则故答案为:设塔高为x米,根据题意可知在中,,,,从而有,在中,,,,,由正弦定理可求BC,从而可求x即塔高本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.16.记为正项等比数列的前n项和,若,则的最小值为______.【答案】8【解析】解:设正项等比数列的公比为,,,,可得:解得.则,当且仅当时取等号.的最小值为8.故答案为:8.设正项等比数列的公比为,由,可得,可得:解得可得,再利用基本不等式的性质即可得出.本题考查了等比数列的通项公式与求和公式、单调性、基本不等式的性质,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知数列为单调递增数列,,其前n项和为,且满足求数列的通项公式;若数列其前n项和为,若成立,求n的最小值.【答案】解:,可得时,,相减可得,即为,数列为单调递增数列,即,可得,为首项为1,公差为2的等差数列,可得;,可得前n项和为,即,解得,即n的最小值为10.【解析】由数列的递推式,结合等差数列的定义和通项公式,可得所求通项;求得,运用数列的裂项相消求和,化简计算可得所求和,解不等式可得所求最小值.本题考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列的定义和通项公式,考查数列的裂项相消求和,以及化简运算能力,属于中档题.18.已知的内角A,B,C的对边分别为a,b,c,且.求角C;若,求面积的最大值.【答案】解:,由正弦定理可得:.,..由余弦定理可得:,可得,当且仅当时取等号.面积的最大值.【解析】利用正弦定理与和差公式即可得出.利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.19.如图,在半径为30cm的半圆形铁皮上截取一块矩形材料点A,B在直径上,点C,D在半圆周上,并将其卷成一个以AD为母线的圆柱体罐子的侧面不计剪裁和拼接损耗.若要求圆柱体罐子的侧面积最大,应如何截取?若要求圆柱体罐子的体积最大,应如何截取?【答案】解:连接OC,设,则,其中,,当且仅当,即时,S取最大值900;取时,矩形ABCD的面积最大,最大值为.设圆柱底面半径为r,高为x,则,解得,,其中;,令,得;因此在上是增函数,在上是减函数;当时,取得最大值,取时,做出的圆柱形罐子体积最大,最大值为.【解析】设,求出AB,得出侧面积S关于x的函数,利用基本不等式得出S 的最大值;用x表示出圆柱的底面半径,得出体积关于x的函数,判断的单调性,得出的最大值.本题考查了圆柱的结构特征,圆柱的侧面积与体积计算,用不等式与函数单调性求函数最值,属于中档题.20.在中,点,,且它的周长为6,记点M的轨迹为曲线E.求E的方程;设点,过点B的直线与E交于不同的两点P、Q,是否可能为直角,并说明理由.【答案】解:由题意得,,,则M的轨迹E是以,为焦点,长轴长为4的椭圆,又由M,A,B三点不共线,.的方程为;证明:设直线PQ的方程为,代入,得.设,,则,..不可能为直角.【解析】由题意得,,则,可得M 的轨迹E是以,为焦点,长轴长为4的椭圆,则E的方程可求;设直线PQ的方程为,与椭圆方程联立,化为关于y的一元二次方程,利用根与系数的关系结合向量数量积证明不可能为直角.本题考查定义法求椭圆方程,考查直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、化归与转化思想等,是中档题.21.如图,D是AC的中点,四边形BDEF是菱形,平面平面ABC,,,.若点M是线段BF的中点,证明:平面AMC;求平面AEF与平面BCF所成的锐二面角的余弦值.【答案】证明: 连接MD ,FD . 四边形BDEF 为菱形,且 , 为等边三角形. 为BF 的中点, . , ,又D 是AC 的中点, .平面 平面 ,平面 平面BDEF , 平面ABC , 平面BDEF .又 平面BDEF , . 由 , , , 平面AMC ;解: 设线段EF 的中点为N ,连接 易证 平面 以D 为坐标原点,DB ,DC ,DN 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系 则 ,,,0, , 1, ., ,, .设平面AEF ,平面BCF 的法向量分别为 , . 由.解得.取 , .又由解得.取,..平面AEF与平面BCF所成的锐二面角的余弦值为.【解析】连接MD,FD,可得为等边三角形又M为BF的中点,得,进一步求得,再由面面垂直的性质可证平面AMC;设线段EF的中点为N,连接易证平面以D为坐标原点,DB,DC,DN所在直线分别为x轴,y轴,z轴建立空间直角坐标系,求出平面AEF,平面BCF的法向量,即可求平面AEF与平面BCF所成的锐二面角的余弦值.本题考查面面垂直的性质,考查线面垂直,考查线面角,面面角,考查向量法的运用,正确求出平面的法向量是关键,是中档题.22.已知函数,.Ⅰ当时,讨论函数的单调性;Ⅱ若在区间上恒成立,求实数a的取值范围.【答案】解:Ⅰ0)'/>,当,即时,时,,时,0'/>,所以在区间上单调递减,在区间上单调递增;当,即时,和时,0'/>,时,,所以在区间上单调递减,在区间和上单调递增;当,即时,和时,0'/>,时,,所以在区间上单调递减,在区间和上单调递增;当,即时,,所以在定义域上单调递增;综上:当时,在区间上单调递减,在区间和上单调递增;当时,在定义域上单调递增;当时,在区间上单调递减,在区间和上单调递增;当时,在区间上单调递减,在区间上单调递增.Ⅱ令,原问题等价于在区间上恒成立,可见,要想在区间上恒成立,首先必须要,而,另一方面当时,,由于,可见0'/>,所以在区间上单调递增,故,所以在区间上单调递减,成立,故原不等式成立.综上,若在区间上恒成立,则实数a的取值范围为【解析】Ⅰ当时,求出函数的导数,求出极值点,判断极值点的大小故选,讨论导函数的符号,即可得到函数的单调性;Ⅱ利用函数恒成立,转化为函数的最值问题,构造函数求解函数的导数,求出最值即可得到结果.本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查分类讨论思想的应用,考查转化思想以及计算能力.。
2019-2020年高二上学期期末统考数学(理)试题解析

