随机变量及其概率分布
随机变量及其分布

记
p(xi)P{Xxi}, i1, 2,
(21)
则称{p(xi) i1 2 }为X的概率分布 有时也将p(xi)记为pi 用
下列表格形式来表示 并称之为X 的概率分布表
4
概率分布的性质
任何一个离散型随机变量的概率分布{p(xi)}必然满足下 列性质
1 p(xi)0 i1 2
(22)
((22))ii pp((xxi)i)11
事件的概率与密度函数的关系
(1)连续型随机变量X落于区间(a b]上的概率为
b
P{a X b} F(b) F(a)a f (x)dx
(2)连续型随机变量X落于点x上的概率为
P{Xx}0
(212)
(213)
19
例28 设X是在[a b]上等可能投点的位置 其分布函数为
0, F (x) bx1,aa ,
x
x
F(x) 0 F() lim F(x)1
若函数Fx)满足上述三
x
条性质 则它一定是某个随
(3)右连续性 F(x0)F(x) 机变量X的分布函数
10
三、分布函数
定义24(分布函数) 设X是一随机变量 则称函数
F(x)P{Xx} x( )
(29)
为随机变量X的分布函数 记作X ~F(x)
分布函数的性质 随机变量的分布函数必然满足下列性质
0 x1, x1.
14
四、离散型随机变量的分布函数
离散型随机变量的分布函数F(x)的共同特征是 F(x)是一 个阶梯形的函数 它在X的可能取值点处发生跳跃跳跃高度 等于相应点处的概率 而在两个相邻跳跃点之间分布函数值 保持不变
反过来 如果一个随机变量X的分布函数F(x)是阶梯型函 数 则X一定是一个离散型随机变量 其概率分布可由分布函 数F(x)惟一确定 F(x)的跳跃点全体构成X的所有可能取值 每 一跳跃点处的跳跃高度则是X在相应点处的概率
概率论与数理统计-随机变量及其分布

解
直接对上式求导有
二、连续型随机变量函数的分布
81
例 18
解
二、连续型随机变量函数的分布
82
定理 1
定理 2
83
总结/summary
离散型随机变量:分布律
分 二项分布、泊松分布、几何
随 布 分布
机 变
函 数
连续型随机变量:密度函数
量 均匀分布、指数分布、正态
分布
随机变量函数的分布
84
谢谢观赏
46
47
目录/Contents
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
48
目录/Contents
2.3 常用的连续型随机变量
一、均匀分布 二、指数分布 三、正态分布
一、均匀分布
49
一、均匀分布
50
一、均匀分布
51
一、均匀分布
15
定义3
(1)非负性 (2)规范性
三、离散型随机变量及其分布律
16
换句话说,如果一个随机变量只可能取有限个 值或可列无限个值, 那么称这个随机变量为(一维) 离散型随机变量.
一维离散型随机变量的分布律也可表示为:
三、离散型随机变量及其分布律
17
例2
求
三、离散型随机变量及其分布律
18
解
四、连续型随机变量及其密度函数
2.1 随机变量及其分布 2.2 常用的离散型随机变量 2.3 常用的连续型随机变量 2.4 随机变量函数的分布
73
目录/Contents
2.4 随机变量函数的分布 一、离散型随机变量函数的分布 二、连续型随机变量函数的分布
第二章随机变量及其分布

第二章 随机变量及其概率分布§2.1 一维离散型随机变量一、基本概念★知识点精讲1.一维离散型随机变量的分布及分布律(1)离散型随机变量:若随机变量X 只取有限多个或可列无限多个值,则称X 为离散型随机变量。
(2)分布律: ,2,1,}{===k p x X P k k或(3)性质:① ,2,1,0=≥k p k ②∑∞==11k k p2.常用的离散型分布 (1)0-1分布),1(p B分布律 :X 0 1 P p -1 p 其中 p 为事件A 出现的概率,0<p<1. (2)二项分布),(p n B在n 重伯努利试验中,每次试验事件A 出现的概率为p ,X 表示在n 次试验中事件A 出现的次数,X 的分布律为:n k p p C k X P k n k kn,,2,1,0,)1(}{ =-==- 当n 充足大时,随机变量X 也服从np =λ的泊松分布。
(3)泊松分布)(λP 分布律为: ,2,1,0,!}{===-k e k k X P kλλ3.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为则)(X f Y =的概率分布为:(1)当),2,1)(( ==i x f y i i 的各值i y 互不相等时,Y 的概率分布为:(2)当),2,1)(( ==i x f y i i 的各值i y 不是互不相等时,应把相等的值分别合并,并相对应地将其概率相加。
例如j i y y =,则Y 的概率分布为:★ 题型归纳及解题技巧例1.设随机变量X则k=( ) A.0.1 B.0.2 C.0.3D.0.4 解:选D。
因为∑==11k k p ,故11.03.02.0=+++k ,得4.0=k 。
例2.设离散型随机变量X 的分布律为 (关于离散型随机变量概率求法)则P{-1<X ≤1}=( )A .0.3B .0.4C .0.6D .0.7解:选AP{-1<X ≤1}=P{X=1}=0.3例3.已知随机变量X 的分布律为则A.0.2B.0.7C.0.55D.0.8 解:选B。
第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
随机变量及其分布

