第二课时 分式的约分
分式(二)之通分约分

分式(二) 通分约分授课对象授课教师授课题目 分 式 (二) 授课时间 课 型 新 授 课使用教具教学目标1. 使学生理解分式通分的意义,掌握分式通分的方法及步骤;2. 使学生理解分式约分的意义,掌握分式约分的方法及步骤;教学重点和难点 1. 通分时,最简公分母的寻找方法;2. 约分时,最大公因式的寻找方法;3. 因式分解在通分、约分中的应用;参考教材 人教版教学流程及授课详案一、 通分1. 从分数到分式2. 计算: 例1 求分式4322361,41,21xyy x z y x 的公分母。
(方法:找出系数的最小公倍数,找出字母的最高次幂)例2 求分式2241x x -与412-x 的最简公分母。
分数的通分:1. 把几个异分母分数化成与原来分数相等且分母相同的分数,叫做通分。
2. 通分方法:(1) 找出原来几个分数的分母的最小公倍数 (2) 根据分数基本性质,把原来分数化成以这个最小公倍数为分母的分数。
例1 4131和例2 607363和分式的通分:1. 将几个分式的分母利用分式基本性质化为相同分母的分式,叫通分。
2. 通分方法:(1) 找出原来几个分式的分母的最简公分母。
(2) 根据分式基本性质,把原来分式化成以这个最简公分母为分母的分式。
例1b a 223与cab b a 2-总结:1) 最简公分母的意义是,各分式分母中的系数是最小公倍数与所有的字母(或因式)的最高次幂的积,叫做最简公分母。
2) 概括求几个分式的最简公分母的步骤。
a) 取各分式的分母中系数最小公倍数;b) 各分式的分母中所有字母或因式都要取到; c) 相同字母(或因式)的幂取指数最大的d) 所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。
例3 通分:(1)xyy x x y 41,3,22; (2)22225,103,54ac b b a c c b a -例4 通分:(1)42,361,)42(222---x x x x x x (2)222231,)(1yxy x y x +-- 3. 计算 (1)bd c 2与243b ac (2)2)(2y x xy +与22yx x - (3)y x y x 22+-与2)(y x xy + (4)9422-m mn 与3232+-m m (5)y x 3与223yx(6)b a c 26与23ab c 二、 约分1. 从分数到分式分数约分: 1. 把一个分数化成和它相等,但分子分母比较小的分数叫做约分。
分式的约分和通分

15 21
=
35 5 37 7
理解应用
a 2bc a2bc ab ac
ab ab ab 分式的约分
把一个分式的分子和分母的公因式约去,不改 变分式的值,这种变形叫做分式的约分.
约分的依据是: 分式的基本性质.
最简分式:一个分式的分子与分母没有1以外的公 因式,叫做最简分式.
分式的约分和通分
分式的基本性质
分式的分子与分母同乘(或除以)一个 不等于0的整式,分式的值不变。
用式子表示为:
C , C .(C 0) C C
其中A,B,C是整式。
分数是如何约分的? 1、约分: 约去分子与分母的最大公约数,化为最简分数。
解: (2)
x2
x2 9 6x
9
(
x
3)( x ( x 3)2
3)
x3 x3
约分时,分子或分母若是 多项式,能分解则必须先 进行因式分解.再找出分 子和分母的公因式进行 约分
例:约分 6x2 12xy 6y2
(3) 3x 3y
解:(3) 6x2 12xy 6y2
确定几个分式的最简公分母的方法:
(1)系数:分式分母系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都 要取到; (3)因式的指数:相同因式取指数最高的。
理解应用 分式的通分
例4 通分:
(1)
3 2a2b
与
ab ab2c
;
(2) 2x 与 3x . x5 x5
分析:为通分要先确定分式的公分母.