2019-2020年高二上学期期末统考数学(理)试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.复数121iz i+=+(i 是虚数单位),则z 的共轭复数的虚部是( ) A.23 B.21 C.12- D.12i -2.已知命题:,sin p x R x x ∃∈>,则p 的否定形式为( ) A.x x R x p sin ,:<∈∃⌝ B.x x R x p sin ,:≤∈∀⌝ C.x x R x p sin ,:≤∈∃⌝D.x x R x p sin ,:<∈∀⌝3.“双曲线C 的一条渐近线方程为430x y -= ”是“双曲线C 的方程为221916x y -=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .不充分不必要条件【答案】B4.随着市场的变化与生产成本的降低,每隔4年计算机的价格降低13,则2000年价格为8100元的计算机到2016年价格应为( ) A. 3000元B.2400元C. 1600元D. 1000元5.在复平面上,点1Z 对应的复数是4i +,线段12Z Z 的中点对应的复数是12i +,则点2Z 对应的复数是( ) A. 23i -+B. 23i --C. 23i -D. 23i +考点:1.复数的几何意义;2.中点坐标公式.6.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则实数a 的取值范围是( )A.)2,(-∞B.(2,2)-C.)2,(--∞D. ]2,2(-7.等差数列{}n a 中,已知11312,0a S =-=,使得0n a <的最大正整数n 为( ) A.6B.7C.8D.98.已知ABC ∆中,若sin (cos cos )sin sin A B C B C +=+,则ABC ∆是( )A.直角三角形 B .等腰三角形 C.等腰或直角三角形 D.等腰直角三角形9.已知点(,)P x y 满足条件0290y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则y x z 3-=的最小值为( )A.9B.6-C. -9D. 610.已知ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是( ) A.9 B.12 C. 15 D. 1811.已知等比数列123,,a a a 的和为定值3(0)m m >,且公比为(0)q q >,令123t a a a =,则t 的取值范围为( ) A.3(0,]mB.3[,)m +∞C.30,()3m ⎛⎤ ⎥⎝⎦ D.3(),3m ⎡⎫+∞⎪⎢⎣⎭12.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且12PF F ∆的最小内角为30︒,则C 的离心率为( ) A.2B.26 C.23D.3第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.不等式211xx-≥+的解集为 .14.如图,从高为200米的气球()A上测量铁桥(BC)的长,如果测得桥头B的俯角是60︒,桥头C的俯角是30︒,则桥BC长为米.15.已知数列{}n a 中,12a =,点1(,)(1n n a a n ->且)n N ∈满足21y x =-,则1210a a a +++= .16.过点(0,2)A 且和抛物线2:6C y x =相切的直线l 方程为 .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足(2)cos cos ,a b C c B -=⋅7,c =8a =.(1)求角C ; (2)求ABC ∆的面积.18.(本题共2个小题,每题6分,共12分)(1)已知点(6,0)B 和(6,0)C -,过点B 的直线l 与过点C 的直线m 相交于点A ,设直线l 的斜率为1k ,直线m 的斜率为2k ,如果1249k k ⋅=-,求点A 的轨迹; (2)用正弦定理证明三角形外角平分线定理:如果在ABC ∆中,A ∠的外角平分线AD 与边BC 的延长线相交于点D ,则BD ABDC AC=.19.(本小题满分12分)已知命题P :复数133z i =-,复数222410(212),()2m m z m m i m R m --=+--∈+,12z z +是虚数;命题Q :关于x 的方程2224(1)70x m x m --++=的两根之差的绝对值小于2;若P Q∧为真命题,求实数m 的取值范围.20.(本小题满分12分)已知等差数列{}n a 的首项14a =,公差0d >,且1521,,a a a 分别是正数等比数列}{n b 的357,,b b b 项.(1)求数列}{n a 与}{n b 的通项公式;(2)设数列{}n c 对任意n *均有12112n n nc c c a b b b ++++=成立,设{}n c 的前n 项和为n T ,求n T .21.(本小题满分12分)设a 为正实数,函数2()2()||f x x x a x a =+--. (1)若(0)1f ≤-,求a 的取值范围;(2)求()f x 的最小值;(3)若(,)x a ∈+∞,求不等式()1f x ≥的解集.当2(0,]2a ∈时,解集为232[,)a a +-+∞………11分22.(本小题满分14分)如图,已知椭圆C :)1(1222>=+a a y x 的离心率为 e ,点F 为其下焦点,点O 为坐标原点,过F 的直线 l :c mx y -=(其中12-=a c )与椭圆C 相交于,P Q 两点,且满足:2222()12a c m OP OQ c --⋅=-. (1)试用 a 表示 2m ;(2)求 e 的最大值;(3)若 )21,31(∈e ,求 m 的取值范围.。
2019-2020学年高二上学期期末数学试卷(理科)带答案

2019-2020学年高二上学期期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.635.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z 的最小值为()A.﹣3 B.﹣6 C.3 D.68.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.1210.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.【分析】进而根据焦点在y轴推断出4﹣m>0,m﹣3>0并且m﹣3>4﹣m,求得m的范围.【解答】解:由题意可得:方程表示焦点在y轴上的椭圆,所以4﹣m>0,m﹣3>0并且m﹣3>4﹣m,解得:.故选D.【点评】本题主要考查了椭圆的标准方程,解题时注意看焦点在x轴还是在y轴.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行判断即可.【解答】解:由log(x+2)<0得x+2>1,即x>﹣1,则“x>1”是“log(x+2)<0”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.比较基础.4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.63【分析】由题意可得a3+a5=14,进而可得a1+a7=a3+a5=14,而S7=,代入即可得答案.【解答】解:由题意可得a3+a5=14,由等差数列的性质可得a1+a7=a3+a5=14,故S7====49,故选C【点评】本题考查等差数列的性质和求和公式,属基础题.5.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④【分析】利用四种命题关系写出四个命题,然后判断真假即可.