我的高考数学错题本(高一三角函数选编)
高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析1.化简 = ;【答案】【解析】【考点】本题主要考查两角和与差的正切公式。
点评:在三角函数的化简与求值时,通常将常数写成角的一个三角函数,再根据有关公式进行变形。
2.若x∈(0,2π),函数的定义域是A.( ,π]B.( ,π)C.(0,π)D.( ,2π)【答案】A【解析】为使函数有意义须,即,又x∈(0,2π),所以x∈( ,π],故选A。
【考点】本题主要考查三角函数的图象和性质。
点评:求三角函数的定义域,应特别注意正切函数本身的定义域。
3.若,试求y=f(x)的解析式.【答案】y=【解析】由x=sinθ+cosθx2=1+2sinθcosθsinθcosθ=∴y=f(x)=sinθcosθ=【考点】本题主要考查任意角的三角函数、同角公式的应用。
点评:的互求,常常通过平方(开方)实现,这类题属于常考题型。
4.将角α的终边顺时针旋转,则它与单位圆的交点坐标是A.(cosα,sinα)B.(cosα,-sinα)C.(sinα,-cosα)D.(sinα,cosα)【答案】C【解析】α的终边与单位圆的交点坐标为,将角α的终边顺时针旋转,对应角为-,所以它与单位圆的交点坐标是,即(sinα,-cosα),故选C。
【考点】本题主要考查任意角的三角函数、单位圆、诱导公式的应用。
点评:属于常考题型,应用诱导公式转化。
5.使tanx-有意义的x的集合为 .【答案】{x|x∈R且x≠,k∈Z}【解析】为使tanx-有意义,须,即角x终边不能落在坐标轴上,所以x≠,故使tanx-有意义的x的集合为{x|x∈R且x≠,k∈Z}。
【考点】本题主要考查任意角的三角函数定义。
点评:求三角函数的定义域,应特别注意正切函数本身的定义域。
6.已知0°≤θ<360°,θ角的7倍的终边和θ角重合,试求θ角【答案】θ=0°,θ=60°,θ=120°θ=180°,θ=240°,θ=300°【解析】根据终边相同角的关系式7θ=θ+k·360,k∈Z,则θ=k·60°。
我的高考数学错题本——第5章三角函数与解三角形易错题.docx

我的高考数学错题本第5章三角函数与解三角形易错题易错点1角的概念不清例1若0、0为第三象限角,且Q 〉0,则()A. cos a > cos [iB. cos a < cos p c. cosa = cos0 D.以上都不对【纠错训练1】己知a 为第三象限角,则纟是第象限角,2a 是第象限角.2 ------ ---------------------------易错点2忽视对角终边位置的讨论致误例2若G 的终边所在直线经过点P(cos —,sin —),贝Usina = ______________ .4 4【纠错训练2】函数尸語+豐+器的值域是()A. {-1, 1}B ・{1, 3}C ・{1, -3} D. {-1, 3}易错点3遗忘同角三角关系的齐次转化例3 已知 tan& = J^,求(1) cos" + sin & ; &)$庆&一 sin&.cos& +2cos ,& 的值.cos&-sin&【纠错训练4】己知tan0 = 2,则sin 2&-sin&cos0 + cos' & = ______________ 易错点4忽视函数的定义域对角范围的制约致错 例4求函数y 二'tan :的最小正周期.* 1-tan 2 %【纠错训练3】如果sino-2cosa 3sina + 5cosa =-5 ,那么tan a 的值为( A. —2B. 2C.23 16D. 23 ?6【纠错训练5】函数f(x) = sinxcosx 1 + sinx + cosx 的递增区间.A. 先将每个值扩大到原来的4倍,B. 先将每个值缩小到原来的丄倍,4 C. 先把每个值扩大到原来的4倍,〉,值不变,再向右平移彳个单位. y 值不变,再向左平移兰个单位. y 值不变,再向左平移个彳单位.易错点5对“诱导公式中的奇变偶不变,符号看象限理解不对”致误 例5若sin7C'1 mI——a =-,则 cos + 2a =( )<6 ) 3 < 3711 7 A. 一B. 一 —C.— D ・-933 9【纠错训练6】记cos(—80°) = R,那么tanlOO° = ()y/}-k 2 k-易错点6忽略隐含条件例6若sinx + cosx-1 > 0,求的取值范围•易错点7因“忽视三角函数中内层函数的单调性”致错 例7 y = 2sin(--2x)单调增区间为(仪0 +詁闷+罰gZ)的单调递增区间为 __________ 易错点8图象变换知识混乱/\1例8要得到函数y = sin 2%一一的图彖,只需将函数y = sin-x 的图彖()I 3丿 2D.k yj\-k 2【纠错训练7】已知ae (0,^),sincr + cosa =—,求tana 的值.13A.jrrrC. [k7r--.kjr + -]f (keZ)3 6ji2D . [A TT + 彳,A TT + s 龙],伙G Z)【纠错训练8] (2015 ±海市普陀区高三二模)若05兀5龙,则函数y = sin z7t —+XCOS| jrD. 先把每个值缩小到原来的一倍,丿值不变,再向右平移丝个单位•4 67T【纠错训练91(2015浙江五校联考)要得到函数y = sin2x 的图象,只需将函数y = cos (2x-y )的图象 ()A. 向右平移2个单位长度6B.向左平移严个单位长度6 C. 向右平移王个单位长度D.向左平移兰个单位长度1212易错点9已知条件弱用例9在不等边AABC 中,a 为最大边,如果a 2 <b 2 +c 2,求A 的取值范围.易错点10三角变换不熟练Z7〜 t 久A例]。
