湖北省巴东一中高二数学教案 选修1-2:3.1.1复数的概念与扩充

合集下载

高中数学 3.1.2 复数的几何意义教案 选修1-2

高中数学 3.1.2 复数的几何意义教案 选修1-2

3.1.2 复数的几何意义(教师用书独具)●三维目标1.知识与技能理解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数模的概念及几何意义,会求复数的模.2.过程与方法渗透转化、数形结合等数学思想和方法,提高分析、解决问题的能力.3.情感、态度与价值观引导学生观察现象、发现问题、提出观点、验证结论、培养良好的学习思维品质.●重点难点重点:复数的几何意义及复数的模.难点:复数的几何意义及模的综合应用.树立复数与坐标平面内的点的一一对应、复数与向量的一一对应的意识,是将复数由代数形式引向几何形式的关键环节,通过图形展示,让学生直观、形象的探索其内在联系,可以降低理解难度.(教师用书独具)●教学建议建议本课在教师的指导下作小范围的必要的教学探索活动,使整个教学更有序,更有效,激发学生兴趣,锻炼学生毅力,兴趣是学习良好的开端,毅力是学习的保证.让学生由实数的绝对值的几何意义,类比复数模的几何意义,探索复数模的几何应用.可以利用多媒体教学,展示复数与坐标平面的对应关系及复数模的几何意义,引导学生利用数形结合的思想去分析问题、解决问题.●教学流程创设问题情境,引出问题,引导学生认识复数几何意义.了解复数模的定义、作用、计算方法.让学生自主完成填一填,使学生进一步了解复数与平面内的点的对应关系,复数与向量的对应关系.引导学生分析例题1的已知条件和问题(1)(2)应满足的条件.学生自主完成求解过程,教师指导完善.完成互动探究.学生分组探究例题2解法,总结利用复数相等条件求参数的规律方法.完成变式训练.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3互动探究,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.课标解读1.理解可以用复平面内的点或以原点为起点的向量来表示复数以及它们之间的一一对应关系.(重点)2.理解复数模的概念,会求复数的模.(难点)复平面【问题导思】1.复数z=a+b i(a,b∈R)与有序实数对(a,b)有怎样的对应关系?【提示】一一对应.2.有序实数对与直角坐标平面内的点有怎样的对应关系?【提示】一一对应.3.复数集与平面直角坐标系中的点集之间能一一对应吗?【提示】一一对应.建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.复数的几何意义【问题导思】1.平面直角坐标系中的点Z与向量OZ→有怎样的对应关系?【提示】一一对应.2.复数集与平面直角坐标系中以原点为起点的向量集合能一一对应吗?【提示】一一对应.(1)复数z=a+b i(a,b∈R)―→一一对应复平面内的点Z(a,b).(2)复数z=a+b i(a,b∈R)―→一一对应平面向量OZ→.为方便起见,我们常把复数z=a+b i说成点Z或说成向量OZ→,并且规定,相等的向量表示同一个复数.复数的模向量OZ→的模r叫做复数z=a+b i的模,记作|z|或|a+b i|,且r=a2+b2(r≥0,且r ∈R).复平面内的点同复数的对应关系(1)位于虚轴上;(2)位于第三象限.【思路探究】找出复数z的实部、虚部,结合(1)(2)的要求写出满足的条件.【自主解答】 复数z =2m +(4-m 2)i 对应复平面内点的坐标P 为(2m,4-m 2).(1)若P 在虚轴上,则⎩⎪⎨⎪⎧2m =0,4-m 2≠0,即m =0.(2)若点P 在第三象限,则⎩⎪⎨⎪⎧2m <0,4-m 2<0,解得m <-2.∴当点P 位于第三象限时,实数m 的范围是(-∞,-2). 1.复数z =a +b i(a ,b ∈R )复平面内的点(a ,b ).2.判断复数对应点的位置,关键是找出相应复数的实部和虚部. 在题设不变的情况下,求满足下列条件的实数m . (1)在实轴上;(2)在直线y =x 上.【解】 (1)若点在实轴上,则4-m 2=0,即m =±2. (2)若点在直线y =x 上,则4-m 2=2m ,解得m =-1± 5.复数的模的求法已知复数z 满足z +|z |=2+8i ,求复数z .【思路探究】 设z =a +b i(a ,b ∈R ),代入等式后,可利用复数相等的充要条件求出a ,b .【自主解答】 法一 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2, 代入方程得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.∴z =-15+8i.法二 原式可化为 z =2-|z |+8i , ∵|z |∈R ,∴2-|z |是z 的实部, 于是|z |=2-|z |2+82,即|z |2=68-4|z |+|z |2,∴|z |=17. 代入z =2-|z |+8i 得z =-15+8i.计算复数的模时,应先找出复数的实部和虚部,然后再利用模的公式进行计算,两个虚数不能比较大小,但它们的模可以比较大小.求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们的模的大小.【解】 |z 1|=36+64=10,|z 2|=-122+-22=14+2=32,|z 1|>|z 2|.复数的模及其几何意义已知复数z 1=-3+i ,z 2=-12-32i ,(1)求|z 1|与|z 2|的值,并比较它们的大小.