【解答】解:①“若x+y=0,则x,y互为相反数”的逆命题:“若x,y互为相反数,则x+y=0”逆命题正确;②“全等三角形的面积相等”的否命题:“不全等三角形的面积不相等”,三角形的命题公式可知只有三角形的底边与高的乘积相等命题相等,所以否命题不正确;③“若q≤1,则x2+2x+q=0有实根”的逆否命题:“x2+2x+q=0没有实根,则q>1”,因为x2+2x+q=0没有实根,所以4﹣4q<0可得q>1,所以逆否命题正确;④“直角三角形有两个角是锐角”的逆命题:两个角是锐角的三角形是直角三角形,显然不正确.正确命题有①③.故选:C.【点评】本题考查四种命题的关系,命题的真假的判断,基本知识的考查.6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z的最小值为()A.﹣3 B.﹣6 C.3 D.6【分析】先画出可行域,得到角点坐标.再利用z的最大值为12,通过平移直线z=x+y得到最大值点A,求出k值,即可得到答案.【解答】解:可行域如图:由得:A(k,k),目标函数z=x+y在x=k,y=k时取最大值,即直线z=x+y在y轴上的截距z最大,此时,12=k+k,故k=6.∴得B(﹣12,6),目标函数z=x+y在x=﹣12,y=6时取最小值,此时,z的最小值为z=﹣12+6=﹣6,故选B.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.8.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】在△ABC中,利用二倍角的余弦与正弦定理可将已知cos2=,转化为cosA=,整理即可判断△ABC的形状.【解答】解:在△ABC中,∵cos2=,∴==+∴1+cosA=+1,即cosA=,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,sinA≠0,∴cosC=0,∴C为直角.故选:B.【点评】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用,属于中档题.9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12【分析】由题意可知直线过圆心,可得3m+n=2,从而+=(+),展开后利用基本不等式可求答案.【解答】解:∵直线截得圆的弦长为直径,∴直线mx+ny+2=0过圆心(﹣3,﹣1),即﹣3m﹣n+2=0,∴3m+n=2,∴+=(+)=3+≥3+=6,当且仅当时取等号,由截得,∴+的最小值为6,故选A.【点评】该题考查直线与圆的位置关系、基本不等式的应用,变形+=(+)是解决本题的关键所在.10.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°【分析】以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,利用向量法能求出PB与平面EFD所成角.【解答】解:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,D为坐标原点.P(0,0,a),B(a,a,0),=(a,a,﹣a),又=(0,,),=0+=0,∴PB⊥DE.由已知DF⊥PB,又DF∩DE=D,∴PB⊥平面EFD,∴PB与平面EFD所成角为90°.故选:A.【点评】本题考查线面角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)【分析】根据三角形重心的性质可得G到B、C两点的距离之和等于20,因此G 的轨迹为以B、C为焦点的椭圆.利用题中数据加以计算可得相应的椭圆方程,注意到点G不能落在x轴上得到答案.【解答】解:设AC、AB边上的中线分别为CD、BE∵BG=BE,CG=CD∴BG+CG=(BE+CD)=20(定值)因此,G的轨迹为以B、C为焦点的椭圆,2a=20,c=4∴a=10,b==,可得椭圆的方程为∵当G点在x轴上时,A、B、C三点共线,不能构成△ABC∴G的纵坐标不能是0,可得△ABC的重心G的轨迹方程为=1(y≠0)故选:D【点评】本题给出三角形两条中线长度之和等于定值,求重心G的轨迹方程.着重考查了三角形重心的性质、椭圆的定义与标准方程和轨迹方程的求法等知识,属于中档题.12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴﹣2,∵M在圆上,∴(x0﹣5)2+y02=r2,∴r2=y02+4<12+4=16,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=2.【分析】⊥(﹣λ)⇔•(﹣λ)=0,解出即可得出.【解答】解:﹣λ=(﹣3+λ,2,1﹣4λ),∵⊥(﹣λ),∴•(﹣λ)=﹣3(﹣3+λ)+4+1﹣4λ=0,解得λ=2.∴向量与﹣λ垂直的充要条件是λ=2.故答案为:2.【点评】本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.【分析】利用余弦定理,构建方程,根据解此三角形有两解,可得方程有两个不等的正根,从而可求x的取值范围【解答】解:由余弦定理可得:4=c2+x2﹣2cx×cos45°∴c2﹣xc+x2﹣4=0∵解此三角形有两解,∴方程有两个不等的正根∴△=2x2﹣4(x2﹣4)>0,且x2﹣4>0,x>0∴x2﹣8<0,且x2﹣4>0,x>0∴2<x<2故答案为:.【点评】本题重点考查余弦定理的运用,考查解三角形解的个数,解题的关键是利用余弦定理,构建方程,将解此三角形有两解,转化为方程有两个不等的正根.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C 的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1,=1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a 的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.【分析】(1)设双曲线方程为x2﹣y2=λ,λ≠0,由双曲线过点(4,﹣),能求出双曲线方程.(2)由点M(3,m)在此双曲线上,得m=.由此能求出•的值.【解答】解:(1)∵双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,∴设双曲线方程为x2﹣y2=λ,λ≠0,∵双曲线过点(4,﹣),∴16﹣10=λ,即λ=6,∴双曲线方程为=1.(2)∵点M(3,m)在此双曲线上,∴=1,解得m=.∴M(3,),或M(3,﹣),∵F 1(﹣2,0),,∴当M(3,)时,=(﹣2﹣3,﹣),=(,﹣),•=﹣12﹣6=0;当M(3,﹣)时,=(﹣2﹣3,),=(,),•=﹣12﹣6+6+9+3=0.故•=0.【点评】本题考查双曲线方程的求法,考查向量的数量积的求法,解题时要认真审题,注意双曲线性质的合理运用.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
