2020学年中考数学一次函数试题分类汇编

合集下载

2020年中考总复习一次函数经典题型汇总(含答案)

2020年中考总复习一次函数经典题型汇总(含答案)

1、如图,在平闻直角坐标系中,直线AB与y轴交于点B(0,7),与反比例函数y=在第二象限内的图象相交于点A(﹣1,a).(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求△ACD的面积;(3)设直线CD的解析式为y=mx+n,根据图象直接写出不等式mx+n≤的解集.2、如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C 的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.3、图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.4、如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.5、如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.6、如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点 .⑴.求该反比例函数和一次函数的解析式;⑵.在轴上找一点使最大,求的最大值及点的坐标;⑶.直接写出当时,的取值范围.7、如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.8、双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.9、如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.10、如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.11、如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=上的两点,当x1<x2<0时,比较y2与y1的大小关系.参考答案1、如图,在平闻直角坐标系中,直线AB与y轴交于点B(0,7),与反比例函数y=在第二象限内的图象相交于点A(﹣1,a).(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求△ACD的面积;(3)设直线CD的解析式为y=mx+n,根据图象直接写出不等式mx+n≤的解集.解:(1))∵点A(﹣1,a)在反比例函数y=的图象上,∴a==8,∴A(﹣1,8),∵点B(0,7),∴设直线AB的解析式为y=kx+7,∵直线AB过点A(﹣1,8),∴8=﹣k+7,解得k=﹣1,∴直线AB的解析式为y=﹣x+7;(2)∵将直线AB向下平移9个单位后得到直线CD的解析式为y=﹣x﹣2,∴D(0,﹣2),∴BD=7+2=9,联立,解得或,∴C(﹣4,2),E(2,﹣4),连接AC,则△CBD的面积=×9×4=18,由平行线间的距离处处相等可得△ACD与△CDB面积相等,∴△ACD的面积为18.(3)∵C(﹣4,2),E(2,﹣4),∴不等式mx+n≤的解集是:﹣4<x<0或x>2.2、如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C 的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣4m,即:S=m2﹣4m,(<m≤3)③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,同理得:DF=,BF=m,∴OF=DG=m﹣3,AG=m﹣4,∴S=S△OGE﹣S△ADG==∴S=,(m>3)答:S=3、图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG=,∴P(2,),∵P在反比例函数y=上,∴k=2,∴y=,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)D(3,0),E(4,),设DE的解析式为y=mx+b,∴,∴,∴y=x﹣3,联立方程解得x=,∴Q点横坐标为;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F(1,2),则点E与F都在反比例函数图象上;4、如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.5、如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.6、如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点 .⑴.求该反比例函数和一次函数的解析式;⑵.在轴上找一点使最大,求的最大值及点的坐标;⑶.直接写出当时,的取值范围.分析:⑴.先利用已知点的坐标求出反比例函数的解析式,在此基础上求出点的坐标,利用待定系数法求一次函数的解析式;⑵.根据题意和函数图象的最大值先利用勾股定理分别求的长度再代入相减,本题就是的长度;⑶.直接根据两图象相交上下位置可以读出时的的取值范围.,注意在每一个象限内来认识.略解:⑴.∵在反比例函数上∴∴反比例函数的解析式为··········2分把代入可求得∴.·····························3分把代入为解得.∴一次函数的解析式为.·····················5分⑵. 的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴,∴的最大值为 . ····8分⑶.根据图象的位置和图象交点的坐标可知:当时的取值范围为;或.·············10分7、如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.解:(1)∵A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点,∴4=,得m=﹣4,∴y=﹣,∴﹣2=﹣,得n=2,∴点A(2,﹣2),∴,解得,∴一函数解析式为y=﹣2x+2,即反比例函数解析式为y=﹣,一函数解析式为y=﹣2x+2;(2)设直线与y轴的交点为C,当x=0时,y=﹣2×0+2=2,∴点C的坐标是(0,2),∵点A(2,﹣2),点B(﹣1,4),∴S△AOB=S△AOC+S△BOC=×2×2+×2×1=3.8、双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.解:(1)∵点A(﹣m,m﹣2),B(1,n)在直线y=﹣2x+b上,∴,解得:,∴B(1,﹣2),代入反比例函数解析式,∴,∴k=﹣2.(2)∵直线AB的解析式为y=﹣2x﹣2,令x=0,解得y=﹣2,令y=0,解得x=﹣1,∴C(﹣1,0),D(0,﹣2),∵点E为CD的中点,∴E(),∴S△BOE=S△ODE+S△ODB===.9、如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.【分析】(1)先将点A(,4)代入反比例函数解析式中求出n的值,进而得到点B的坐标,已知点A、点B坐标,利用待定系数法即可求出直线AB的表达式;(2)利用三角形的面积公式以及割补法分别求出S1,S2的值,即可求出S2﹣S1.【解答】解:(1)由点A(,4),B(3,m)在反比例函数y=(x>0)图象上∴4=∴n=6∴反比例函数的解析式为y=(x>0)将点B(3,m)代入y=(x>0)得m=2∴B(3,2)设直线AB的表达式为y=kx+b∴解得∴直线AB的表达式为y=﹣;(2)由点A、B坐标得AC=4,点B到AC的距离为3﹣=∴S1=×4×=3设AB与y轴的交点为E,可得E(0,6),如图:∴DE=6﹣1=5由点A(,4),B(3,2)知点A,B到DE的距离分别为,3∴S2=S△BDE﹣S△ACD=×5×3﹣×5×=∴S2﹣S1=﹣3=.10、如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.11、如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=上的两点,当x1<x2<0时,比较y2与y1的大小关系.解:(1)∵反比例函数y=经过点B(2,﹣1),∴m=﹣2,∵点A(﹣1,n)在y=上,∴n=2,∴A(﹣1,2),把A,B坐标代入y=kx+b,则有,解得,∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=﹣.(2)∵直线y=﹣x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,﹣1),∵B(2,﹣1)∴BD∥x轴,∴S△ABD=×2×3=3.(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=﹣上的两点,且x1<x2<0,∴y1<y2.。