第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析1.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
2.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
3.函数y=tan x是A.周期为π的偶函数B.周期为π的奇函数C.周期为π的偶函数D.周期为π的奇函数【答案】B【解析】函数定义域关于原点对称,且,所以函数为奇函数;又因为=tan x,所以周期为π,故选B。
【考点】本题主要考查三角函数的性质。
点评:简单题,利用周期函数、奇偶函数的定义判断。
4.已知θ角终边上一点M(x,-2),,则sinθ=____________;tanθ=____________.【答案】【解析】由三角函数定义,所以=3,,故sinθ=,tanθ=。
【考点】本题主要考查任意角的三角函数定义、同角公式。
点评:待定系数法的应用,分类讨论思想的应用,常考题型5.设(m>n>0),求θ的其他三角函数值.【答案】见解析。
【解析】∵m>n>0,∴>0∴θ是第一象限角或第四象限角.当θ是第一象限角时:sinθ==tanθ=当θ是第四象限角时:sinθ=-tanθ=【考点】本题主要考查任意角的三角函数同角公式。
点评:运用了平方关系求值时,要特别注意讨论开方运算中正负号的选取。
6.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°【答案】2【解析】原式=2-(sin221°+cos 221°)+sin217°(sin217°+cos 217°)+cos 217°=2-1+sin217°+cos 217°=1+1=2【考点】本题主要考查任意角的三角函数同角公式。
高一数学三角函数测试题(完整版)

高一数学三角函数测试题命题人:谢远净一、选择题(每小题5分,共50分.在每小题给出的四个选项中,仅有一个选项是正确的) 1.角α的终边上有一点P (a ,a ),a ∈R 且a ≠0,则sinα值为 ( )A .22-B .22 C .1 D .22或22-2.函数x sin y 2=是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 3.若f (cos x )=cos3x ,则f (sin30°) 的值( )A .1B .-1C .0D .214.“y x ≠”是“y x sin sin ≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m 等于 ( )A .32B .32-C .34-D .-2 6.αααα2cos cos 2cos 12sin 22⋅+=( )A .tan αB .tan 2αC .1D .127.sinαcosα=81,且4π<α<2π,则cosα-sinα的值为 ( )A .23 B .23- C .43 D .43-8.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为()A .)48sin(4π+π-=x yB .)48sin(4π-π=x yC .)48sin(4π-π-=x yD .)48sin(4π+π=x y9.若tan(α+β)=3, tan(α-β)=5, 则tan2α= ( )A .74 B .-74 C .21 D .-2110.把函数)20(cos 2π≤≤=x x y 的图象和直线2=y 围成一个封闭的图形,则这个封闭图形的面积为 ( )A .4B .8C .2πD .4π11.9.设)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是 ( )A .1813B .2213 C .223 D .6112.已知α+ β =3π, 则cos αcos β –3sin αcos β –3cos αsin β – sin αsin β 的值为 ( )A .–22B .–1C .1D .–2二、填空题(每小题4分,共16分。
高三复习三角函数经典错题集

高中数学三角函数部分错题精选一、选择题:1.(如中)为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.(如中)函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B3.(石庄中学) 曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π 正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。
4.(石庄中学)下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.(石庄中学)函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6.(石庄中学) 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。
高中数学高考复习易错题分类《三角函数》易错题试题200