1 3xyz
1
2x2z
4x2 y3 12x3 y 4 z
6xy 4 12 x3 y 4 z
《约分》教学设计

《约分》教学设计一、教学内容本节课的教学内容选自人教版数学八年级下册第7章《分式》的第2节《约分》。
这部分内容主要包括分式的约分方法、约分的应用以及分式乘除法的基本原理。
具体教学内容包括:1. 分式的约分方法:分子分母同时除以一个共同的因式,使得分式的值保持不变。
2. 约分的应用:解决实际问题中的比例、利润等问题。
3. 分式乘除法的基本原理:分式乘除法的计算法则以及如何将实际问题转化为分式乘除法问题。
二、教学目标1. 学生能够掌握分式的约分方法,并能够运用约分解决实际问题。
2. 学生能够理解分式乘除法的基本原理,并能够熟练运用分式乘除法解决实际问题。
3. 学生能够通过本节课的学习,提高自己的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:分式乘除法的计算法则以及如何将实际问题转化为分式乘除法问题。
2. 教学重点:分式的约分方法以及约分的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、练习册、笔记本、文具。
五、教学过程1. 导入:通过一个实际问题,引入本节课的主题——约分。
2. 讲解:讲解分式的约分方法,并通过例题进行讲解。
3. 练习:学生进行随堂练习,巩固约分的知识点。
4. 讲解:讲解分式乘除法的基本原理,并通过例题进行讲解。
5. 练习:学生进行随堂练习,巩固分式乘除法的知识点。
6. 应用:通过实际问题,引导学生运用约分和分式乘除法解决问题。
六、板书设计1. 分式的约分方法:分子分母同时除以一个共同的因式2. 分式乘除法的基本原理:分式乘除法的计算法则实际问题转化为分式乘除法问题七、作业设计a. $\frac{12}{18}$b. $\frac{15}{20}$c. $\frac{21}{35}$答案:a. $\frac{2}{3}$b. $\frac{3}{4}$c. $\frac{3}{5}$某商品的原价是120元,商店进行了8折优惠,求优惠后的价格。
新化县七中八年级数学上册第1章分式1.1分式第2课时分式的基本性质和约分课件新版湘教版

x
+
y)
2.约分 :
(
1)1 1
8 2
a a
2 3
b b
3 2
=6a2b2 3b 3b 6a2b2 2a 2a
(
2)8 6
(x (y
x y
-
xy))=-( 2( 2xx--y) y( ) -43xy) =-4 3xy
(3)y2
xy 5x 10y
25
= ( x y+5)= (y + 5)2
x y+5
类比分数的基本性质 , 你能想出分式有什么性质吗 ?
分式的分子与分母都乘同 一个非零整式,所得分式与原 分式相等。
即对于分式 f ,有 f = f h(h≠0). g
g gh
以下等式是否成立 ?为什么 ?
-f = f -g g
成立
因 为 -f=-f( 1) =f -g -g( 1)g
- f = f 成立 因 为-f=-f( 1) =f
先约分,化
成最简分式,再 代入x和y的值。
巩固练习
1.填空 :
(1) 61xx2
= x1 (x 2 6
)
( 2)x y
=2 (2
x2y x y 2)
(3)x2+1=( ( 2xx2 1) 1)
(4) y 2 =( y ) 2xy 2x
( 5) (x+21) x( 2x-1)=(x 2 1)(6)( xx2x--yy2)=(x
g -g
g g( 1)-g
推进新课
例3 根据分式的基本性质填空 :
×-1
(1)1a2
(a2-1)
-a
a
×-1
崇仁县第七中学八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质第2课时分式的约分通分

第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑?四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.§18.1 平行四边形的性质教案(1)一、教学目标1知识目标:1、通过经历运用图形的变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论.2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质.2能力目标:培养学生的观察猜想、实践操作、团队合作、数学说理能力和数学语言规范表达的能力.3情感目标:渗透化未知为已知的数学方法;渗透从特殊到一般、从具体到抽象、从感性到理性的辩证思想;渗透严谨求实的科学态度的理念;营造“民主、和谐”的课堂氛围让学生在愉快的学习中不断获得成功的体验.二、教学重点、难点教学重点:让学生亲历平行四边形性质的“观察——猜想——验证”过程,理解性质内容,并学会用它们进行有关的说理和计算教学难点:通过性质的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.