2019-2020学年高二第一学期期末考试数学试卷(理科)附解答

2019-2020学年高二第一学期期末考试数学试卷(理科)一、选择题:本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.数列1,-3,5,-7,9,……的一个通项公式为( )A. 21n a n =-B. (1)(12)nn a n =-- C. (1)(21)n n a n =-- D. (1)(21)nn a n =-+2.“ 0,2sin x x x ∀>>”的否定是( ) A. 0,2sin x x x ∀>< B. 0,2sin x x x ∀>≤ C. 0000,2sin x x x ∃≤≤ D. 0000,2sin x x x ∃>≤3.在三棱柱111ABC A B C -中,D 是1CC 的中点,F 是1A B 的中点,且DF AC AB αβ=+,则( )A. 1,12αβ==-B. 1,12αβ=-=C. 11,2αβ==-D. 11,2αβ=-=4.在ABC ∆中,A B ∠∠∠、、C 所对的边分别为a b c 、、,若3A π∠=,3a =,2b =,则 B ∠=( )A. 6πB. 4πC. 3πD. 2π5.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A. 1 B. 2 C. 4 D. 86.已知双曲线2222:1x y C a b-=的离心率为53,其左焦点为1(5,0)F =-,则双曲线C 的方程为( )A. 22143x y -=B. 22134x y -=C. 221916x y -=D. 221169x y -= 7.下列命题正确的是( )A. 命题“p q ∧ ”为假命题,则命题p 与命题q 都是假命题;B. 命题“若x y =,则sin sin x y =”的逆否命题为真命题;C. “ 22am bm <”是“ a b <”成立的必要不充分条件;D. 命题“存在0x R ∈,使得 20010x x ++<”的否定是:“对任意x R ∈,均有210x x ++<”.8.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过动点(1,2)P ,法向量为(2,3)n =-的直线的点法式方程为2(1)3(2)0x y --+-=,化简得2340x y -+=,类比上述方法,在空间直角坐标系中,经过点(1,2,1)P -,且法向量为(2,3,1)n =-的直线的点法式方程应为( )A. 2330x y z --+=B. 2350x y z -++=C. 2370x y z ++-=D. 2390x y z +--=9.已知F 是双曲线221412x y -=的左焦点,(1,4)A ,P 是双曲线右支上的动点,则PF PA +的最小值为( )A. 10B. 9C. 8D. 710.已知0,0,1a b a b >>+=则14y a b=+的最小值是( )A. 10B. 9C. 8D. 711.已知1F 、2F 是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,12PF F ∆为等腰三角形,1223F F P π∠=,则C 的离心率为( )A.14 B. 12 C. 13 D. 23 12.如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --, Q OR P --, R OP Q--的平面角为,,αβγ,则( )A. γαβ<<B.αγβ<<C.βαγ<<D.αβγ<< 二、填空题:本题共4小题,每小题4分,共16分。
2019-2020学年高二数学上学期期末考试试题理(含解析)

2019-2020学年高二数学上学期期末考试试题理(含解析)客观题部分一、选择题1.已知集合,,则为()A. B. C. D.【答案】A【解析】【分析】利用指数函数的单调性求出指数函数的值域化简集合的表示,根据对数的真数大于零化简集合的表示,最后利用集合交集的定义,结合数轴求出.【详解】..因此.故选:A【点睛】本题考查了集合的交集运算,考查了指数函数的单调性,考查了对数型函数的定义域,考查了数学运算能力.2.是虚数单位,复数为纯虚数,则实数为( )A. B. C. D.【答案】A【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后令实部为0,虚部不为0建立关于的方程组解出即可.【详解】复数为纯虚数,解得,故选:A.【点睛】本题主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知随机变量服从正态分布,,则()A. B. C. D.【答案】A【解析】由正态分布的特征得=,选A.4. 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有A. 140种B. 80种C. 100种D. 70种【答案】D【解析】分析:不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.故选D点评:直接法:先分类后分步;间接法:总数中剔除不合要求的方法.5.已知向量,,若,则实数的值是()A. -4B. -1C. 1D. 4【答案】D【解析】因为,故,展开得到,故,,选D.6.已知函数.命题,函数是偶函数;命题,函数在定义域内是增函数.那么下列命题为真命题的是()A. B. C. D.【答案】C【解析】【分析】根据对数型函数的定义域判断函数是否能成为偶函数,进而判断命题的真假,根据对数型函数的单调性以及单调性的性质可以判断命题的真假,最后根据否命题、且命题的真假判断方法进行判断即可.【详解】当时,函数的定义域为:,当时,函数的定义域为:,因此当时,函数的定义域不关于原点对称,因此不可能是偶函数,所以命题是假命题,是真命题;根据函数的单调性的性质可知:,函数在定义域内是增函数,因此命题是真命题,是假命题,因此有:是假命题;是真命题;是假命题.故选:C【点睛】本题考查了命题的真假判断,考查了偶函数的定义和单调性的性质,考查了否命题、且命题的真假判断,属于基础题.7.下列命题中不正确的个数是()①若直线上有无数个点不在平面内,则;②和两条异面直线都相交的两条直线异面;③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;④一条直线和两条异面直线都相交,则它们可以确定两个平面.A. 0B. 1C. 2D. 3【答案】D【解析】【分析】A:根据线面位置关系进行判断即可;B:通过长方体举特例进行判断即可;C:根据线面平行的性质进行判断即可;D:根据确定平面定理,结合异面直线的定义进行判断即可.【详解】A:当直线与平面相交时,直线上也存在有无数个点不在平面内,故本说法不正确;B:如下图,在长方体中,都与异面直线都相交,而是相交直线,故本说法不正确;C:如果两条平行直线中的一条与一个平面平行,那么另一条有可能在该平面内,故本说法不正确;D:两个相交线可以确定一个平面,因此一条直线和两条异面直线都相交,一共能确定两个平面,如果这两个平面重合,这与异面直线的定义相矛盾,故本说法是正确的.