圆锥曲线大题(有答案)
全国卷高考数学圆锥曲线大题(带答案)

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线历年高考题(整理)附答案

一、选择题:(60分)
1.椭圆 的离心率是()
A. B. C. D.
2.已知椭圆中心在坐标原点,焦点在 轴上,并且长轴长为12,离心率为 ,则该椭圆的方程为()
A. B. C. D.
3.方程 所表示的曲线是()
A.双曲线B.椭圆C.线段D.圆
4.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率曲线的实轴长和虚轴长。
(2)若 ,点 是双曲线上的任意一点,求 的最小值。
20.已知双曲线 。
(1)求与双曲线 有相同的焦点,且过点 的双曲线 的标准方程。
(2)直线 分别交双曲线的两条渐近线与A,B两点,当 时,求实数 的值。
(A)(B)(C)(D)
5.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则三角形ABC的周长是()
(A)2(B)6(C)4(D)12
6.已知双曲线虚轴的一个端点为M,两个焦点为 , ,则双曲线的离心率为()
A. B. C. D.
7.曲线 与曲线 的()
A. B. C. D.
二、填空题:(30分)
11.双曲线 的虚轴长是实轴长的2倍,则 。
12.已知椭圆的中心在原点,一个焦点为 ,且长轴长是短轴长的2倍,则求该椭圆的标准方程为。
13.已知椭圆 的焦点为 ,点P在椭圆上。若 ,则 的大小为
14.已知点 ,椭圆 与直线 交于点A,B,则 的周长为()
15.已知双曲线 与双曲线 有相同的渐近线,且 的右焦点为 ,则 ( ), ()。
(A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同
8.已知F是双曲线 的右焦点,O为坐标原点,设P是双曲线上一点,则 的大小不可能是()
圆锥曲线经典题目(含答案解析)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE||PF|=2.。
圆锥曲线经典好题目(带答案)

圆锥曲线练习题一、填空题1. 一个动点到两个定点A ,B 的距离的差为定值(小于两个定点A ,B 的距离),则动点的轨迹为________.2. (2011·海安中学模拟)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成5∶3的两段,则此椭圆的离心率为________.3. 已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________.4. (2010·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________.5. 已知P 为抛物线y 2=4x 的焦点,过P 的直线l 与抛物线交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线x =-1上.试猜测:如果P 为椭圆x 225+y 29=1的左焦点,过P 的直线l 与椭圆交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线________上.6. 过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.7. (2010·重庆)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.8. 已知过椭圆的左焦点F 1且倾斜角为60°的直线交椭圆于A 、B 两点,若F 1A =2F 1B ,则椭圆的离心率为________.二、解答题9. 抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为⎝⎛⎭⎫32,6.求抛物线与双曲线的方程.10. 如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.O lxyA B F ·M第17题 11. 如图,已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值; (Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.12. 如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长轴为AB ,过点B 的直线l 与x 轴垂直.直线(2-k )x -(1+2k )y +(1+2k )=0(k ∈R )所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=32. (1)求椭圆的标准方程;(2)设P 是椭圆上异于A 、B 的任意一点,PH ⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ ,连结AQ 延长交直线l 于点M ,N 为MB 的中点.试求OQ →·NQ →的值,并由此判断直线QN 与以AB 为直径的圆O 的位置关系.参考答案1. 双曲线的一支 解析:由双曲线的定义可知是双曲线的一支,故填双曲线的一支.2. 