三、教学过程(一)、创设情境、导入新课①多媒体课件展示图片,通过观察图案,指出平行四边形是我们生活中常见的一种图形.②问题情境导入:如图是某区部分街道示意图,其中BC∥AD∥EG,AB//FH∥DC从学校站乘车到书店站只有两条路线有直接到达的公交车,喜羊羊走路线1:学校—E—A—F—书店;美羊羊走路线2:学校—H—O—G—书店.谁先到书店?(二)、概念引入1、两组对边分别平行的四边形叫做平行四边形. 学校书店ACEFGH记作: ABCD 读作:平行四边形ABCD ∵AB∥CD AD∥BC∴四边形ABCD 是平行四边形.或 ∵四边形ABCD 是平行四边形 ∴AB∥CD AD∥BC 教师提示:平行四边形的对边平行 2、下面的图形中 是平行四边形.(三)探索发现 画一画 1、如何画一个ABCD ?2、我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD 一样大小的EFGH ?量一量1、以同桌为单位,用直尺,量角器等工具度量你的平行四边形的边和角,并记录下数据,猜想平行四边形的对边对角之间的关系.教师请部分同学公布测量结果.2、用几何画板动画展示运动中的平行四边形的对边、对角之间的关系.让学生加深对平行四边形的对边,对角的认识.转一转在平行四边形ABCD 中连结AC 、BD ,它们的交点记为O.用一枚图钉在O 点穿过,观察旋转后的 ABCD 与是否重合用几何画板动态展示平行四边形绕对角线交点旋转180度的情况,引导学生推出平行四边形的性质.引导学生得出结论124563平行四边形的性质:平行四边形的对边相等、对角相等 几何语言描述:∵ 四边形ABCD 是平行四边形∴ AB=CD ,AD =BC .(平行四边形的对边相等) ∠D= ∠B, ∠C= ∠B .(平行四边形的对角相等)(四)例题讲解 例1 如图,在ABCD 中,已知∠A =40°,求其它各个内角的度数.解 ∵四边形ABCD 是平行四边形 ∴ ∠C =∠A = 40° ∵ AD ∥BC ,∴ ∠B = 180°-∠A = 180° - 40° = 140° ∴ ∠D = ∠B = 140°变式1.已知: ABCD 中, 若∠A+∠C=80°,你能求出各角的度数吗?说说你的理由.变式2.已知 ABCD 中, 若∠B=2 ∠A ,你能求出各角的度数吗?说说你的理由. 例2如图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长. 解:在□ABCD 中, AB=CD, AD=BC. ∵ AB=8,∴ CD=8. 又∵AB+BC+CD+AD=24, ∴ AD=BC= = 4.变式1.如图:已知平行四边形ABCD 周长等于16,AB :BC=3:5, 求平行四边形的各边长.变式2.如图:已知平行四边形 ABCD ,CD=3cm,BC=5cm,AC=4cm, 求 ABCD 的面积. 试一试如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间这些垂线段的长度.1(242)2AB经过度量,我们发现这些垂线段的长度都相等.由此,我们得到平行线的又一个性质:平行线之间的距离处处相等.(五)巩固提高1、(基础题)如图所示,四边形ABCD 是平行四边形 ①若∠A=120° ,则∠B=.∠C= ;∠D=.②若AB =5,BC =3,求它的周长(请写出推理过程). 解决问题引导学生利用平行四边形的性质解决刚才喜羊羊与美羊羊碰到的问题,2、(提高题)如图所示,在平行四边形ABCD 中BC=9,若BE 平分∠ABC,且把AD 分成两段的长度差为1cm,求CD 的长.(六)小结回顾1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质:(七)作业布置 基础题课本习题18.1第1、2题 中等题对边对边平行且相等角对角相等 邻角互补231ECBDABACDEF C如右图,AB=AC,且AB=5,从等腰三角形底边上任一点,分别作两腰的平行线,求所成的平行四边形AEDF的周长?提高题(深圳中考题)如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将ΔABC向上翻折,点A正好落在CD上的点F处,若ΔFDE的周长为8,ΔFCB的周长为22,则FC的长为单项式与单项式相乘1教学目标知识与技能学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.过程与方法让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.情感、态度与价值观注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性.重点难点重点对单项式运算法则的理解和应用.难点应用单项式与单项式的乘法法则解决数学问题.教学过程一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?1.