全国历年中考数学真题精选汇编:一次函数1

全国历年中考数学真题精选汇编:一次函数1

全国历年中考数学真题精选汇编:一次函数1一、单选题1.(2021·衢州)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A. 15kmB. 16kmC. 44kmD. 45km2.(2020·台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.3.(2020·杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图像经过点p(1,2),则该函数的图像可能是( )A. B. C. D.4.(2019·杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.5.(2019·绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A. -1B. 0C. 3D. 46.(2020·连云港)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系.小欣同学结合图像得出如下结论:①快车途中停留了;②快车速度比慢车速度多;③图中;④快车先到达目的地.其中正确的是()A. ①③B. ②③C. ②④D. ①④7.(2019·扬州)若点P在一次函数的图像上,则点P一定不在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.(2021·安徽)某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系,若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm。

中考数学试题分类汇编(正式稿)

中考数学试题分类汇编(正式稿)

中考数学试题分类汇编(一)线段的和差问题1、如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值M点的坐标.2、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,简略说明理由并求出这个最短的距离。

3、如图,抛物线L过点A(﹣3,0)、B(1,0)、C(0,﹣3)三点.将抛物线L沿y轴翻折得抛物线L1.(1)求L、L1的解析式;(2)在L1的对称轴上找出点P,使P到A(翻折时)的对称点A1及C两点的距离差的绝对值最大,并说出理由;(3)平行于x轴的一条直线交抛物线L1于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.4、在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2(二)等腰三角形问题1、如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2、如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.3、如图,已知一次函数y=-x+7与正比例函数43y x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C —A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.1、如图,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m, 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.2、如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E(4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.3、如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S . ① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.1、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.2、如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.=6?若存在,求出点P的坐标;若不存在,说明理由.(3)在抛物线上是否存在点P,使S△PBD3、如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.(五)水平宽与铅直高1.阅读材料:如图26-①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S △ABC =21ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图26-②,抛物线顶点坐标为点(1,4),交轴于点(3,0),交轴于点.(1)求抛物线和直线AB 的解析式; (2)求的铅垂高及;S △ABC =21ah(3)设点是抛物线(在第一象限内)上的一个动点,是否存在一点,使,若存在,求出点的坐标;若不存在,请说明理由.2、如图,抛物线经过点A(4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)在直线AC 上方的抛物线是否存在一点D ,使得△DCA 的面积最大?若存在,求出点D 的坐标;若不存在,请说明理由。