255 解析:由题意可知FF 2=38F 1F 2,即c -b 2=38⨯2c ,化简得c =2b ,所以c 2=4(a 2-c 2),此椭圆的离心率e =c a =255.3. x 2=-4y 解析:圆心到定点(0,-1)的距离与到定直线y =1的距离相等,都等于圆的半径,由抛物线的定义可知,动圆圆心的轨迹是以定点为焦点,定直线为准线的抛物线,其方程为x 2=-4y .4. x 24-y 212=1 解析:由渐近线方程可知ba =3,① 因为抛物线的焦点为(4,0),所以c =4,② 又c 2=a 2+b 2,③联立①②③,解得a 2=4,b 2=12,所以双曲线的方程为x 24-y 212=1.5. x =-254解析:x =-1是抛物线的准线,应用类比推理可知点Q 所在的定直线为椭圆的左准线,其方程为x =-254.6. 2 解析:由题意可知过焦点的直线方程为y =x -p 2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2⇒x 2-3px +p 24=0, 由AB =x 1+x 2+p =8,得4p =8⇒p =2. 7. 83解析:如图,过点A 、B 作准线的垂线交准线于A 1B 1,过B 作BC ⊥AA 1于C ,设BF =m ,由抛物线的定义知AA 1=3m ,BB 1=m ,∴△ABC 中,AC =2m ,AB =4m ,k AB =3,直线AB 方程为y =3(x -1),与抛物线方程联立消y 得3x 2-10x +3=0,所以AB 中点到准线距离为x 1+x 22+1=53+1=83.8. 23解析:如图,过B 作AC 的垂线,垂足为E ,由题意和椭圆第二定义可知E 为AC 的中点,cos 60︒=AE AB =DB 3BF 1=13e ,故e =23.9. 由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px (p >0),将交点⎝⎛⎭⎫32,6代入得p =2,故抛物线方程为y 2=4x ,焦点坐标为(1,0),这也是双曲线的一个焦点,则c =1.又点⎝⎛⎭⎫32,6也在双曲线上,因此有94a 2-6b2=1.又a 2+b 2=1,解得a 2=14,b 2=34,因此,双曲线的方程为4x 2-4y 23=1.10. 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程整理得y 2-2pmy +2pm =0,由韦达定理得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积 S =12⨯p 2|y 1-y 2|=12⨯(-m )⨯4m 4+m 2=22,两边平方即可得m 6+m 4=2. 11.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x = 设⊙M 的半径为r ,则122cos 60OB r =⋅=, 所以M 的方程为22(2)4x y -+=(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++ 所以当0x =时, PM PF ⋅有最小值为2(Ⅲ)以点Q 为圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+ 从而直线TS 的方程为320x ty --=(*)因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线TS 恒过一个定点,且该定点坐标为2(,0)312. (1)将(2-k )x -(1+2k )y +(1+2k )=0整理得 (-x -2y +2)k +2x -y +1=0.解方程组⎩⎪⎨⎪⎧-x -2y +2=0,2x -y +1=0,得直线所经过的定点(0,1),所以b =1.由离心率e =32得a =2,所以椭圆的标准方程为x 24+y 2=1.。
圆锥曲线23道经典题(含答案)

= 1(a > b > 0)左、右焦点为 F1、 F2离心率为
3 3
过
F2
的直线
l交C于A、
B两点,若 Δ AF1B的周长为 4 3则C的方程为( )
A.
x2 3
+
y2 2
=1
B.
x2 3
+ y2
=1
C.
x2 12
+
y2 8
=1
D.
x2 12
+
y2 4
=1
3(2014重庆8,5分)
设
F1
F2 分别为双曲线
11
12
13
14 抛物线的标准方程为 x2 = -12y ,由此可以判断焦点在 y 轴上且开口向下且 p=6, 所以其准线方程为 y=3 15
16
17 18
19
20 21
22
23
24
− y0y
=
1与直线AF相交于点M,与直线
x
=
3 2
相交于点N。证明:当点P在C上移动时,
∣N
F
∣ 恒为定值,并求出此定值。
19(2014陕西,20,13分)
2
如图,曲线C
由上半椭圆
C1
y2 a2
+
x2 b2
= 1(a > b > 0, y ⩾ 0)和部分抛物线
C2 : y = −x2 + 1(y ⩽ 0)连接而成, C1与 C2的公共点为A,B,其中 C1的离心率为
1)作斜率为
−
1 2
的直线与椭圆
C
:
x2 a2
+பைடு நூலகம்