判断下列计算是否正确,如有错误加以改正.(1)a3·a5=a10;(2)a·a2·a5=a7;(3)(a3)2=a9;(4)(3ab2)2·a4=6a2b4.2.计算:(1)10×102×104=( );(2)(a+b)·(a+b)3·(a+b)4=( );(3)(-2x2y3)2=( ).【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4.(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c.【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则,教师板书.单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知1.3x5·5x3= ,4y·(-2xy3)= .2.3×103×5×102= .3.(-3x2y)·xy2= .4.下列计算正确的是( )A.4a2·2a2=8a6B.2x4·3x4=6x8C.3x2·4x2=12x2D.(2ab2)·(-3abc)=-6a2b3【答案】1.15x8,-8xy4×1063.-x3y34.B四、典例精析,拓展新知【例1】边长是a的正方形面积是a·a,反过来说,a·a也可以看作是边长为a的正方形的面积. 探讨:3a·2a的几何意义.探讨:3a·5ab的几何意义.【答案】可以看做是长为a,宽为5b,高为3a的长方体的体积,也可以看作是长为5a,宽为b,高为3a的长方体的体积.【例2】纳米是一种长度单位,1米=109纳米,试计算长为5米,宽为4米,高为3米的长方体的体积是多少立方纳米?【分析】长方体体积=长×宽×高【答案】6×1028(立方纳米)【教学说明】注意单位换算.五、运用新知,深化理解1.边长分别为2a和a的两个正方形按如图形式摆放,则图中阴影部分的面积是( )A.2a2B.2C.5a2-3aD.a22.光速约为3×105 km/s,太阳光照射到地球所需的时间为5×102 s,则太阳与地球间的距离是km.【答案】1.A ×108【教学说明】第1题若学生思维受阻时,引导阴影部分可以转化成哪些图形的积和差?直角三角形的底和高各是多少?六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.教学反思这节课内容较为简单,在探索单项式乘单项式法则时,注意让学生自己归纳,以提高学生使用数学语言的能力,在推导的过程中,注意每步依据为后面几何证明服务,从而培养逻辑思维能力,变式训练中表达阴影部分面积,旨在培养学生直观图感,将图形语言向数学符号语言转化能力,同时注意转化数学思想的应用.。
分式的约分及最简分式

分式的约分及最简分式①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分 ②分式约分的依据:分式的基本性质.③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式) 约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。
第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。
例1:下列式子(1)y x y x y x -=--122;(2)ca b a a c a b --=--;(3)1-=--b a a b ; (4)yx y x y x y x +-=--+-中正确的是( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个例2:下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 例3:下列式子正确的是( ) A 022=++y x y x B.1-=-+-y a y a C.xz y x z x y -+=+- D.0=+--=+--ad c d c a d c a d c 例4:下列运算正确的是( )A 、a a a b a b =--+B 、2412x x ÷=C 、22a a b b =D 、1112m m m-= 例5:下列式子正确的是( )A .22a b a b =B .0=++b a b aC .1-=-+-b a b aD .ba b a b a b a +-=+-232.03.01.0例6:化简2293mm m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、m m -3 例7:约分: =-2264xyy x ;932--x x = ; ()xyxy 132=; ()y x y x y x 536.03151+=-+。
八年级数学上册(12.1 分式(第2课时))教案 (新版)冀教版 教案

12.1分式(第二课时)
一、教材分析
分式的约分是分式乘除的关键,因而本节不仅要讲明单项式与多项式的约分,还要仔细分析约分的依据,逐步总结约分的方法.