历年初三数学中考一次函数试题分类汇编及答案

历年初三数学中考一次函数试题分类汇编及答案

中考数学一次函数试题分类汇编一、选择题1、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

C A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2)5、如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-16、已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<<C.2y <-D.4y <-7、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

x 2-2、随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强xyO32y x a =+1y kx b =+第7题图1Oxy图(6)2-4 xy Oxy A B1- y x =-2图2(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <24、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用一、单选题1.(2020·自贡)函数与的图象如图所示,则的大致图象为()A. B. C. D.2.(2020·达县)如图,直线与抛物线交于A、B两点,则的图象可能是()A. B. C. D.3.(2020·济宁)数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=154.(2020·菏泽)一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.5.(2020·德州)函数和在同一平面直角坐标系中的大致图象可能是()A. B. C. D.6.(2020·江西)在平面直角坐标系中,点O为坐标原点,抛物线与轴交于点A,与x 轴正半轴交于点B,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为()A. B. C. D.7.(2020·湘西州)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是()A. 正比例函数的解析式是B. 两个函数图象的另一交点坐标为C. 正比例函数与反比例函数都随x的增大而增大D. 当或时,8.(2020·湘潭)如图,直线经过点,当时,则x的取值范围为()A. B. C. D.9.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系10.(2020·安徽)已知一次函数的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. B. C. D.11.(2020·陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A. 2B. 3C. 4D. 6二、填空题12.(2020·南京)将一次函数的图象绕原点O逆时针旋转,所得到的图像对应的函数表达式是________.13.(2020·达县)已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是________;记直线和与x轴围成的三角形面积为,则________,的值为________.14.(2020·临沂)点和点在直线上,则m与n的大小关系是________.15.(2020·德州)在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.16.(2020·北京)在平面直角坐标系中,直线与双曲线交于A,B两点.若点A,B 的纵坐标分别为,则的值为________.三、综合题17.(2020·自贡)甲、乙两家商场平时以同样价格出售相同的商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?18.(2020·重庆A)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣3 0 3 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).19.(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)20.(2020·荆州)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.21.(2020·无锡)在平面直角坐标系中,O为坐标原点,直线交二次函数的图像于点A,,点在该二次函数的图像上,设过点(其中)且平行于轴的直线交直线于点M,交直线于点N,以线段、为邻边作矩形.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点能否落在该二次函数的图像上?若能,求出m的值;若不能,请说明理由;(2)当时,若点恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线的函数表达式.22.(2020·苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存,成本价8元/ ,售价10元/ (除了促销降价,其他时间售价保持不变). 6月9日从6月1日至今,一共售出.6月10、11日这两天以成本价促销,之后售价恢复到10元/ .6月12日补充进货,成本价8.5元/ .6月30日水果全部售完,一共获利1200元.(2)求图像中线段所在直线对应的函数表达式.23.(2020·连云港)如图,在平面直角坐标系中,反比例函数的图像经过点,点B在y轴的负半轴上,交x轴于点C,C为线段的中点.(1)________,点的坐标为________;(2)若点D为线段上的一个动点,过点D作轴,交反比例函数图像于点E,求面积的最大值.24.(2020·鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有x(元/件) 4 5 6y(件)10000 9500 9000(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.25.(2020·河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元) ,且其函数图象如图所示.(1)求和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.26.(2020·安顺)如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.27.(2020·遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB ,以AB为边在第一象限内作正方形ABCD ,直线BD交双曲线y═ (k≠0)于D、E两点,连结CE ,交x轴于点F .