(2)设复平面内,复数z 满足|z 2|≤|z |≤|z 1|,复数z 对应的点Z 的集合是什么? 【思路探究】 (1)利用复数模的定义来求解.若z =a +b i(a ,b ∈R ),则|z |=a 2+b 2. (2)先确定|z |的范围,再确定点Z 满足的条件,从而确定点Z 的图形. 【自主解答】 (1)|z 1|=-32+12=2.|z 2|=-122+-322=1.∵2>1,∴|z 1|>|z 2|. (2)由(1)知|z 2|≤|z |≤|z 1|, 则1≤|z |≤2.因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点的集合,不等式|z |≤2的解集是圆|z |=2上和该圆的内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆及所夹的圆环.1.两个复数不全为实数时不能比较大小;而任意两个复数的模均可比较大小. 2.复数模的意义是表示复数对应的点到原点的距离,这可以类比实数的绝对值,也可以类比以原点为起点的向量的模来加深理解.3.|z 1-z 2|表示点z 1,z 2两点间的距离,|z |=r 表示以原点为圆心,以r 为半径的圆. 如果将本题中|z 2|≤|z |≤|z 1|,改为|z 2|<|z |<|z 1|,复数z 对应的点Z 的集合是什么? 【解】 |z 2|<|z |<|z 1|⇒1<|z |<2,则复数z 的轨迹为以原点O 为圆心,1、2为半径的圆环且不包括边界,注意区别.因对复数的模理解不到位而导致错误试研究方程x 2-5|x |+6=0在复数集上解的个数.【错解】 将方程变为|x |2-5|x |+6=0⇒|x |=2或|x |=3⇒x =±2或x =±3,故共有4个.【错因分析】 这里常出现将|x |看成“绝对值”从而出现错误的解法,注意这里|x |是一个复数的模,它不等同于实数的绝对值,x 2也不能写成|x |2.【防范措施】 (1)认真审题,看清限制范围是实数还是复数. (2)弄清复数的模与实数绝对值的区别.(3)理解|z |的意义及|z |的计算方法.(4)善于利用转化思想,把复数方程转化为实数方程组求解. 【正解】 设x =a +b i(a ,b ∈R ),则原方程可化为a 2-b 2-5a 2+b 2+6+2ab i =0⇒⎩⎨⎧a 2-b 2-5a 2+b 2+6=0,2ab =0⇒⎩⎪⎨⎪⎧a =±2,b =0或⎩⎪⎨⎪⎧a =±3,b =0或⎩⎪⎨⎪⎧a =0,b =±1,即x =±2或x =±3或x =±i. 故方程在复数集上的解共有6个.1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑.1.(2013·福建高考)复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 z =-1-2i 在复平面内对应的点为(-1,-2),它位于第三象限. 【答案】 C2.若OZ →=(0,-3),则OZ →对应的复数为( ) A .0 B .-3 C .-3iD .3【解析】 由复数的几何意义可知OZ →对应的复数为-3i. 【答案】 C3.已知3-4i =x +y i(x ,y ∈R ),则|1-5i|,|x -y i|,|y +2i|的大小关系为________. 【解析】 由3-4i =x +y i(x ,y ∈R ), 得x =3,y =-4,而|1-5i|=1+52=26, |x -y i|=|3+4i|=32+42=5, |y +2i|=|-4+2i|=-42+22=20.∵20<5<26,∴|y +2i|<|x -y i|<|1-5i|. 【答案】 |y +2i|<|x -y i|<|1-5i|4.在复平面内指出与复数z 1=-1+2i ,z 2=2-i ,z 3=-i ,z 4=3+3i 对应的点Z 1,Z 2,Z 3,Z 4,然后在复平面内画出这4个复数对应的向量.【解】 由题意知Z 1(-1,2),Z 2(2,-1),Z 3(0,-1),Z 4(3,3).如图所示,在复平面内,复数z 1,z 2,z 3,z 4对应的向量分别为OZ 1→,OZ 2→,OZ 3→,OZ 4→.一、选择题1.过原点和3-i 对应点的直线的倾斜角是( ) A.π6B .-π6 C.2π3D .5π6【解析】 ∵3-i 在复平面上的对应点是(3,-1), ∴tan α=-1-03-0=-33(0≤α<π),∴α=56π.【答案】 D2.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则a 的值为( ) A .a =0或a =2 B .a =0 C .a ≠1且a ≠2D .a ≠1或a ≠2【解析】 ∵复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,∴a 2-2a =0,∴a =0或a =2.【答案】 A3.已知复数z 1=a +2i ,z 2=-2+i ,且|z 1|=|z 2|,则实数a =( ) A .1 B .-1 C .1或-1D .±1或0【解析】 由题意得,a 2+4=4+1⇒a 2=1⇒a =±1. 【答案】 C4.复数z 与它的模相等的充要条件是( ) A .z 为纯虚数 B .z 是实数 C .z 是正实数D .z 是非负实数【解析】 设z =a +b i ,则|z |=a 2+b 2,又z =|z |,即a 2+b 2=a . ∴b =0,a ≥0,即z 是非负实数. 【答案】 D5.设复数z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论中正确的是( ) A .