【点睛】本题考查了线面关系、线面平行的性质,考查了异面直线的定义人,考查了确定平面问题,属于中档题.8. 某程序框图如图所示,该程序运行后输出的k的值是()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B.考点:程序框图的功能9.某锥体的三视图下图所示,该锥体的体积为()A. 16B. 8C. 48D. 24【答案】B【解析】【分析】由三视图可知,该几何是一个四棱锥切去一个三棱锥,利用柱体、锥体的体积公式求解即可.【详解】由三视图可知,该几何是一个四棱锥截去一个三棱锥,所以体积为:.故选:B【点睛】本题考查了通过三视图求几何的体积,考查了空间想象能力和数学运算能力.10.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.【答案】C【解析】【分析】把点的坐标代入双曲线一条渐近线方程中,得到的关系,结合三者的关系,求出之间的关系,进而求出双曲线的离心率.【详解】因为双曲线的一条渐近线经过点,所以该渐近线方程为:,因此有.故选:C【点睛】本题考查了已知双曲线渐近线上一点求双曲线的离心率,考查了数学运算能力.11.将函数y=sin(2x+)的图象向左平移个单位,再向上平移2个单位,则所得图象的函数解析式是( )A. y=2cos2(x+)B. y=2sin2(x+)C. y=2-sin(2x-)D. y=cos2x【答案】C【解析】因为将函数y=sin(2x+)的图象向左平移个单位,再向上平移2个单位,则所得图象的函数解析式是y=2-sin(2x-),选C 12. 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是( )A. (-3,0)∪(3,+∞)B. (-3,0)∪ (0,3)C. (-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)【答案】D【解析】试题分析:设F(x)="f" (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(-x)="f" (-x)g (-x)="-f" (x)•g(x)=-F(x).故F(x)为(-∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,∞)上亦为增函数.已知f(-3)·g(-3)=0,必有F(-3)=F(3)=0.构造如图F(x)的图象,可知F(x)<0的解集为x∈(-∞,-3)∪(0,3).考点:本试题主要考查了复合函数的求导运算和函数的单调性与其导函数正负之间的关系.点评:导数是一个新内容,也是高考的热点问题,要多注意复习.解决该试题的关键是先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x <0时递增.二、填空题:13.在的展开式中x5的系数是____________.【答案】644【解析】【分析】写出二项式的通项公式,根据乘法的运算规律,求出相应项的系数,最后求和即可.【详解】二项式通项公式为:,的系数是,的系数是,因此在的展开式中x5的系数是.故答案为:644【点睛】本题考查了二项式定理的应用,考查了两个二项式乘积后展开式中某项的系数,考查了数学运算能力.14.在区域内任取一点P,则点P落在单位圆内的概率为;【答案】【解析】解:满足条件的区域为三角形,与单位圆的公共部分如图所示则所求的概率即为圆面积的1/4,比上三角形ABC的面积即可,可得为15.下面四个命题:其中所有正确命题的序号是_________.①函数的最小正周期为;②在中,若,则一定是钝角三角形;③函数且的图象必经过点(3,2);④若命题“”是假命题,则实数的取值范围为;⑤的图象向左平移个单位,所得图象关于轴对称.【答案】②③④【解析】【分析】①:根据周期的定义,结合正弦的诱导公式进行判断即可;②:根据平面向量数量积的定义,结合三角形内角的取值范围进行判断即可;③:根据对数的运算性质进行判断即可;④:根据命题的否定与原命题的真假关系进行判断即可;⑤:先利用辅助角公式把函数的解析式化简成余弦型函数解析式的形式,根据平移规律求出平行后的解析式,再判断是否是偶函数进行判断即可.【详解】①:当时,,,所以函数最小正周期为是错误的,故本命题是假命题;②:,因此一定是钝角三角形,故本命题是真命题;③:因为当时,,所以函数且的图象必经过点(3,2),故本命题是真命题;④:命题“”是假命题,因此它的否定是真命题,即是真命题,因此要想该命题是真命题,只需,故本命题是真命题;⑤:,该函数的图象向左平移个单位后,得到函数,而是奇函数关于原点对称,不关于关于轴对称,故本命题是假命题.故答案为:②③④【点睛】本题考查了命题的真假判断,考查了函数周期的定义、函数的对称性、图象的平移、对数的运算,考查了已知存在命题的真追假求参数的取值范围,属于中档题.16.已知四面体P- ABC的外接球的球心O在AB上,且平面ABC,,若四面体P - ABC的体积为,则该球的表面积为_________.【答案】【解析】【分析】由已知条件先求出,然后表示出体积计算出半径,继而得到球的表面积【详解】设该球的半径为,则,,由于是球的直径在大圆所在平面内且有在中,由勾股定理可得的面积平面,且,四面体的体积为,即,球表面积故答案为【点睛】本题主要考查了计算球的表面积,在解答此类题目时一定要结合题意先求出球的半径,然后再计算出结果.主观题部分三、简答题:17.已知数列的前项和,数列为等比数列,且满足,(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1),(2)【解析】【详解】试题分析:(1)由已知,得当≥2时,所以由已知,,设等比数列的公比为,由得,所以,所以(2)设数列的前项和为,则,,两式相减得……11分所以考点:本小题主要考查由求、等比数列的通项公式和错位相减法求数列的前n项的和,考查学生对问题的分析和转化能力以及运算求解能力.点评:由求时,一定不要忘记验证时的情形,另外,错位相减法求数列的前n项的和是高考常考的内容,要灵活应用,仔细运算以防出错.18.如图,四棱锥中,,,,,PA=PD=CD=BC=1(1)求证:平面平面;(2)求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)推导出AD⊥BD,PA⊥BD,从而BD⊥平面PAD,由此能证明平面PAD⊥平面ABCD.(2)取AD中点O,连结PO,则PO⊥AD,以O为坐标原点,以过点O且平行于BC的直线为x轴,过点O且平行于AB的直线为y轴,直线PO为z轴,建立空间直角坐标系,利用空间向量法能求出直线PA与平面PBC所成角的正弦值.【详解】(1)∵AB∥CD,∠BCD,PA=PD=CD=BC=1,∴BD,∠ABC,,∴,∵AB=2,∴AD,∴AB2=AD2+BD2,∴AD⊥BD,∵PA⊥BD,PA∩AD=A,∴BD⊥平面PAD,∵BD⊂平面ABCD,∴平面PAD⊥平面ABCD.