(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求的面积.28.(2020·泸县)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A ,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.29.(2020·广元)某网店正在热销一款电子产品,其成本为10元/件,销售中发现,该商品每天的销售量y (件)与销售单价x(元/件)之间存在如图所示的关系:(1)请求出y与x之间的函数关系式;(2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元;(3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出300元捐赠给武汉,为了保证捐款后每天剩余利润不低于450元,如何确定该款电子产品的销售单价?30.(2020·甘孜)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k ,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.31.(2020·枣庄)如图,抛物线交x轴于,两点,与y轴交于点C ,AC ,BC .M为线段OB上的一个动点,过点M作轴,交抛物线于点P ,交BC于点Q .(1)求抛物线的表达式;(2)过点P作,垂足为点N .设M点的坐标为,请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.32.(2020·潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)33.(2020·泰安)如图,已知一次函数的图象与反比例函数的图象交于点,点.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C ,点D为点C关于原点O的对称点,求的面积.34.(2020·青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?35.(2020·聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.36.(2020·聊城)如图,已知反比例函数的图象与直线相交于点,.(1)求出直线的表达式;(2)在x轴上有一点使得的面积为18,求出点P的坐标.37.(2020·济宁)在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是________,x的取值范围是________;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.38.(2020·菏泽)如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交x轴于点C,点P是x轴上的点,若的面积是,求点P的坐标.39.(2020·岳阳)如图,一次函数的图象与反比例函数(为常数且)的图象相交于,B两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求b的值.40.(2020·湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形的顶点A的坐标为.(1)求过点B的反比例函数的解析式;(2)连接,过点B作交x轴于点D,求直线的解析式.41.(2020·怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.42.(2020·常德)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.43.(2020·龙东)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)44.(2020·福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.45.(2020·北京)在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.46.(2020·安徽)在平而直角坐标系中,已知点,直线经过点A.抛物线恰好经过三点中的两点.(1)判断点B是否在直线上.并说明理由;(2)求的值;(3)平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.47.(2020·攀枝花)如图,过直线上一点作轴于点D,线段交函数的图像于点C,点C为线段的中点,点C关于直线的对称点的坐标为.(1)求k、m的值;(2)求直线与函数图像的交点坐标;(3)直接写出不等式的解集.48.(2020·河北)表格中的两组对应值满足一次函数 ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线x -1 0 y -2 1(1)求直线l 的解析式;(2)请在图上画出..直线 (不要求列表计算),并求直线 被直线l 和y 轴所截线段的长;(3)设直线 与直线l , 及 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.49.(2020·牡丹江)在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是________千米1时,B ,C 两地的路程为________千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.50.(2020·陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?答案解析部分一、单选题1.【答案】D【解析】【解答】解:∵反比函数过一三象限,∴,由二次函数开口向下可得,又二次函数的对称轴,∴,∴同号,∴,∴∴一次函数经过第一、二、三象限,故答案为D.【分析】根据反比例函数过一、三象限可确定出k的符号,根据二次函数图像的对称轴可以确定出a,b的符号,进而求解.2.【答案】B【解析】【解答】解:由题图像得中k>0,中a<0,b<0,c<0,∴b-k<0,∴函数对称轴x= <0,交x轴于负半轴,∴当时,即,移项得方程,∵直线与抛物线有两个交点,∴方程有两个不等的解,即与x轴有两个交点,根据函数对称轴交x轴负半轴且函数图像与x轴有两个交点,∴可判断B符合题意.故答案为:B【分析】根据题目所给的图像,首先判断中k>0,其次判断中a<0,b<0,c <0,再根据k、b、的符号判断中b-k<0,又a<0,c<0可判断出图像.3.【答案】A【解析】【解答】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故答案为:A.【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.4.