复数z 对应的点在第一象限 B .复数z 一定不是纯虚数 C .复数z 对应的点在实轴上方 D .复数z 一定是实数【解析】 ∵2t 2+5t -3=0的Δ=25+24=49>0, ∴方程有两根,2t 2+5t -3的值可正可负,∴A 、B 不正确. 又t 2+2t +2=(t +1)2+1>0,∴D 不正确, ∴C 正确. 【答案】 C 二、填空题6.复数z =log 123+ilog 312对应的点位于复平面内的第________象限.【解析】 ∵log 123<0,log 312<0,∴z 对应的点在第三象限. 【答案】 三7.若复数z 1=3-5i ,z 2=1-i ,z 3=-2+a i 在复平面内所对应的点在同一条直线上,则实数a =________.【解析】 设复数z 1,z 2,z 3分别对应点P 1(3,-5),P 2(1,-1),P 3(-2,a ),由已知可得-5+13-1=a +1-2-1,从而可得a =5.【答案】 58.已知复数z =(x -1)+(2x -1)i 的模小于10,则实数x 的取值范围是________. 【解析】 由题意得x -12+2x -12<10,∴5x 2-6x -8<0,∴(5x +4)(x -2)<0, ∴-45<x <2.【答案】 (-45,2)三、解答题9.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 的对应点, (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.试分别求实数m 的取值范围.【解】 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2. (1)由题意,得m 2-m -2=0, 解得m =2或m =-1.(2)由题意,得⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2>0.∴⎩⎪⎨⎪⎧-1<m <2,m >2或m <1.∴-1<m <1, 即m ∈(-1,1).(3)由已知,得m 2-m -2=m 2-3m +2, ∴m =2.10.已知z 1=x 2+x 2+1i ,z 2=(x 2+a )i 对任意的x ∈R 均有|z 1|>|z 2|成立,试求实数a 的取值范围.【解】 ∵|z 1|=x 4+x 2+1,|z 2|=|x 2+a |,且|z 1|>|z 2|,∴x 4+x 2+1>|x 2+a |对x ∈R 恒成立,等价于(1-2a )x 2+(1-a 2)>0恒成立.不等式等价于①:⎩⎪⎨⎪⎧1-2a =0,1-a 2>0,解得a =12,∴a =12时,0·x 2+(1-14)>0恒成立.或②:⎩⎪⎨⎪⎧1-2a >0,Δ=-41-2a 1-a 2<0.解得-1<a <12.∴a ∈(-1,12).综上,可得实数a 的取值范围是{a |a ∈R ,且-1<a ≤12}.11.如图3-1-1,平行四边形OABC ,顶点O 、A 、C 分别表示0,3+2i ,-2+4i ,试求:图3-1-1(1)AO →表示的复数,BC →表示的复数; (2)CA →所表示的复数;(3)设P 为复平面上一点且满足|OP →|=|CA →|,求P 点的轨迹方程.【解】 (1)AO →=-OA →,而OA →对应的复数为3+2i , ∴AO →表示的复数为-3-2i ;∵BC →=AO →.∴BC →表示的复数为-3-2i. (2)CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i. (3)设P (x ,y ),∵|CA →|=|5-2i|=52+-22=29,|OP →|=x 2+y 2,由|OP →|=|CA →|,得x 2+y 2=29,即点P 的轨迹方程为x 2+y 2=29.(教师用书独具)已知向量OZ →与实轴正向的夹角为45°,向量OZ →对应的复数z 的模为1,求z . 【思路探究】 设出z =a +b i(a ,b ∈R ),列出关于a ,b 的方程组. 【自主解答】 设z =a +b i(a ,b ∈R ). ∵OZ →与x 轴正向的夹角为45°,|z |=1,∴⎩⎪⎨⎪⎧ b a =1,a 2+b 2=1,a >0,或⎩⎪⎨⎪⎧ b a =-1,a 2+b 2=1,a >0,∴⎩⎪⎨⎪⎧ a =22,b =22,或⎩⎪⎨⎪⎧a =22,b =-22.∴z =22+22i 或z =22-22i. 解答本题易因不能正确的运用条件“向量OZ →与实轴正向的夹角为45°”,而漏掉一解.已知复平面内的A ,B 对应的复数分别是z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,其中θ∈(0,π).设AB →对应的复数是z .(1)求复数z ;(2)若复数z 对应的点P 在直线y =12x 上,求θ的值.【解】 (1)∵点A ,B 对应的复数分别是z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,∴点A ,B 的坐标分别是A (sin 2θ,1),B (-cos 2θ,cos 2θ),∴AB →=(-cos 2θ,cos 2θ)-(sin 2θ,1)=(-cos 2θ-sin 2θ,cos 2θ-1)=(-1,-2sin 2θ),∴AB →对应的复数z =-1+(-2sin 2θ)i.(2)由(1)知点P 的坐标是(-1,-2sin 2θ),代入y =12x ,得-2sin 2θ=-12,即sin 2θ=14,∴sin θ=±12.又∵θ∈(0,π),∴sin θ=12,∴θ=π6或5π6.。