(2)取AD中点O,连结PO,则PO⊥AD,且PO,由平面PAD⊥平面ABCD,知PO⊥平面ABCD,以O为坐标原点,以过点O且平行于BC的直线为x轴,过点O且平行于AB的直线为y轴,直线PO为z轴,建立如图所示的空间直角坐标系,则A(,0),B(,0),C(,0),P(0,0,),(﹣1,0,0),(,),设平面PBC的法向量(x,y,z),则,取z,得(0,,),∵(,),∴cos,∴直线PA与平面PBC所成角的正弦值为.【点睛】本题考查面面垂直的证明,考查满足线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意单位:名(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关注:临界值表:P()0.053.841【答案】解:(1)样本中满意的女游客为3名,样本中不满意的女游客为2名.(2).(3)有99%的把握认为:该景区游客性别与对景区的服务满意有关.【解析】试题分析:(I)每个个体被抽取的概率为,根据分层抽样,即可得样本中满意的女游客,样本中不满意的女游客的人数;(II)确定从这5名游客中随机选取两名的等可能事件的个数,其中事件A“选到满意与不满意的女游客各一名”包含6个基本事件,即可求得概率;(III)由列联表,计算K2的值,根据P(K2>6.635)=0.010,即可得到结论.解:(1)根据分层抽样可得:样本中满意的女游客为名,样本中不满意的女游客为名.(2)记样本中对景区的服务满意的3名女游客分别为,对景区的服务不满意的2名女游客分别为.从5名女游客中随机选取两名,共有10个基本事件,分别为:,,,,;其中事件A:选到满意与不满意的女游客各一名包含了6个基本事件,分别为:,,所以所求概率.(3)假设:该景区游客性别与对景区的服务满意无关,则应该很小.根据题目中列联表得:由可知:有99%的把握认为:该景区游客性别与对景区的服务满意有关.考点:本试题主要考查了分层抽样,考查等可能事件概率的求法,考查独立性检验知识,考查学生的计算能力,属于中档题.点评:根据已知条件理解古典概型的概率中总的基本事件数从而求解概率的值,对于分层抽样的等概率抽样即为样本容量与总体的比值.20.已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,交椭圆于两个不同点.(1)求椭圆的标准方程以及的取值范围;(2)求证直线与轴始终围成一个等腰三角形.【答案】(1)(2)见解析.【解析】(1)设椭圆方程为则∴椭圆方程∵直线l平行于OM,且在轴上的截距为m 又∴l的方程为:由∵直线l与椭圆交于A、B两个不同点,∴m的取值范围是(2)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可设可得而∴k1+k2=0故直线MA、MB与x轴始终围成一个等腰三角形.点睛:解答本题的第一问是,直接依据题设条件建立含方程组,通过解方程组求出基本量,进而确定椭圆的标准方程,再联立直线与椭圆的方程组成的方程组,借助交点的个数建立不等式求出参数的取值范围;求解第二问时,依据题意先将问题转化为证明直线的斜率之和为0的问题来处理,再联立直线与椭圆的方程组成的方程组,借助坐标之间的关系进行推证而获解.21.已知在区间上是增函数.(1)求实数的值组成的集合;(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及恒成立?若存在,求的取值范围;若不存在,请说明理由.【答案】(1)实数a的值组成的集合;(2)存在实数,使得不等式对任意及恒成立.【解析】试题分析:(1)先求出函数的导数,将条件在区间上为增函数这一条件转化为在区间上恒成立,结合二次函数的图象得到,从而解出实数的取值范围;(2)先将方程转化为一元二次方程,结合韦达定理得到与,然后利用将用参数进行表示,进而得到不等式对任意及恒成立,等价转化为对任意恒成立,将不等式转化为以为自变量的一次函数不等式恒成立,只需考虑相应的端点值即可,从而解出参数的取值范围.试题解析:(1)因为在区间上是增函数,所以,在区间上恒成立,,所以,实数的值组成的集合;(2)由得,即,因为方程,即的两个非零实根为、,、是方程两个非零实根,于是,,,,,设,,则,若对任意及恒成立,则,解得或,因此,存在实数或,使得不等式对任意及恒成立.考点:1.函数的单调性;2.二次函数的零点分布;3.韦达定理;4.主次元交换22.一个口袋中有5个同样大小的球,编号为3,4,5,6,7,从中同时取出3个小球,以表示取出的球的最小号码,求的分布列,均值,方差.【答案】分布列见解析;;【解析】【分析】由题意可知:取值分别为3,4,5,结合古典概型的概率计算公式,求出的每一个取值的概率,列出分布列,根据均值、方差公式计算即可.【详解】解:的取值分别为3,4,5,,,,的分布列如下:3.【点睛】本题考查了离散型随机变量分布列、均值、方差的计算,考查了古典概型的计算公式,考查了数学运算能力.2019-2020学年高二数学上学期期末考试试题理(含解析)客观题部分一、选择题1.已知集合,,则为()A. B. C. D.【答案】A【解析】【分析】利用指数函数的单调性求出指数函数的值域化简集合的表示,根据对数的真数大于零化简集合的表示,最后利用集合交集的定义,结合数轴求出.【详解】..因此.故选:A【点睛】本题考查了集合的交集运算,考查了指数函数的单调性,考查了对数型函数的定义域,考查了数学运算能力.2.是虚数单位,复数为纯虚数,则实数为( )A. B. C. D.【答案】A【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后令实部为0,虚部不为0建立关于的方程组解出即可.【详解】复数为纯虚数,解得,故选:A.【点睛】本题主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知随机变量服从正态分布,,则()A. B. C. D.【答案】A【解析】由正态分布的特征得=,选A.4. 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有A. 140种B. 80种C. 100种D. 70种【答案】D【解析】分析:不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.故选D点评:直接法:先分类后分步;间接法:总数中剔除不合要求的方法.5.已知向量,,若,则实数的值是()A. -4B. -1C. 1D. 4【答案】D【解析】因为,故,展开得到,故,,选D. 6.已知函数.命题,函数是偶函数;命题,函数在定义域内是增函数.那么下列命题为真命题的是()A. B. C. D.【答案】C【解析】【分析】根据对数型函数的定义域判断函数是否能成为偶函数,进而判断命题的真假,根据对数型函数的单调性以及单调性的性质可以判断命题的真假,最后根据否命题、且命题的真假判断方法进行判断即可.【详解】当时,函数的定义域为:,当时,函数的定义域为:,因此当时,函数的定义域不关于原点对称,因此不可能是偶函数,所以命题是假命题,是真命题;根据函数的单调性的性质可知:,函数在定义域内是增函数,因此命题是真命题,是假命题,因此有:是假命题;是真命题;是假命题.