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题1.( 2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分 已知椭圆C 的两个焦点分别为只(1,0)、F 2(1, 0),短轴的两个端点分别为B (1) 若RBB2为等边三角形,求椭圆c 的方程;ujir (2) 若椭圆C 的短轴长为2 ,过点F 2的直线I 与椭圆C 相交于P 、Q 两点,且F 1P2 2【答案】[解](1)设椭圆C 的方程为x 2y 2 1(a b 0).a ba 2b2 42 1根据题意知。
…,解得a 2 4, b 2' a 2 b 21 332 2故椭圆C 的方程为X y 1.41 3 32⑵ 容易求得椭圆C 的方程为X y 21.2当直线I 的斜率不存在时,其方程为x 1,不符合题意; 当直线I 的斜率存在时,设直线I 的方程为y k(x 1).设 P(X 1,yJ ,Q(X 2, y 2),则unr uuir uir uur 因为F 1P F 1Q ,所以F 1P FQ 0,即4分,第2小题满分9分.B 2uurFQ ,求直线I 的方程•y k(x 由x22—y 21)x 2 4k 2x 2(k 21) 0.x X 24k 2 2k 2严2(k 2 2k1) uiruuir(X 1 1,yJ, FQ (X 2 1小)1)得(2k 2 1解得k 21,即k 7所以,a 2. 又由已知,c 1,所以椭圆C 的离心率e C 12a V 222X2由 知椭圆C 的方程为—y 1.设点Q 的坐标为(x,y).⑵ 当直线l 与x 轴不垂直时,设直线l 的方程为y kx 2 .因为M,N 在直线I 上,可设点M,N 的坐标分别为(石,心 2),(x 2,kx 2 2),则2 2(k1)x 1x 2 (k 21)(x 1 x 2) k 17 k 2 1 2 k 2 10,故直线l 的方程为x7y 10 或 x 7y2. (2013年高考四川卷(理)) 2已知椭圆C : x 2 a 2y 2 1,(a b 0)的两个焦点分别为 R( b1,0),F 2(1,0),且椭圆(I )求椭圆C 的离心率;(n )设过点 A(0,2)的直线I 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且1 ,22 | AQ|2| AM |2 ,求点Q 的轨迹方程•|AN |2【答案】解:2a PF 1PF 2(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于0,1 , 0, 1两点,此时Q 点坐标为0,22 2 2 2AM | (1 k2)x;,AN (1 2 2k )X2 . 又AQ (1 k2)x2.AM2k2x1k2AN—2X111 k2X22,即12X2X1X22X X222x1x22kx 2代入y21中,得2k28kx8k 2k2 1 6 0,得k2由②可知x!X2代入①中并化简,得8k2k21,X1X218210k2 3因为点Q在直线y kx 2上,所以3由③及k2,可知02 x2;,即xy 2,代入③中并化简,得10x26,0 0, 6223x218.又0,2 聖5满足105 3x218,故x由题意,Qx, y在椭圆C内部,所以1, 又由10 y 18 3x2有所以点Q的轨迹方程是10 y 3x218 ,其中, 1,2 23.( 2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2C :x2a2;2 1(a b 0)的左、右焦点分别是F1, F2,离心率为3,过F1且垂直于x轴的直线被椭圆2C截得的线段长为1.M (m,0),求m 的取值范围----------------- umv ujuv ujuv uuuv uuv ujuv uuuv ujuv(n )由题意可知:UJUV uUJv = UUUV uUJv , PF Uuu/M = PF Juuv M ,设 P(x o ,y 0)其中 x 2 4,将向量坐标代|PF 1||PM| |PF 2||PM| |PR| IPF 2I2 3 2入并化简得:m(4x° 16) 3x 0 12x 0,因为x 0 4,33 3 所以 m — x °,而 X o ( 2,2),所以 m (—,—)42 22X (3分+5分+8分)如图,已知曲线 G :21,曲线C 2 :| y | | x| 1 ,P 是平面上一点,若存在过点P 的直线与G ,C 2都有公共点,则称P 为“C 1—C 2型点” (1)在正确证明 G 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线 ,试写出一条这样的直线的方程(不要求验证);2【答案】解:(I )由于c2a .2b ,将x2b 212e由题意知 a,即a 2b又所以a 2, b1 所以椭圆方程为2 xC 代入椭圆方程a2b 2 1得yb 2 aC 3a22x— y 1 44.( 2013年高考上海卷(理))【答案】:(1)C 1的左焦点为F (3,0),过F 的直线x与C 交于(\3,/),与C 2交于(J 3, W3 1)),故C 的左焦点为“C 1-C 2型点”,且直线可以为x5 .( 2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点P(0, 1)是椭圆2 2C 1: —— 1(a b 0)的一个顶点,C 1的长轴是圆C 2: x 2a by 2 4的直径.h, I ?