高中数学选修1,2《数系的扩充和复数的概念》教案

高中数学选修1,2《数系的扩充和复数的概念》教案

高中数学选修1,2《数系的扩充和复数的概念》教案高中数学选修1-2《数系的扩充和复数的概念》教案【一】教学准备教学目标知识与技能1、了解数系扩充的过程及引入复数的需要2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律2、通过具体到抽象的过程,让学生形成复数的一般形式情感态度与价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维的作用2、体会类比、分类讨论、等价转化的数学思想方法教学重难点重点:引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件难点:虚数单位i的引进和复数的概念教学过程(一)问题引入事实上在实数范围内x和y确实不存在?为什么会这样呢?假设x和y是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》(二)回顾数系的扩充历程师:其实对于这种“数不够用”的情况,我们并不陌生。

大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。

现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用”的问题的。

(三)类比,引入新数,将实数集扩充1、类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法生:引入新数,使得平方为负数师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子引入那么多,只要引入平方为多少就行呢?2、历史重现:3、探究复数的一般形式:(四)新的数集——复数集1.复数的定义(略)2.复数的应用:复数在数学、力学、电学及其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,是进一步学习数学的基础。

(五)复数的分类(六)复数相等的充要条件复数相等的充要条件可以把复数相等的问题转化为求方程组的解的问题,是一种转化的思想。

课后小结1、由于实际的需要,我们总结数的三次扩充过程的规律,运用类比的方法,我们引进了新的数i,并将实数集扩充到了复数集,认识到了复数的代数形式,并讨论了复数的分类及复数相等的充要条件,并且利用相等的条件把复数问题转化为方程组的解的问题2、那么,复数究竟是什么东西呢?能不能像实数一样在现实中找到它的影子呢?别急,我们的探索脚步并不会停止下去,这是我们下次将要探索的内容。

湖北省恩施巴东县第一高级中学高中数学 3.2.1复数代数形式的加减运算及其几何意义教案 新人教版选修1-2

湖北省恩施巴东县第一高级中学高中数学 3.2.1复数代数形式的加减运算及其几何意义教案 新人教版选修1-2

§3.2.1 复数代数形式的加减运算及其几何意义【学情分析】:学生在建立了复数的概念以后,很重要的一个问题就是建立复数集里的各种运算.由于实数是复数的一部分,在建立复数运算时应当遵循的一个原则是作为复数的实数,在复数集里运算时和在实数集里的运算应当是一致的.复数兼备代数形式和几何形式(点表示和向量表示),对复数代数形式的加减运算及其几何意义的学习有助于理解复数两种表示形式的统一,同时也提供了一个数形结合思想的载体.【教学目标】:(1)知识与技能:了解复数代数形式的加减运算,了解复数代数形式的加、减运算的几何意义.(2)过程与方法:从实数集中的相关概念以及运算出发,对比引出复数的加减法的定义,对比复数的代数形式,复数的向量形式同样具备其自身的加减法法则。

培养学生类比、化归、数形结合的思想方法。

(3)情感态度与价值观:通过复数的代数形式的加减运算的学习,体会数集运算定义的完备性与一致性,增加对数学逻辑美的认识。

【教学重点】:复数代数形式的加减运算及其几何意义。

【教学难点】:复数代数形式的加减运算几何意义。

【课前准备】:powerpoint课件【教学过程设计】:设计意复数加减法的几何意义边形12oz zz ,根据向量的加法法则,对角线oz ,正是两个复数之和12z z +所则,类似地,向量计算:i。

分析:复数的加减法,相当于多项式中加减中的合并同类项的过程,两个复分析:本题是证明一个虚数数为纯虚数的等价条件。

对应对应的复数。

意义知:向量28z-=-解:①62i-生1.计算(3)(2)i i +-+的结果为( )A.1B. i -C. 52i + D. 1- i 解:A2.已知复数33,z z i i z +-=-满足则=( )A .0B 。

2iC 。

6D 。

62i - 解:D3.|(32)(4)|i i +--等于( )A B C .2 D .13i -+ 解:B4.若||1,z z =则复数对应的点的轨迹是( ).A. 一个点B. 两个点C. 四个点D. 一个圆 解:D5.|(32)(1)|i i +-+表示( ).A. 点(3,2)与点(1,1)之间的距离B. 点(3,2)与点(-1,-1)之间的距离C. 点(3,2)到原点的距离D.以上都不对 解:A6.在复平面上复数1,0,32i i -++所对应的分别是A,B,C,则平行四边形ABCD的对角线BD 的长为 。

2020-2021学年高二数学选修1-2第三章3.1.1数系的扩充和复数的概念教案

2020-2021学年高二数学选修1-2第三章3.1.1数系的扩充和复数的概念教案

数系的扩充和复数的概念一、内容和内容解析1.内容数系的扩充和复数的概念2.内容解析《数系的扩充与复数的概念》是人教版普通高中课程标准数学实验教科书选修1-2第三章第一节的内容,大纲课时安排一课时。

主要包括数系概念的发展简介,数系的扩充,复数相关概念、代数形式、相等条件、分类.复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习数学打下了基础。