【答案】B【解析】【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,A不符合题意;B、∵二次函数图象开口向上,对称轴在y轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B符合题意;C、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C不符合题意;D、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不符合题意.故答案为:B.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.5.【答案】D【解析】【解答】∵反比例函数和一次函数∴当时,函数在第一、三象限,一次函数经过一、二、四象限,A、B不符合题意,选项D符合题意;当时,函数在第二、四象限,一次函数经过一、二、三象限,C不符合题意,故答案为:D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.6.【答案】B【解析】【解答】解:当y=0时,,解得x1=-1,x2=3,当x=0时,y=-3,∴A(0,-3),B(3,0),对称轴为直线,经过平移,落在抛物线的对称轴上,点落在抛物线上,∴三角形向右平移1个单位,即B′的横坐标为3+1=4,当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形向上平移5个单位,此时A′(0+1,-3+5),∴A′(1,2),设直线的表达式为y=kx+b,代入A′(1,2),B′(4,5),可得解得:,故直线的表达式为,故答案为:B.【分析】先求出A、B两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解.7.【答案】D【解析】【解答】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,,将分别代入,求得,,即正比例函数,反比例函数,故A不符合题意;另一个交点与关于原点对称,即,故B不符合题意;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x 的增大而增大,故C不符合题意;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D符合题意.故答案为:D.【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A不符合题意;两个函数的两个交点关于原点对称,可判断B不符合题意,再根据正比例函数与反比例函数图像的性质,可判断C不符合题意,D符合题意,即可选出答案.8.【答案】A【解析】【解答】解:由题意将代入,可得,即,整理得,,∴,由图像可知,∴,∴,故答案为:A .【分析】将代入,可得,再将变形整理,得,求解即可.9.【答案】B【解析】【解答】解:设水面高度为注水时间为t分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故答案为:B.【分析】设水面高度为注水时间为分钟,根据题意写出h与t的函数关系式,从而可得答案.10.【答案】B【解析】【解答】∵一次函数的函数值y随x的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k= ﹥0,此选项不符合题意,故答案为:B.【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可.11.【答案】B【解析】【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故答案为:B.【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.二、填空题12.【答案】【解析】【解答】∵一次函数的解析式为,∴设与x轴、y轴的交点坐标为、,∵一次函数的图象绕原点逆时针旋转,∴旋转后得到的图象与原图象垂直,旋转后的点为、,令,代入点得,,∴旋转后一次函数解析式为.故答案为.【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;13.【答案】(-1,1);;【解析】【解答】解:联立直线与直线成方程组,,解得,∴这两条直线都交于一个固定的点,这个点的坐标是;∵直线与x轴的交点为,直线与x轴的交点为,∴,∴,故答案为:;;【分析】联立直线和成方程组,通过解方程组,即可得到交点坐标;分别表示出直线和与x轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线和与x轴围成的三角形面积为的表达式,从而可得到和,再依据分数的运算方法即可得解.14.【答案】m<n【解析】【解答】解:∵直线中,k=2>0,∴此函数y随着x的增大而增大,∵<2,∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.15.【答案】【解析】【解答】∵以原点O为位似中心,将线段OA放大为原来的2倍,得到OA',A(-2,1),∴点A的对应点A′的坐标是:(-4,2)或(4,-2).设反比例函数的解析式为( ),∴,∴反比例函数的解析式为:.故答案为:.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A′的坐标.利用待定系数法即可求得反比例函数的解析式.16.【答案】0【解析】【解答】解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,故答案为:0.【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.三、综合题17.【答案】(1)解:由题意可得,,当时,,当时,,由上可得,;(2)解:由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【解析】【分析】(1)根据题意,可以分别写出两家商场对应的关于的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.18.【答案】(1)解:补充完整下表为:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣﹣3 0 3 …(2)解:根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.(3)解:由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣0.3<1.8.【解析】【分析】(1)把x=±3代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.19.【答案】(1)解:由图可知,当时,当时,z是关于x的一次函数,设则,得,即∴关于的函数解析式为(2)解:设第x个生产周期工厂创造的利润为W万元①时,。