f ( x) lim
x 0
xLeabharlann x xlim P{x X x x} lim x
f (x)dx .
x 0
x
x 0
x
故 X的密度 f(x) 在 x 这一点的值,恰好是 X落在区间 (x,x+△x] 上的概率与区间长度 △x之比的极限. 这里,如果把概率理解为质 量, f (x)相当于线密度.
f (x)
a
ba
当x b时,
x
a
b
x
F (x) f (t)dt f (t)dt f (t)dt f (t)dt 1.
a
b
因此X ~ U(a, b)的分布函数为:
0
F ( x)
P( X
x)
x b
a
a 1
xa a xb
xb
例1 长途汽车起点站于每时的10分、25分、55分发
车,设乘客不知发车时间,于每小时的任意时刻随
解: 设X表示400次独立射击中命中的次数,则
X~B(400, 0.02),故 P{X2}=1- P{X=0}-P {X=1} =1-0.98400-(400)(0.02)(0.98399) =0.9972
例5 设有80台同类型设备,各台工作是相互独立的, 发生故障的概率都是0.01, 且一台设备的故障只能 由一个人处理. 考虑两种配备维修工人的方法,其一 是由4人维护,每人负责20台;其二是由3人共同维护 30台.试比较这两种方法在设备发生故障时不能及 时维修的概率大小.
称A为几乎不可能事件,B为几乎必然事件.
(4) 若x是f(x)的连续点,则 dF(x) F(x) f (x)
dx
设随机变量X的分布函数
F
随机变量及其概率分布

随机变量及其概率分布随机变量是概率论和数理统计中的重要概念,描述了随机事件的数值特征。
概率分布则用于描述随机变量取值的概率情况。
本文将介绍随机变量及其概率分布的基本概念和常见的概率分布模型。
一、随机变量的定义与分类随机变量是对随机事件结果的数值化描述。
随机变量可分为离散型随机变量和连续型随机变量两种。
1. 离散型随机变量离散型随机变量只能取有限个或可数个值,常用字母X表示。
例如,抛掷骰子的点数就是一个离散型随机变量,可能取1、2、3、4、5、6之一。
2. 连续型随机变量连续型随机变量可以取某个区间内的任意值,通常用字母Y表示。
例如,测量某个物体长度的随机误差就可看作是一个连续型随机变量。
二、概率分布的概念与性质概率分布描述了随机变量取值的概率情况。
常见的概率分布包括离散型分布和连续型分布。
1. 离散型概率分布离散型概率分布描述了离散型随机变量取值的概率情况。
离散型概率分布函数可以用概率质量函数(probability mass function,PMF)来表示。
PMF表示了随机变量取某个特定值的概率。
离散型概率分布函数具有以下性质:①非负性,即概率大于等于0;②归一性,即所有可能取值的概率之和等于1。
常见的离散型概率分布有:伯努利分布、二项分布、几何分布、泊松分布等。
2. 连续型概率分布连续型概率分布描述了连续型随机变量取值的概率情况。
连续型概率分布函数可以用概率密度函数(probability density function,PDF)来表示。
PDF表示在随机变量取某个特定值附近的概率密度。
连续型概率分布函数具有以下性质:①非负性;②积分为1。
常见的连续型概率分布有:均匀分布、正态分布、指数分布等。
三、常见的1. 伯努利分布伯努利分布描述了一次随机试验中两个互斥结果的概率情况,取值为0或1。
其概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),k=0或1其中,p为成功的概率,1-p为失败的概率。
概率论与数理统计-随机变量及其分布-随机变量与分布函数

7
01 随机变量
如何描述随机变量的统计规律呢 ?
无论是离散型随机变量,还是连续型随机变量以及其他类型 的随机变量,都需要一种统一的描述工具.
对一个样本空间,当建立了随机变量后,我们感兴趣的随机 变量落在某区间或等于某特定值的概率. 为此给出分布函数的概 念.
8
本讲内容
01 随机变量 02 分布函数
02 分布函数 定义 设 X 为随机变量,x 是任意实数,称函数 为 X 的分布函数.
x
如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的
值就表示 X 落在区间
的概率.
10
02 分布函数
用分布函数计算 X 落在( a ,b ] 里的概率:
因此,只要知道了随机变量X的分布函数, 它的统计特性 就可以得到全面的描述.
分布函数是一个普通的函数,正是通过它,我们可以用数 学分析的分布函数
分布函数的性质
(1) F ( x ) 单调不减,即
(3) F ( x ) 右连续,即 如果一个函数具有上述性质,则一定是某个随机变量X 的分 布函数. 也就是说,性质(1)--(3)是鉴别一个函数是否是某随机变 量的分布函数的充分必要条件.
01 随机变量
随机变量 ( random variable ) 定义 设 S 是试验E的样本空间, 若
按一定法则
ω.
X(ω)
R
4
01 随机变量
随机变量通常用
X,Y,Z或 , ,等表示
随机事件可以通过随机变 量的关系式表达出来 例如 某人每天使用移动支付的次数——随机变量X {某天至少使用1次移动支付} {某天1次也没有使用}
12
02 分布函数
例 解
概率论与数理统计随机变量及其分布