通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.在学习了这节课以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位i在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以i的形式,学生能清楚的知道一个复数什么时候是实数,什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条件是什么.本节课让学生在经历一系列的思维活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,提高学生分析问题和解决问题的能力.基于以上分析,确定本节课的教学重点是:数系的扩充以及复数的有关概念.二、目标和目标解析1.目标(1)使学生体会数的概念是逐步发展的,初步体会引入虚数单位i的合理性;了解引入复数的必要性;(2)理解复数的基本概念;掌握两复数相等的充要条件;能够对复数进行简单的分类;(3)在培养学生类比与转化的数学思想方法的过程中,激发学生勇于探索创新的精神,提高学生的创新思维和应用意识.2.目标解析(1)学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成.(2)作为新学知识,理解复数的基本概念,掌握复数有关知识,为今后学习奠定基础,承上启下.(3)通过问题设置,引领学生追溯历史,提炼数系扩充原则,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中.三、教学问题诊断分析学生已经学过自然数、整数、有理数、实数等数系,但是对知识的认识相对比较零碎、分散,对知识没有一个系统性的理解,同时由于虚数单位i的概念非常抽象,又与学生原有的知识冲突,因此在学习过程中可能遇到的问题有:1.学生不太容易体会数系再次扩充的必要性.2.由于学生的认知能力有限,学生很难发现数系扩充前后对于运算法则的一致性要求.3.由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位i的引入难以理解.在学习本节课的过程中,复数的概念如果采用单纯的讲解会显得比较枯燥无味,教学时,采用已学过的数集的认识历程,让学生体会数系的扩充是生产实践的需要,介绍数的发展过程,使学生对数的形成、发展的历史和规律有着比较清晰的认识,让学生能够在问题探索中掌握新知.基于以上分析,确定本节课的教学难点是:对引入复数引入必要性的认识以及从实数到复数的扩充历程.四、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用图片展示数系学习历程,另外通过演示,体会复数从无到有的发展过程.五、教学过程分析(一)课题引入多媒体课件展示“数学的魅力在于用数来诠释全世界”,引入课题.设计意图:采用名言欣赏的方式进行情景引入,紧扣主题,展示本节课学习的意义.(二)复习回顾1.已经学习了哪些数集?2.回顾数的学习历程情境一一年级数学第一节《数一数》情境二三年级(上)数学第八节《分数的初步认识》情境三三年级(下)数学第七节《小数的初步认识》情境四六年级数学第一节《负数》情境五七年级数学第六节《实数》师:我们回顾了对数系的认识历程,我们看到数系在不断地进行扩充,从自然数到整数,再到有理数,乃至实数,请你思考:(1)人们为什么不断地扩充数系?师:从上述过程可以看出,满足社会实践的需要,是数系扩充的一个重要原因.正所谓自然数是“数”出来的,分数是“分”出来的,负数是“欠”出来的.另外,数学内部的发展、需求也是一个重要的原因!例如,求下列方程的解:x+3=1;3x−2=0;x2−2=0.如果没有数系的合理扩充,这些方程的解就是一个问题,数学本身也不可能协调的发展.因此,数学源于社会实践又服务于社会实践,问题或数学矛盾是数学发展的动力.(2)数学扩充的一般原则是什么?师:数系的扩充不仅仅是增加一种新的数,它还涉及数的运算.因此,数系的扩充还需保留原来的基本运算,用今天的话来讲,就是要向前“兼容”,不能推倒小楼建大楼.具体来讲,就是加、减、乘、除、乘方和开方的运算律应得到继承.比如要满足加法、乘法的交换率和结合律以及乘法对加法的分配律.设计意图:通过梳理数系的学习历程,体会数系扩充的必要性,了解数系扩充前后的联系,为后面学习做好铺垫.(三)问题导引师:数系的扩充是否就此止步不前了呢?如果不是,新的数系又是什么呢?情境六与数学家的对话 16世纪意大利数学家达尔卡诺在他的著作中写到“将10分成两部分,使他们的乘积等于40”,这是不可能的,不过我却用下列方式解决了:10=(5+√−15)+(5−√−15),40=(5+√−15)(5−√−15).师:这样一个似乎简单的问题为什么会有争议呢?这两个表达式有什么问题?又包含了有哪些“合理”的成分,没有让数学家们一巴掌把它拍死?师:的确,虽然16世纪实数理论还没有完善,但任何一个(实)数的平方都是一个非负数,或者负数的开方没有意义的道理是人所共知的.这里√−15是什么?他有什么意义吗?是√−15个苹果还是√−15斤棉花?你卡尔达诺能说清楚吗?不过,另一方面,根据当时还不太严谨的运算法则,这两个式子好像也没什么大的问题(先不管√−15是什么,和为10,积为40也是明显的),至少就数学论数学来说,还马马虎虎有点意思,不能因为看不顺眼就拍死它吧?设计意图:以问题形式吸引学生注意力,承上启下,调动学生的积极性.(四)问题探究提出1637年,法国数学家笛卡尔在他的《几何学》中把这样的数称为“i maginary” .(“想象中的数”,虚数)迷茫“……,它大概是存在和虚妄两界中的两物”.——德国数学家莱布尼茨“……我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻.”——瑞士数学大师欧拉发展1777年,欧拉在其论文中首次用符号“i ”表示√−1,称为虚数单位.1832年,德国数学家高斯第一次引入复数概念,一个复数可以用a+b i来表示,其中a,b是实数,i代表虚数单位完善1837年哈密顿用有序实数对(a,b)定义了复数及其运算,并说明复数的加、乘运算满足实数的运算律,把实数看成特殊的复数,建立完整的复数系.复数的概念 1.形如a+b i(a,bϵR)的数叫做复数,其中i叫做虚数单位2.全体复数所成的集合叫做复数集,一般用字母C表示3.复数的代数形式:复数通常用字母z表示,即z= a+b i(a,bϵR)其中a 与b分别叫做z的实部与虚部设计意图:通过问题的提出、迷茫、发展和完善过程,让学生感受有实数系扩充到复数系的历程,体会数学家的创新精神和实践能力,让学生参与其中,培养学生解决问题的能力,增强学生解决问题的自信心.练习完成课后练习1设计意图:巩固所学内容,加强对复数概念的认识.(五)自主学习阅读请阅读教材51页完成下面的问题:1.两个复数相等的充要条件是什么?2.复数集C和实数集R之间有什么关系?3.复数集是怎么分类的?设计意图:让学生通过自己去阅读、思考的方式获得知识,培养学生积极参与的意识和自主探索的能力.练习完成课后练习2、3设计意图:及时反馈,学以致用,加强对知识的认识,提高学生的解题能力.(六)例题讲解例:实数m取什么值时,复数z=(m+1)+(m-1)i是(1)实数;(2)虚数;(3)纯虚数.分析:因为m∈R,所以m+1,m-1都是实数.由复数z=a+b i是实数、虚数和纯虚数的条件可以确定m的取值.解:(1)当m-1=0,即m=1时,复数z是实数;(2)当m-1≠0,即m≠1时,复数z是虚数;(3)当m+1=0,且m-1≠0即m=-1时,复数z是纯虚数.设计意图:通过例题,强化复数相等的充要条件,提高分析、解决问题的能力,规范做题步骤.变式练习实数m取什么值时,复数z=(m-1)(m+2)+(m-1)(m-3)i是(1)实数;(2)虚数;(3)纯虚数;(4)0.设计意图:增加题目难度,检验学生学习情况.(七)课堂小结这节课你学到了哪些内容,你有什么收获?学生活动:学生发言交流自己的收获,其他同学补充.设计意图:通过学生总结,教师提炼,培养学生归纳概括的能力,回顾本节课内容,为以后学习打下基础.(八)课后作业1、书面作业:习题3.1A组 1,2.2、课后探究:请你收集一些从实数系扩充到复数系的数学史料,并对“自然数——整数——有理数——实数——复数”的数系扩充过程进行整理.设计意图:巩固本节课所学知识,同时带着新的问题走出课堂,扩大学生的视野,加深对知识的认识,激发学生课外学习数学的兴趣.(九)知识拓展复数的应用师:在本节课我们看到,虚数从提出到完善大约经历了300年的历程,数学也就是在这种曲折、矛盾中不断的向前发展.复数系建立之后,人们又把复数和向量联系起来,并在复数的基础上建立了复变函数理论,成为数学新的一个分支,其在流体力学、机翼理论等方面有着广泛的应用,从我们熟悉的飞机制造,到引以为傲的高铁,再到跨世纪的伟大工程——三峡大坝,复数都起到了重要的作用.可谓虚数不虚,学海无涯!设计意图:拓展了学生的知识面,使学生思想得到升华.教学评析本节课的学习,一方面帮助学生回忆数系扩充的过程,体会虚数引入的必要性和合理性,让学生参与有实数系到复数系的扩充历程;一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.从各个环节上看,本节课主要亮点有:采用名言欣赏的方式进行情景引入,紧扣主题,调动学生的积极性和求知欲。