二、学情分析
学生已学过分数的约分,容易理解分式的约分.但分子、分母含多项式的分式在约分时需先进行因式分解.因式分解的方法及约分的一些小窍门还须加强训练.
三、教学目标
1.使学生明确分式的约分概念,掌握约分方法.
2.通过与分数约分作比较,渗透类比的思想.
四、重点、难点
重点:依据分式的基本性质进行约分.难点:分子、分母含多项式的分式的约分
五、教学设计。
人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案

§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时 分式的约分
一、学前准备
【回顾】
1.化简:8
12=____; 12545=____; 26
13=_____.依据是
2.把下列各式分解因式
(1)2
24b ab -=_________; (2)_________422=-y x
(3)
___________4422=+-y xy x (4) ___________232=+-x x 3.不改变分式的值,使下列分式的分子和分母的首项都不含“-”号.
a
b 56--, y x 3-, 2m n m --+, x y y -+-. 试总结符号变化的一般规律:
4.思考:下列分式是怎样从左边变形到右边的?。
(1))0(22≠=y xy by
x b ; (2)y x xy x 2
3=;
二、探究活动
【探究新知】1.填空:(1)(
)215(
)
5xy x y = (2)
()_______1
422
=-+y y
2.思考:○
1完成以上两小题填空的依据是什么? 3.归纳定义:约分----
4.练一练:给下列各式约分
(1)c ab b
a 22
63 (2)53
2164xyz yz x - (3)3482a b ab
5.约分的目的:把分式化为最简分式或整式。
最简分式:
6.想一想:下列分式如何约分?
(1)22424x x x -- (2)22a b a b -+ (3)121
22+--x x x
7.自我归纳:分式约分的步骤是什么?
8.练一练:给下列各式约分
(1)x y y x --3
)(2 (2)22699x x x ++- (3)222a ab a b +-
例1.下列最简分式有哪些?
22
22
22
125()4,,,
,
43()
2b c
x y a b a b a b a
y x
a b a b
b a ++--++--
例2.约分
(1)c b a mc mb ma ++++ (2)222
2444b a b ab a -+-
(3)222
2
242n mn m n
m ++- (4)ac c b a ab c b a 22222222-+-+-+
例3.先化简,再求值:
(1)5,1616
822=-+-x x x x 其中; (2)2,1,222=-=--y x xy y x x 其中.
【课堂自测】
1、
下列分式是最简分式的是:( )
A 、)(35y x y x ++)(
B 、
x 24 C 、mn n m 2 D 、mn n m 22-
2.给下列各式约分
(1)2228mn n m (2)ab bc a 2 (3)b
a b ab a +++3692
2 (4)12236
2+-x x
三、自我测试
1、下列分式a b b
a b a b a b a b a x y y x a c b ----++++、、、)(、24)(3541222222
2中,最简分
式有( )
A 、1个
B 、2个
C 、3个
D 、4个 2、判断正误,并说明原因。
(1)3322
=b b ; (2)b a m b m a =++; (3)022=++am am ;
(4)21
632-=-++x x x x ; (5)b b a b a +=+=+1331632;
(6)a a a a 32
12622=+; (7)m m m m m +-=-+-1111222
3、约分:
① 232636yz z xy - ②16282--m m ③x
y y x --3
)(2
④44422-+-a a a
4、先化简,再求值: 1616
822-+-a a a , 其中a=5 。
四、应用与拓展
1.化简求值:16
)(16
)(8)(22-+++-+b a b a b a ,其中a+b=5.。