中考数学分类一次函数与二次函数试卷(含答案)

中考数学分类一次函数与二次函数试卷(含答案)

中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。

2020年中考数学试题分类汇编之五 一次函数与反比例函数 含解析

2020年中考数学试题分类汇编之五 一次函数与反比例函数  含解析

2020年中考数学试题分类汇编之五一次函数与反比函数一、选择题1.(2020安徽)(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(1,2)-时,32k -+=, 解得:10k =>,y ∴随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,2)-时,32k +=-,解得:50k =-<,y ∴随x 的增大而减小,选项B 符合题意; C 、当点A 的坐标为(2,3)时,233k +=,解得:0k =,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,334k +=,解得:103k =>, y ∴随x 的增大而增大,选项D 不符合题意.故选:B .2.(2020广州)一次函数31y x =-+的图象过点11()x y ,,12()x y +1,,13(2)x y +,,则( * ).(A )123y y y <<(B )321y y y <<(C )213y y y << (D )312y y y <<【答案】B3.(2020陕西)在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2B .3C .4D .6【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【解答】解:在y =x +3中,令y =0,得x =﹣3, 解得,,∴A (﹣3,0),B (﹣1,2), ∴△AOB 的面积=3×2=3,故选:B .4.(2020天津)若点()1,5A x -,()2,2B x ,()3,5C x 都在反比例函数10y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<答案:C5.(2020河南)若点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图像上,则123,,y y y 的大小关系为( )A. 123y y y >>B. 231y y y >>C. 132y y y >>D.321y y y >>【答案】C【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .6.(2020苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫ ⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B【详解】解:如图,分别过点D 、B 作DE⊥x 轴于点E ,DF⊥x 轴于点F ,延长BC 交y 轴于点H⊥四边形OABC 是平行四边形 ⊥易得CH=AF⊥点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ⊥236k =⨯= 即反比例函数解析式为6y x= ⊥设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭⊥DEBF⊥ODE OBF △△ ⊥DE OEBF OF= ⊥236OF a=⊥6392a OF a⨯==⊥9OA OF AF OF HC a a =-=-=-,点B 坐标为96,a a ⎛⎫ ⎪⎝⎭⊥平行四边形OABC 的面积是152⊥96152a a a ⎛⎫-⋅=⎪⎝⎭ 解得122,2a a ==-(舍去) ⊥点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B7.(2020乐山)直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A. 2x -≤B. 4x ≤-C. 2x ≥-D. 4x ≥-【答案】C【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点, 将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,⊥直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,⊥不等式2kx b +≤的解集是2x ≥-, 故选:C .8.(2020杭州)(3分)在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象过点P (1,2),则该函数的图象可能是( )A .B .C .D .解:∵函数y =ax +a (a ≠0)的图象过点P (1,2), ∴2=a +a ,解得a =1, ∴y =x +1,∴直线交y 轴的正半轴,且过点(1,2),选:A .9.(2020乐山)如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ长度的最大值为2,则k 的值为( )A. 12-B. 32-C. 2-D. 14-【答案】A 解:连接BP ,⊥直线y x =-与双曲线ky x=的图形均关于直线y=x 对称, ⊥OA=OB ,⊥点Q 是AP 的中点,点O 是AB 的中点⊥OQ 是⊥ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大, ⊥PB≤PC+BC ,当三点共线时PB 长度最大, ⊥当P 、C 、B 三点共线时PB=2OQ=4, ⊥PC=1, ⊥BC=3,设B 点的坐标为(x ,-x ),则3=,解得1222x x ==-(舍去)故B 点坐标为22⎛⎫- ⎪ ⎪⎝⎭, 代入k y x=中可得:12k =-,故答案为:A .10.(2020贵州黔西南)(4分)如图,在菱形ABOC 中,AB =2,∠A =60°,菱形的一个顶点C 在反比例函数y ═kx (k ≠0)的图象上,则反比例函数的解析式为( )A .y =−3√3xB .y =−√3xC .y =−3xD .y =√3x【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C 的坐标,从而可以求得k 的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC 中,∠A =60°,菱形边长为2, ∴OC =2,∠COB =60°, ∴点C 的坐标为(﹣1,√3),∵顶点C 在反比例函数y ═kx 的图象上,∴√3=k−1,得k =−√3,即y =−√3x,故选:B .11.(2020无锡)反比例函数k y x =与一次函数8161515y x =+的图形有一个交点1,2B m ⎛⎫⎪⎝⎭,则k 的值为( ) A. 1B. 2C.23D.43解:由题意,把B (12,m )代入8161515y x =+,得m=43⊥B (12,43) ⊥点B 为反比例函数k y x=与一次函数8161515y x =+的交点, ⊥k=x·y ⊥k=12×43=23. 故选:C .12.(2020长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为6310m 土石方的任务,该运输公司平均运送土石方的速度v (单位:3/m 天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是( )A. 610v t= B. 610v = C. 26110v t =D. 6210v t =解(1)⊥vt=106,⊥v=610t,故选:A .13.