高中数学高考复习易错题分类《三角函数》易错题 试题 2019.091,如果2πlog |3π|log 2121≥-x ,那么x sin 的取值范围是( )A .21[-,]21 B .21[-,]1 C .21[-,21()21 ,]1 D .21[-,23()23 ,]12,函数x x y cos sin =的单调减区间是( ) A 、]4,4[ππππ+-k k (z k ∈) B 、)](43,4[z k k k ∈++ππππC 、)](22,42[z k k k ∈++ππππ D 、)](2,4[z k k k ∈++ππππ3,已知y x y x sin cos ,21cos sin 则=的取值范围是( )A 、]21,21[-B 、]21,23[-C 、]23,21[- D 、]1,1[-4,在锐角∆ABC 中,若C=2B ,则b c的范围是( )A 、(0,2)B 、)2,2(C 、)3,2(D 、)3,1(5,函数[]上交点的个数是,的图象在和ππ22tan sin -+=x y x y ( ) A 、3 B 、5 C 、7 D 、96,在△ABC 中,,1cos 3sin 4,6cos 4sin 3=+=+A B B A 则∠C 的大小为 ( )A 、30°B 、150°C 、30°或150°D 、60°或150°7,()的最小正周期为函数x x x x x f cos sin cos sin -++=( )A 、π2B 、πC 、2πD 、4π8,的最小正周期为函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y ( )A 、πB 、π2 C 、2π D 、23π9,已知奇函数()[]上为,在01-x f 等调减函数,又α,β为锐角三角形内角,则( )A 、f(cos α)> f(cos β)B 、f(sin α)> f(sin β)C 、f(sin α)<f(cos β)D 、f(sin α)> f(cos β)10,设()[]上为增函数,,在=函数43sin ,0ππωω->x x f 那么ω的取值范围为( )A 、20≤>ωB 、230≤>ω C 、7240≤>ω D 、2≥ω11,已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tanβα+的值是_________________.12,已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________.13,若()π,0∈A ,且137cos sin =+A A ,则=-+A A AA cos 7sin 15cos 4sin 5_______________.14,函数f x a x b ()s i n =+的最大值为3,最小值为2,则a =______,b =_______。
高一上数学错题本(有答案)

1函数f(x)=ax2-(3a-1)x+a2在区间(1,+∞)上单调递增,则a的取值范围是__________________2已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x-1)<f(-x )的x的取值范围是__________________3已知定义域为R的偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(-1)的x取值范围是______.3. 设定义在R上的函数f(x)满足f(x)f(x+2)=13,若f(1)=2,f(2017)___________n为正整数,则f(2n-1)= __________________4. 设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x+a2/x+7,若f(x)≥a+1对一切x≥0成立,则a的取值范围为____________.5. 已知实数a,b,c满足a>b>c,且a+b+c=0.若x1,x2为方程ax2+bx+c=0的两个实数根,则|x12-x22|的取值范围为__________________.6不等式ax2+ax-1<0对于任意实数x恒成立,则实数a的取值范围是__________________.7设奇函数f(x)的定义域为[-5,5],当x∈[0,5]时,函数y=f(x)的图象如图所示,则使函数值y<0的x的取值集合为______.由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).故答案为(-2,0)∪(2,5)8.奇函数y=f(x)的图像与x轴有三个交点,则方程f(x)=0的所有根之和为奇函数y=f(x)的图像关于原点对称,所以f(0)=0,设x1是f(x)=0的非零根,即f(x1)=0,则f(-x1)=-f(x1)=0,所以-x1也是f(x)=0的非零根,与x轴有三个交点,共有三个根,所以所有根之和为x1+0+(-x1)=0911对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数f(x)=kX/(1+|x|),(k≠0)在R上封闭,那么实数k的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我的数学错题本 三角函数与解三角形易错题
易错点1 角的概念不清
例1 若α、β为第三象限角,且βα>,则( )
A .βαcos cos >
B .βαcos cos <
C .βαcos cos =
D .以上都不对
【纠错训练1】已知α为第三象限角,则2α
是第 象限角,α2是第 象限角.