是过点P 且互相垂直的两条直线,其中h 交圆C2于两点,I2交椭圆G 于另一点D (1)求椭圆G 的方程2【答案】解:(I )由已知得到 b 1,且-a 4 a -,所以椭圆的方程是 X y - 1;46.( 2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题轴上,离心率,过左焦点作轴的垂线交椭圆于两点 (1)求该椭圆的标准方程;,过作圆心为的圆,使椭圆上的其余点均在圆外 .若,求圆的标准方程.a - 0 a (0,1) X (0,1), y (0,1).(21)图,椭圆的中心为原点,长轴在⑵ 取垂直于轴的直线与椭圆相交于不同的两点7.( 2013年普通高等学校招生统一考试安徽数学(理)试题)设椭圆2 E :2a2—y 2 1的焦点在X 轴上1 a - (I )若椭圆E 的焦距为1,求椭圆E 的方程;( n )设F 1,F -分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线F ?P 交y 轴与点Q ,并且RPFQ ,证明:当a 变化时,点p 在某定直线上【答案】解:(I) a 21 a - ,2C 1,a -1 a -椭圆方程为:8x 28x 21.5 3设F 1 ( c,0), F 2(C ,0),P(X , y),Q(0, m),则F ?P (x C , y),QF 2(C , m).(X c, y),RQ (c,m).由F 2P//QF2FP—— m(c X ) F 1Q得:C (X C )yc my 02 2已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 (i )求C 的方程;(n )是与圆,圆都相切的一条直线,与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆的圆心为 (-1,0),半径=1,圆的圆心为(1,0),半径=3. 设动圆的圆心为(,),半径为R.(I 厂•圆与圆外切且与圆内切,•••|PM|+|PN|===4,由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为• (n )对于曲线 C 上任意一点(,),由于|PM|-|PN |= < 2, • R W 2, 当且仅当圆P 的圆心为(2,0)时,R=2. •当圆P 的半径最长时,其方程为, 当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由MR 知不平行轴,设与轴的交点为 Q,则=,可求得Q(-4,0), •••设:,由于圆M 相切得,解得. 当=时,将代入并整理得,解得=,• |AB|==. 当=-时,由图形的对称性可知|AB|=, 综上,|AB|=或 |AB|=.31 9【答案】解:(1)由P(1,)在椭圆上得,221①2a 4b依题设知a 2c ,则b 2 3c 2 ②②代入①解得c 2 1,a 2 4,b 2 3.(X c )(xc ) y 1 2x2a2 2c .联立 x2a1 2y 1 y2" a2 c 2a解得 2c2x 2 x 2y 21 2y2 1(y 1)2-(o,i ),y(0,1) X 1 y 所以动点P 过定直线x y 10.C.8 (2013年高考江西卷2x (理))如图,椭圆C : 2 a 2+古3 1 =1(a>b>0)经过点P(1,),离心率e 二一,直线I 的方程为x=4 .2 22 2故椭圆C 的方程为x y 1.4 3⑵方法一:由题意可设 AB 的斜率为k ,则直线AB 的方程为y k(x 1)③代入椭圆方程3x 2 4y 2 12并整理,得(4k 2 3)x 2 8k 2x 4(k 2 3) 0, 设 A(X 1,y 1),B(X 2,y 2),则有32k2 x 1 x 21),则直线FB 的方程为:y —y ^(x 1),X 。
1令 x 4,求得 M (4, 3y o ),X o 12 28k3级第3)④4k 2在方程③中令 x 4得,M 的坐标为(4,3k).3 从而 k 1 ------- 2, k 2x 1y 1 3 x 2 13k 3 ___ 2 4 1注意到A,F,B 共线,则有k k AFk BF ,即有y 11y 21所以k 1 k 23 y1 2 x 1 13 y2 — 72 2 x 2 1y 1x 1 1 y 2 x 2 1 3( 2 x 1 1 X212)④代入⑤得K k 2 2k8k22 3 4(k 2 3) 8k 2 4k 2 34k 2 3 4k 22k 11, 又k 3 k12,所以k1k 2 2 k g .故存在常数2符合题意.x 1x 2 (x-1 x 2)方法二:设 B(x o ,y o )(x o从而直线PM的斜率为k32y o x o 1 2(x o 1)y y\(x 1)联立X。
1,得A(5X O 8 3y o), X2y 42X0 5‘2X0 5———14 3则直线PA的斜率为:匕2y0 2X0 5,直线PB的斜率为:k22 y2(X031)'所以k1k22y—2X—52(X0 1)2(X0 1)2 y32(X0 1)2y;0;1 2k3,故存在常数2符合题意•9.( 2013年广东省)已知抛物线C的顶点为原点,其焦点F 0,c c 0到直线I: X y 2 0的距离为3 2设P为直线l上的点,过点P作抛物线C的两条切线P代PB ,其中A,B为切点•2(I)求抛物线C的方程;(n)当点P X o,y。