湖北省巴东一中数学选修1-2教案 3.1复数的概念与扩充

湖北省巴东一中数学选修1-2教案 3.1复数的概念与扩充

第三章 数系的扩充与复数的引入【课题】:3.1.1 数系的扩充和复数的概念【学情分析】:从小学接触自然数到扩充至整数范围,进入初中阶段后学生认识到数系从整数到有理数再到实数的第二次扩充.因为现实的需要,高中阶段要进一步实现从实数系到复数系的第三次扩充.学生初次接触复数,会产生一种“虚无缥缈”的感觉.所以要有意识地将实数与复数进行类比学习,学会复数问题向实数问题转化的方法.【教学目标】:(1)知识目标:理解复数产生的必然性、合理性;掌握复数的代数表示形式;掌握复数系下的数的分类. (2)过程与方法目标:从为了解决012=+x 这样的方程在实数系中无解的问题出发,设想引入一个新数i,使i 是方程012=+x 的根.到将i 添加到实数集中去,使新引入的数i 和实数之间能象实数系那样进行加、乘运算;掌握类比的方法,转化的方法。

(3)情感与能力目标:通过介绍数系扩充的简要进程,使同学们感受人类理性思维对数学的发展所起的重要作用,体会数与现实世界的联系。

【教学重点】:复数的概念及其分类。

【教学难点】:虚数单位i 的引入。

【教学突破点】:从解012=+x 方程的需要,引入虚数单位i.及虚数单位i 与实数的融合。

【教法、学法设计】:讲授、练习相结合。

【课前准备】:课件【教学过程设计】:;0)32()43)(2(;217)5()23)(1(=++--=-++i y x i i y x y x .0,,3,2222,55i i i --+-A 组1.写出下列复数的实部与虚部:2.求适合下列各方程的实数:的值和y x,)43(434.322i n n m m n z -++---=已知复数.,,)2(;,,)1(是实数取什么整数值时是纯虚数取什么整数值时z n m z n mB 组1.,,,,().,...()C R M P A PR C B MR CC P MD MR Cφ⊂≠===对于复数集实数集虚数集纯虚数集下列关系正确的是1122222.23(log )log 2,___________.z x x x x i x ⎡⎤=--+--⎣⎦使复数是虚部为正数的非纯虚数则实数的取值范围是参考答案:A 组.1.五个复数的实部与虚部依次为:.0,0;1,0;0,3;22,22;5,5--- 2..23,34)2(;7,1).1(-====y x y x 3.;4,1,,4).1(≠-≠∈=m m Z m n;4,1,,14).1(≠-≠∈=-=m m Z m n n 或 B 组. 1.A; 2.B; 3.),3()3,2()41,0(+∞ .。

高二数学,人教A版选修1-2, 3.1.1, 数系的扩充,和复数的概念课件

高二数学,人教A版选修1-2,   3.1.1, 数系的扩充,和复数的概念课件

[解析]