故选:C【点睛】本题考查了命题的真假判断,考查了偶函数的定义和单调性的性质,考查了否命题、且命题的真假判断,属于基础题.7.下列命题中不正确的个数是()①若直线上有无数个点不在平面内,则;②和两条异面直线都相交的两条直线异面;③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;④一条直线和两条异面直线都相交,则它们可以确定两个平面.A. 0B. 1C. 2D. 3【答案】D【解析】【分析】A:根据线面位置关系进行判断即可;B:通过长方体举特例进行判断即可;C:根据线面平行的性质进行判断即可;D:根据确定平面定理,结合异面直线的定义进行判断即可.【详解】A:当直线与平面相交时,直线上也存在有无数个点不在平面内,故本说法不正确;B:如下图,在长方体中,都与异面直线都相交,而是相交直线,故本说法不正确;C:如果两条平行直线中的一条与一个平面平行,那么另一条有可能在该平面内,故本说法不正确;D:两个相交线可以确定一个平面,因此一条直线和两条异面直线都相交,一共能确定两个平面,如果这两个平面重合,这与异面直线的定义相矛盾,故本说法是正确的.【点睛】本题考查了线面关系、线面平行的性质,考查了异面直线的定义人,考查了确定平面问题,属于中档题.8. 某程序框图如图所示,该程序运行后输出的k的值是()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B.考点:程序框图的功能9.某锥体的三视图下图所示,该锥体的体积为()A. 16B. 8C. 48D. 24【答案】B【解析】【分析】由三视图可知,该几何是一个四棱锥切去一个三棱锥,利用柱体、锥体的体积公式求解即可.【详解】由三视图可知,该几何是一个四棱锥截去一个三棱锥,所以体积为:.故选:B【点睛】本题考查了通过三视图求几何的体积,考查了空间想象能力和数学运算能力.10.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.【答案】C【解析】【分析】把点的坐标代入双曲线一条渐近线方程中,得到的关系,结合三者的关系,求出之间的关系,进而求出双曲线的离心率.【详解】因为双曲线的一条渐近线经过点,所以该渐近线方程为:,因此有.故选:C【点睛】本题考查了已知双曲线渐近线上一点求双曲线的离心率,考查了数学运算能力.11.将函数y=sin(2x+)的图象向左平移个单位,再向上平移2个单位,则所得图象的函数解析式是( )A. y=2cos2(x+)B. y=2sin2(x+)C. y=2-sin(2x-)D. y=cos2x【答案】C【解析】因为将函数y=sin(2x+)的图象向左平移个单位,再向上平移2个单位,则所得图象的函数解析式是y=2-sin(2x-),选C12. 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是( )A. (-3,0)∪(3,+∞)B. (-3,0)∪ (0,3)C. (-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)【答案】D【解析】试题分析:设F(x)="f" (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(-x)="f" (-x)g (-x)="-f" (x)•g(x)=-F(x).故F(x)为(-∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,∞)上亦为增函数.已知f(-3)·g(-3)=0,必有F(-3)=F(3)=0.构造如图F(x)的图象,可知F(x)<0的解集为x∈(-∞,-3)∪(0,3).考点:本试题主要考查了复合函数的求导运算和函数的单调性与其导函数正负之间的关系.点评:导数是一个新内容,也是高考的热点问题,要多注意复习.解决该试题的关键是先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增.二、填空题:13.在的展开式中x5的系数是____________.【答案】644【解析】【分析】写出二项式的通项公式,根据乘法的运算规律,求出相应项的系数,最后求和即可.【详解】二项式通项公式为:,的系数是,的系数是,因此在的展开式中x5的系数是.故答案为:644【点睛】本题考查了二项式定理的应用,考查了两个二项式乘积后展开式中某项的系数,考查了数学运算能力.14.在区域内任取一点P,则点P落在单位圆内的概率为;【答案】【解析】解:满足条件的区域为三角形,与单位圆的公共部分如图所示则所求的概率即为圆面积的1/4,比上三角形ABC的面积即可,可得为15.下面四个命题:其中所有正确命题的序号是_________.①函数的最小正周期为;②在中,若,则一定是钝角三角形;③函数且的图象必经过点(3,2);④若命题“”是假命题,则实数的取值范围为;⑤的图象向左平移个单位,所得图象关于轴对称.【答案】②③④【解析】【分析】①:根据周期的定义,结合正弦的诱导公式进行判断即可;②:根据平面向量数量积的定义,结合三角形内角的取值范围进行判断即可;③:根据对数的运算性质进行判断即可;④:根据命题的否定与原命题的真假关系进行判断即可;⑤:先利用辅助角公式把函数的解析式化简成余弦型函数解析式的形式,根据平移规律求出平行后的解析式,再判断是否是偶函数进行判断即可.【详解】①:当时,,,所以函数最小正周期为是错误的,故本命题是假命题;②:,因此一定是钝角三角形,故本命题是真命题;③:因为当时,,所以函数且的图象必经过点(3,2),故本命题是真命题;④:命题“”是假命题,因此它的否定是真命题,即是真命题,因此要想该命题是真命题,只需,故本命题是真命题;⑤:,该函数的图象向左平移个单位后,得到函数,而是奇函数关于原点对称,不关于关于轴对称,故本命题是假命题.故答案为:②③④【点睛】本题考查了命题的真假判断,考查了函数周期的定义、函数的对称性、图象的平移、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又由得,∴,∴,
又,,
∴,,∴椭圆方程为.
(2)设,,直线的方程为:,
联立,得,,
设线段的垂直平分线方程为:.
令,得,
由题意知,为线段的垂直平分线与轴的交点,所以,且,所以.
点睛:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于难题;利用待定系数法求椭圆的方程,根据题意列出两个关于的方程组结合即可,直线与椭圆相交时正确运用一元二次方程的根与系数的关系是解题最常用的方法.
13. 双曲线的一个焦点到它的一条渐近线的距离为__________.
【答案】
【解析】由题一个焦点(3,0)到一条渐近线 的距离 .
14. 若抛物线与抛物线异于原点的交点到抛物线的焦点的距离为3,则抛物线的方程为__________.
【答案】
【解析】根据题意画出图像,由抛物线的定义,曲线上的点到焦点的距离和到准线的距离相等,设A, 代入曲线,得到。故方程为
试题解析:命题为真时:解得,
命题为真时:,解得,
当真假时:故有,
当假真时:故有,
实数的取值范围为:或.