2.2 离散型随机变量及其概率分布
二项分布的图形特点: (1)当(n+1)p不为整数时,二项概率 P{X=k}在k=[(n+1)p]时达到最大值 (2)当(n+1)p为整数时,二项概率 P{X=k}在k=(n+1)p和k=(n+1)p-1时达
“未命中目标”;它们都可用(0-1)分布来描述.(0-1)分
布是实际中经常用到的一种分布.
2.2 离散型随机变量及其概率分布
二项分布:若一个随机变量X的概率分布由式
给P出{x,则k称} X服C从nk p参k (数1为pn),np的k , 二k 项0分,1布,..。., n记. 为X~b(n,p)(或
到最大值 讲课本例3和例4 注意二项分布b(n,p)和两点分布的关系
2.2 离散型随机变量及其概率分布
在实际中,我们经常要计算n次独立重 复的贝努利试验中恰好k次成功的概 率 Cnk pk (1 p)nk ,至少有次成功的概
n
率为 Cni pi (1 p)ni 等,当n很大时,要计 i 1
算出它们的确切数值很不容易,那我们 应该怎么做呢?
P{a
xi
b}
P{ {X axi b
xi}}
axi b
pi
而且X所成的任何事件的概率都能够求出来,
P{X I} P{X xi} pi
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布
两点分布(0-1分布):若一个随机变量X只有两个可能取值, 且其分布为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其概率分布
教学目标: 1.理解随机变量的意义;
2.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.
教学重点:随机变量的概念,以及在实际问题中如何恰当地定义随机变量;
教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.
教学过程:
1、导入新课
问题:(1)抛掷一枚骰子,可能出现的点数有几种情况?
(2)姚明罚球2次有可能得到的分数有几种情况?
(3)在一块地里种下10棵树苗,成活的棵树有哪些情况?
(4)抛掷一枚硬币,可能出现的结果有几种情况?
在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?
2、讲授新课:
引入:我们生活在一个数字化的时代,有数字电视,有数字校园,事实上,在数学领域里,将研究的问题数字化比比皆是,比如说在我们50个同学中选一位同学回答问题,王丽被选中的可能性是多少?(学生回答)这是一个概率问题,在必修3里我们也学习过随机试验,基本事件,古典概型这几个概念(复习),同学们有没有发现除了结果是一份数字外,很多随机试验的结果也是数字呢?比如引例
()1)抛掷一枚骰子,可能出现的点数有几种情况?
(2)姚明罚球2次有可能得到的分数有几种情况?
(3)在一块地里种下10棵树苗,成活的棵树有哪些情况?
(4)抛掷一枚硬币,可能出现的结果有几种情况?
随机变量:一般地,如果随机试验的结果,可以用一个变量X来表示,那么我们把这样的变量X叫做一个随机变量.随机变量常用字母X、Y 、Z (或小写希腊字母ξ,η,ζ)等表示,而用小写拉丁字母x,y,z(加上适当下标)等表示随机变量取的可能值.
引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来. 如姚明的投篮得分X是一个随机变量,
X=0,表示______________________;X=1,表示______________________;
回顾函数的概念,函数的理解:实数→实数
类比函数的概念,提出对随机变量的理解:随机试验的结果→实数
你能举出一些随机变量的例子吗?
例1(1)掷一枚质地均匀的硬币1次,若用X表示掷得正面的次数,则随机变量X的可能取值有哪些?
(2)一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y,则随机变量Y的可能取值有哪些?
练一练
(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数x;(2)抛掷两个骰子,所得点数之和Y;
(3)某城市1天之中发生的火警次数X;
(4)某品牌的电灯泡的寿命X;
(5)某林场树木最高达30米,最低是0.5米,则此林场任意一棵树木的高度x
引入了随机变量后,随机事件就可以用随机变量来表示了.
随机变量的概率分布列:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且i i p x X P ==)(,i=1,2,…,n , ①
则称①为随机变量X 的概率分布列,简称为X 的分布列.
列表
称为随机变量X 的概率分布表,它和①都叫做随机变量X 的概率分布.
其中i p 满足:(1)__________;(2)___________________________________.
例2同时掷两颗质地均匀的骰子,观察朝上一面出现的点数.求两颗骰子中出现的较大点数X 的概率分布,并求X 大于2小于5的概率.
例3一个口袋有5只同样大小的球,编号分别为1,2,3,4,5,从中同时取出3只,以X 表示取出的球最小的号码,求X 的分布列。
例4,从装有6只白球和4只红球的口袋中任取1只球,用X 表示“取到的白球个数”,即
⎩⎨⎧=,当取到红球时,
,当取到白球时,01X 求随机变量X 的概率分布.
注:例4中的概率分布称为0-1分布或两点分布,记为X~0-1分布或X~两点分布.
3.课堂小结: 学生小结()
1. 随机变量及其分布列的意义;
2.随机变量概率分布的求解.
4.课堂练习
1.课本 P52、2
2.一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=___________。
(用式子表示)。