m=5或m=-3 即 m≠-3

∴当 m=5 时,z 是实数.
2 m -2m-15≠0 (2)当 m+3≠0
时,
m≠5且m≠-3 即 m≠-3
∴当 m≠5 且 m≠-3 时,z 是虚数.
第三章
数系的扩充与复数的引入
m2-m-6=0 (3)当m+3≠0 m2-2m-15≠0 m=3或m=-2 即m≠-3 m≠5且m≠-3
是很必要的.
②对于复数z=a+bi (a,b∈R),既要从整体的角度 去认识它,把复数z看成一个整体,又要从实部与虚部的角 度分解成两部分去认识它.这是解复数问题的重要思路之 一.
第三章
数系的扩充与复数的引入
[例3] 已知2x-1+(y+1)i=x-y+(-x-y)i, 求实数x,y的值. [解析] 因为 x,y 为实数,
第三章
数系的扩充与复数的引入
1.复数的概念及代数表示
(1)定义:形如a+bi(a,b∈R)的数叫做复数,其中i叫 做虚数单位,满足i2= -1 . (2)表示:复数通常用字母z表示,即z=a+bi(a,b∈R), 这一表示形式叫做复数的代数形式,a与b分别叫做复数z的 虚部 实部 与 .
第三章
数系的扩充与复数的引入
所以 2x-1,y+1,x-y,-x-y 均为实数.
2x-1=x-y, 由复数相等的充要条件,知 y+1=-x-y, x=3, 所以 y=-2.
第三章
数系的扩充与复数的引入
[点评] 找到两复数的实部与虚部后,根据复数相等
的充要条件,实部与虚部分别相等即可求得x,y的值.
[例1] 下列命题中,正确命题的个数是 ②若a,b∈R且a>b,则a+i>b+i;

高二数学 选修1-2教案:3.1.2复数的几何意义

高二数学  选修1-2教案:3.1.2复数的几何意义

第三章数系的扩充与复数的引入【课题】:3.1.2 复数的几何意义
六、作业
1、在复平面内,复数
2)31(1i i
i
+++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-=
i
i
z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+=
+=2,23,32,214321
对应的点4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论. 解:因为
︱1z ︱=52122=
+,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5,
所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上. 4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置:
(!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0.
解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方
5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上?
解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3) 6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+=
则.432
2=+
a 解得 ±=a 1.
所以 .31i z +±=。