18. 的三个内角所对的对边分别为,且.
(1)求;
(2)若,,求的大小.
【答案】(1) (2)
【解析】试题分析:(1)由及正弦定理,得,
又中,,可得.
(2)由结合(1)中的,及可得,所以,,由余弦定理可求得.
【答案】
【解析】因为等比数列的前项和为 ,所以
因为,所以
令
所以当时, 取最大值 ,
点睛:求解数列中的最大项或最小项的一般方法
先研究数列的单调性,可以用或也可以转化为函数最值问题或利用数形结合求解..
16. 如图,在长方体中,,,点在棱上.若二面角的大小为,则__________.
【答案】
【解析】过点作于,连接,如图所示
(2)设出过点M的切线方程,由切线与曲线只有一个交点,确定点M的坐标;再利用AM⊥BM可得kAM·kBM=-1,将相应的值代入,再结合根与系数的关系进行计算,求出b即可得到答案.
试题解析:(1)设方程为,则由,得,
时,设,,则,
又,∴,即直线的斜率为.
(2)∵,∴可设方程为,∴,得,
∵是切线,∴,∴,∴,
则为直线与平面所成的角
∵直线与平面所成的角为
∴Hale Waihona Puke ∴∴∵≌∴
∴,故答案为
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17. 命题:“方程有两个正根”,命题:“方程无实根”,这两个命题有且只有一个成立,试求实数的取值范围.
【答案】或
【解析】试题分析:先根据二次方程实根分布得命题为真时实数的取值范围,再根据判别式小于零得命题为真时实数的取值范围,最后根据两个命题有且只有一个成立,分两种情况讨论,分别求解,再求并集
20. 已知是抛物线上两点,且与两点横坐标之和为3.
(1)求直线的斜率;
(2)若直线,直线与抛物线相切于点,且,求方程.
【答案】(1) 直线的斜率为 (2)
【解析】试题分析:(1)根据已知条件,设直线AB的解析式为y=kx+t,联立直线和抛物线的解析式,利用A与B的横坐标之和为3,结合一元二次方程的根与系数的关系求出k的值;
——教学资料参考参考范本——
2019-2020学年度最新高二数学上学期期末考试试题 理(普通班,含解析)
______年______月______日
____________________部门
高二数学(理科)
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【答案】B
【解析】且.
所以“”是“”的必要不充分条件.
故选B.
4. 已知变量满足约束条件则的最小值为( )
A. 1 B. 2 C. -3 D. -4
【答案】D
【解析】根据题意画出可行域,是一个封闭的三角形区域,目标函数,
当目标函数过点 时有最小值,代入得到-4.
故答案为:D。
5. 在长方体中,,,,是中点,则( )
由上知时,函数单调递减,
故,
故有:,可得.
点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.
试题解析:(1)当时,,
,
令,有,
当时,,
当时,
得,解得:,
故当时,函数单调递减,当时,函数单调递增,
所以当时,,可得,
函数在区间上单调递减,
,
,
故函数在区间上的值域为.
(2)由,有,
故可化为,
整理为:,
即函数在区间为增函数,
,
,故当时,,
即,
①当时,;
②当时,整理为:,
令,有 ,
当,,,有,
当时,由,有 ,可得,
因为 ,所以与平面所成的角的正弦值为,选A
点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
1. 命题:“”的否定是( )
A. B.
C. D.
【答案】C
【解析】因为 的否定是
所以命题:“”的否定是,选C
2. 已知空间向量,,则等于( )
A. B. 2 C. D. 1
【答案】A
【解析】 ,选A
3. “”是“”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
解析:
由直三棱柱中,知两两互相垂直,
以为轴建立空间直角坐标系,
∵,,∴,,,,,,
中点.
(1),,,
设平面的一个法向量,则,,,
取,则,
,
∴直线与平面所成角的正弦值为.
(2),设平面的一个法向量为,
则,
取,则,,
结合图形知,二面角的余弦值为.
点睛:这个题目考查了空间中的直线和平面的位置关系,平面和平面的夹角。求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可。面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,二是建系求两个面的法向量。
A. B.
C. D.
【答案】B
【解析】 ,选C
6. 函数的导数为,则( )
A. B. C. -1 D. 0
【答案】A
【解析】由题 ,
.故选A.
7. 在等差数列中,已知,则该数列的前12项和等于( )
A. 36 B. 54 C. 63 D. 73
【答案】B
【解析】 ,选B
8. 设椭圆的左、右焦点分别为,以为直径的圆与直线相切,则该椭圆的离心率为( )
22. 已知函数.
(1)当时,求函数在区间上的值域.
(2)对于任意,都有,求实数的取值范围.
【答案】(1) (2)
【解析】试题分析:(1)先求导数,再求导数,得从而确定,再根据单调性得值域(2)先整理不等式得,转化为函数在区间为增函数,再转化为对应函数导数恒非负,分离变量得最小值,最后利用导数求函数单调性,得最值,即得实数的取值范围.
A. B. C. D.
【答案】C
【解析】由题以为直径的圆的圆心为(0,0),半径为c,
所以 ,即 ,解得.故选C.
点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).
11. 函数在上是增函数,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】 在上恒成立,所以
令
所以当时, ,即,选C
12. 已知长方体,,,为线段上一点,且,则与平面所成的角的正弦值为( )
A. B. C. D.
【答案】A
..................
设平面一个法向量为 ,则由
9. 已知,,,则的最小值为( )
A. B. C. D.
【答案】B
【解析】 ,选B
10. 已知过双曲线右焦点,斜率为的直线与双曲线在第一象限交于点,点为左焦点,且,则此双曲线的离心率为( )
A. B. C. D.
【答案】C
【解析】由题意,∵过双曲线右焦点的直线,∴,代入双曲线,可得,∴,∴,∴,∵,∴,故选C.
故答案为:。
点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。
15. 已知等比数列的前项和为,且,若对任意的,恒成立,则实数的取值范围是__________.
∴,,∴,
∵,∴,
又,,,,
又,,∴,,∴或,
又,∴方程为.
21. 如图,椭圆的左、右焦点为,右顶点为,上顶点为,若,与轴垂直,且.
(1)求椭圆方程;
(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.