易错点2 忽视对角终边位置的讨论致误
例2 若α的终边所在直线经过点33(cos
,sin )44
P ππ,则sin α= . 【纠错训练2】函数y =sin x |sin x |+|cos x |cos x +tan x |tan x |的值域是( ) A .{-1,1} B .{1,3} C .{1,-3} D .{-1,3}
易错点3 遗忘同角三角关系的齐次转化
例3 已知2tan =
θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.
【纠错训练3】如果5cos 5sin 3cos 2sin -=+-α
ααα,那么αtan 的值为( ) A .-2 B .2 C .-1623 D .16
23 【纠错训练4】已知,则22sin sin cos cos θθθθ=-+ .
易错点4 忽视三角函数的有界性对范围的制约致错
例4 求函数()sin cos sin cos ,()f x x x x x x R =++⋅∈的最大值与最小值。
易错点5 对“诱导公式中的奇变偶不变,符号看象限理解不对”致误
例5 若316sin =⎪⎭⎫
⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( ) A .97- B .31- C .31 D .9
7 易错点6 忽略隐含条件
例6.已知()0,απ∈,7sin cos 13
αα+=
,求tan α的值.
tan 2θ=
易错点7 因“忽视三角函数中内层函数的单调性”致错
例7 )23sin(
2x y -=π单调增区间为( ) A .5[,]1212k k ππππ-
+,()k Z ∈ B .]1211,125[ππππ++k k ,()k Z ∈ C .]6,3[π
πππ+-k k ,()k Z ∈ D .2[,]63
k k ππππ++,()k Z ∈ 【纠错训练4】(2015上海市普陀区高三二模)若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭
的单调递增区间为 .
易错点8 图象变换知识混乱
例8 要得到函数sin 23y x π⎛
⎫=- ⎪⎝⎭的图象,只需将函数1sin 2
y x =的图象( ) A .先将每个值扩大到原来的4倍,y 值不变,再向右平移
3
π个单位长度. B .先将每个值缩小到原来的14倍,y 值不变,再向左平移3
π个单位长度. C .先把每个值扩大到原来的4倍,y 值不变,再向左平移个6
π单位长度. D .先把每个值缩小到原来的14倍,y 值不变,再向右平移6π个单位长度. 【纠错训练5】(2015浙江五校联考)要得到函数s i n 2
y x =的图象,只需将函数πcos(2)3
y x =-的图象( ) A .向右平移π6个单位B .向左平移π6个单位C .向右平移π12个单位 D .向左平移π12
个单位 纠错巩固
1. 在ABC ∆中,A B 、为锐角,且sin A B =
=,求A B +的值。
2.已知1sin sin 3
x y +=,求2sin cos y x -的最大值。
3.已知函数y=cos(4
π-2x),求它的单调减区间。
4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛
⎫=- ⎪3⎝⎭
的图象( ) A 向右平移π6个单位 B 向右平移π3个单位 C 向左平移π3个单位D 向左平移π6个单位。