湖北省巴东一中高中数学第三章数系的扩充与复数的引入教材分析教案新人教版选修1_2

湖北省巴东一中高中数学第三章数系的扩充与复数的引入教材分析教案新人教版选修1_2

《第三章数系的扩充与复数的引入》教材分析数系的扩充与复数的引入是选修1-2与选修2-2的内容,是高中生的共同数学基础之一.数系的扩充过程体现了数学的发现和创造过程,同时了数学产生、发展的客观需求,复数的引入襀了中学阶段数系的又一次扩充.《课标》将复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.这部分内容的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,也有来自数学内部的动力,从而形成正确的数学观;有助于发展学生的全新意识和创新能力.复数的内容是高中数学课程中的传统内容.对于复数,《课标》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.本章内容分为2节,教学时间约4课时.第一节数系的扩充和复数的概念本节的主要教学内容是数系的扩充和复数的概念、复数的几何意义(几何表示和向量表示).●教学目标(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念以及复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.●教学重点(1)数系的扩充过程.(2)复数的概念、复数的分类和复数相等的充要条件.(3)复数的几何意义.●教学难点(1)虚数单位i的引进.(2)复数的几何意义.●教学时数本节教学,建议用2课时.第1课时处理数系的扩充和复数的概念;第2课时研究复数的几何意义.●课标对本节内容的处理特点数系的扩充和复数的概念,《课标》与《大纲》教学内容相同,但在处理方式和目标定位上存在差异:(1)《课标》将复数作为数系扩充的结果引入.《大纲》教科书先安排复数的概念,再研究复数的运算,最后介绍数系的扩充.《课标》实验教科书在介绍数系扩充的思想方法的基础上引入复数的概念,力求还原复数的发现与建构过程.(2)《课标》强调在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.从这上点上看,《课标》要求提高了.(3)在复数的代数表示法及其几何意义上,《课标》的教学定位是“了解”,而《大纲》要求“掌握”.从这上点上看,《课标》要求降低了.●教学建议1.关于“数系的扩充的复数的概念”的教学建议(1)课题的引入.教学时,可从方程在给定范围内是否有解提出问题:x+=有解吗?①在自然数集N中,方程10x=有解吗?②在整数集Z中,方程21一一对应 ③ 在有理数集Q 中,方程2x =2有解吗?④ 在实数集R 中,方程.有解吗?(2)回顾从自然数集N 扩充到实数集R 的过程.帮助学生认识数系扩充的主要原因和共同特征.可让学生思考如下问题:① 从自然数集N 扩充到实数集R 经历了几次扩充?② 每一次扩充的主要原因是什么?③ 每一次扩充的共同特征是什么?然后师生共同归纳总结:扩充原因:① 满足实际问题解决的需要;② 满足数学自身完善和发展的需要.扩充特征:① 引入新的数;② 原数集中的运算规则在新数集中得到保留和扩展.(3)提出新的问题:如何对实数集进行扩充,使方程210x +=在新的数集中的解?(4)引入虚数单位i .(5)学习复数的概念.(6)规定复数相等的意义.(7)研究复数的分类.(8)告诉学生“两个复数只能说相等或不相等,不能比较大小”的理由:① ,a bi c di a c b d +=+⇔==;在,a c b d ==两式中,只要有一个不成立,则a bi c di +≠+.② 如果两个复数都是实数,则可以比较大小;否则,不能比较大小.③ “不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“<”,都不能使这种关系同时满足实数集中大小关系的四条性质:对于任意实数a ,b 来说,a b <,a b =,b a <这种情况有且只有一种成立;如果,a b b c <<,那么a c <;如果a b <,那么a c b c +<+;如果,0a b c <<,那么ac bc <.2.关于“复数的几何意义”的教学建议(1)帮助学生认识复数的几何表示.复数的几何表示就是指用复平面内的点Z (,a b )来表示复数z a bi =+.① 明确“复平面”的概念.② 建立复数集C 和复平面内所有的点所成的集合之间的一一对应关系,即复数z a bi =+ 复平面内的点Z (,a b ).(2)帮助学生认识复数的向量表示.复数的向量表示就是指用复平面内的向量OZ 来表示复数z a bi =+.① 认识复平面内的点Z (,a b )与向量OZ 的一一对应关系.② 在相互联系中把握复数的向量表示:复数z a bi =+一一对应 一一对应 一一对应点Z (,a b ) 向量OZ(3)用数形结合的思想方法,强化对复数几何意义的认识.在复平面内,实数与实轴上的点一一对应,纯虚数与虚轴上的点(原点除外)一一对应,非纯虚数的虚数与象限内的点一一对应.可通过一组练习题来强化这一认识.第二节 复数代数形式的四则运算本节的主要教学内容是复数代数形式的加减运算及其几何意义,复数代数形式的乘除运算.●教学目标(1)掌握复数代数形式的加减运算法则.(2)了解复数代数形式的加减运算的几何意义.(3)理解复数代数形式的乘除运算法则.(4)体验复数问题实数化的思想方法.●教学重点(1)复数代数形式的加减运算及其几何意义.(2)复数代数形式的乘除运算.(3)复数问题实数化的思想方法复数的理解与运用.●教学难点(1)复数代数形式的加减运算的规定.(2)复数代数形式的加减运算的几何意义的理解.(3)复数代数形式的乘除运算法则的运用.●教学时数本节教学,建议用2课时.第1课时处理复数代数形式的加减运算及其几何意义;第2课时研究复数代数形式的乘除运算.●课标对本节内容的处理特点复数代数形式的四则运算,《课标》与《大纲》教学内容与要求基本相同,但在目标定位上存在差异:(1)《课标》要求了解复数代数形式的加减运算的几何意义,对复数的向量表示提出了要求,强化了数形结合思想方法;(2)《课标》明确强调“淡化烦琐的计算和技巧性训练,突出了复数问题实数化的思想方法. ●教学建议1.复数代数形式的加法和乘法的运算法则是一种规定,要让学生理解其合理性.这种合理性应从数系扩充的角度来理解:这种规定与实数加法、乘法的法则是一致的,而且实数加法、乘法的有关运算律在这里仍然成立.2.复数的减法、除法分别规定为复数的加法和乘法的逆运算,要让学生按照这种规定自主得出复数减法和除法的运算法则.3.复数代数形式的四则运算可以类比代数运算中的“合并同类项”“分母有理化”,利用21i =-,将它们归结为实数的四则运算.在具体运算情境中,引入共轭复的概念,明确公式22()()a bi a bi a b +-=+是复数除法中“分母实数化”的基础,不必让学生专门计忆复数除法法则.从而让学生体验复数问题实数化的思想方法.4.要引领学生从平面向量的加法、减法的平行四边形或三角形法则来认识并理解复数代数形式的加减运算的几何意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 数系的扩充与复数的引入
【课题】:3.1.1 数系的扩充和复数的概念
【学情分析】:
从小学接触自然数到扩充至整数范围,进入初中阶段后学生认识到数系从整数到有理数再到实数的第二次扩充.因为现实的需要,高中阶段要进一步实现从实数系到复数系的第三次扩充.
学生初次接触复数,会产生一种“虚无缥缈”的感觉.所以要有意识地将实数与复数进行类比学习,学会复数问题向实数问题转化的方法.
【教学目标】:
(1)知识目标:
理解复数产生的必然性、合理性;掌握复数的代数表示形式;掌握复数系下的数的分类. (2)过程与方法目标:
从为了解决012
=+x 这样的方程在实数系中无解的问题出发,设想引入一个新数i,使i 是方程012
=+x 的根.到将i 添加到实数集中去,使新引入的数i 和实数之间能象实数系那样进行加、乘运算;掌握类比的方法,转化的方法。

(3)情感与能力目标:
通过介绍数系扩充的简要进程,使同学们感受人类理性思维对数学的发展所起的重要作用,体会数与现实世界的联系。

【教学重点】:
复数的概念及其分类。

【教学难点】:
虚数单位i 的引入。

【教学突破点】:
从解012
=+x 方程的需要,引入虚数单位i.及虚数单位i 与实数的融合。

【教法、学法设计】:
讲授、练习相结合。

【课前准备】:
课件
;
0)32()43)(2(;217)5()23)(1(=++--=-++i y x i i y x y x .0,,3,2
2
22,
55i i i --+-,)43(4
34.32
2
i n n m m n z -++---=
已知复数.
,,)2(;,,)1(是实数取什么整数值时是纯虚数取什么整数值时z n m z n m
A 组
1.写出下列复数的实部与虚部:
2.求适合下列各方程的实数:的值和y x
B 组
1.,,,,()
.,
...()C R M P A P R C B M
R C
C P M
D M
R C
φ
⊂≠
===对于复数集实数集虚数集纯虚数集下列关系正确的是
1122222.23(log )log 2,
___________.
z x x x x i x ⎡⎤=--+--⎣⎦使复数是虚部为正数的非纯虚数则实数的取值范围是
参考答案:
A 组.1.五个复数的实部与虚部依次为:.0,0;1,0;0,3;2
2,22;
5,5--- 2..2
3
,34)2(;
7,1).1(-==
==y x y x 3.;4,1,,4).1(≠-≠∈=m m Z m n
;4,1,,14).1(≠-≠∈=-=m m Z m n n 或 B 组. 1.A; 2.B; 3.),3()3,2()4
1,0(+∞ .。

相关文档
最新文档