(2020湖北武汉)若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A. 1a <- B. 11a -<<C. 1a >D. 1a <-或1a >解:⊥反比例函数(0)ky k x=<, ⊥图象经过第二、四象限,在每个象限内,y 随x 的增大而增大, ⊥若点A 、点B 同在第二或第四象限, ⊥12y y >, ⊥a -1>a+1, 此不等式无解;⊥若点A 在第二象限且点B 在第四象限, ⊥12y y >,⊥1010a a -⎧⎨+⎩<>,解得:11a -<<;⊥由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .14.(2020重庆A 卷).如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线, ∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD , ∴∠EAD=∠ODA ,∴OB ∥AE , ∵S △ABE =18,∴S △OAE =18, 设A 的坐标为(a ,k a), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a), ∴E 点的坐标为(3a ,0), S △OAE =12×3a ×k a=18, 解得k=12, 故选:B .15.(2020上海)(4分)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( ) A .y =2xB .y =−2xC .y =8xD .y =−8x选:D .16.(2020重庆B 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D(-2,3),AD=5,若反比例函数y =kx (k>0,x>0)的图象经过点B ,则k 的值为(FxOAA.163B.8C.10D.323解析:由D(-2,3),AD=5易得A(2,0).设AD 与y 轴交于E ,易得E(0,1.5),作BF 垂直于x 轴于F B(4,83).答案D.17.(2020内蒙古呼和浩特)(3分)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个B .3个C .2个D .1个解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0, 综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B .18.(2020宁夏)(3分)如图,函数y 1=x +1与函数y 2=的图象相交于点M (1,m ),N (﹣2,n ).若y 1>y 2,则x 的取值范围是( )A .x <﹣2或0<x <1B .x <﹣2或x >1C .﹣2<x <0或0<x <1D .﹣2<x <0或x >1选:D .19.(2020黑龙江龙东)(3分)如图,菱形ABCD 的两个顶点A ,C 在反比例函数ky x=的图象上,对角线AC ,BD 的交点恰好是坐标原点O ,已知(1,1)B -,120ABC ∠=︒,则k 的值是( )A .5B .4C .3D .2【解答】解:四边形ABCD 是菱形,BA AD ∴=,AC BD ⊥,120ABC ∠=︒,60BAD ∴∠=︒,ABD ∴∆是等边三角形,点(1,1)B -,OB ∴=,tan30OBAO ∴=︒直线BD 的解析式为y x =-,∴直线AD 的解析式为y x =,6OA =∴点A 的坐标为,点A 在反比例函数ky x=的图象上,3k ∴=, 故选:C . 20.(2020广西南宁)(3分)如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =(x >0)于点C ,D .若AC =BD ,则3OD 2﹣OC 2的值为( )A.5B.3C.4D.2解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.21.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),则代数式1a −1b的值为()A.−12B.12C.−14D.14解:由题意得,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴1a −1b=b−aab=−14;故选:C.22.(2020贵州遵义)(4分)如图,△ABO的顶点A在函数y=kx(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP 的面积为3,则k的值为()A.9B.12C.15D.18【解答】解:∵NQ∥MP∥OB,∴△ANQ∽△AMP∽△AOB,∵M、N是OA的三等分点,∴ANAM =12,ANAO=13,∴S△ANQS△AMP =14,∵四边形MNQP的面积为3,∴S△ANQ3+S△ANQ =14,∴S△ANQ=1,∵1S△AOB =(ANAO)2=19,∴S△AOB=9,∴k=2S△AOB=18,故选:D.23.(2020山东滨州)(3分)如图,点A 在双曲线4y x =上,点B 在双曲线12y x=上,且//AB x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .12解:过A 点作AE y ⊥轴,垂足为E , 点A 在双曲线4y x=上,∴四边形AEOD 的面积为4, 点B 在双曲线线12y x=上,且//AB x 轴,∴四边形BEOC 的面积为12, ∴矩形ABCD 的面积为1248-=.故选:C .24.(3分)(2020•烟台)如图,正比例函数y 1=mx ,一次函数y 2=ax +b 和反比例函数y 3=kx 的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <1【解答】解:由图象可知,当x <﹣1或0<x <1时,双曲线y 3落在直线y 1上方,且直线y 1落在直线y 2上方,即y 3>y 1>y 2,所以若y 3>y 1>y 2,则自变量x 的取值范围是x <﹣1或0<x <1. 故选:D .25.(2020山西)(3分)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 2选:A .26.(3分)(2020•怀化)在同一平面直角坐标系中,一次函数y 1=k 1x +b 与反比例函数y 2=k2x(x >0)的图象如图所示、则当y 1>y 2时,自变量x 的取值范围为( )A .x <1B .x >3C .0<x <1D .1<x <3选:D .27.(2020海南)(3分)下列各点中,在反比例函数y =图象上的是( ) A .(﹣1,8) B .(﹣2,4)C .(1,7)D .(2,4)选:D .二、填空题28.(2020北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【解析】因为水面高度“匀速”增加,且初始水面高度不为0,故选B29.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为 .【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y30.(5分)如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数ky x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 与OAB ∆的面积相等时,k 的值为 2 .【解答】解:一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,令0x =,则y k =,令0y =,则x k =-,故点A 、B 的坐标分别为(,0)k -、(0,)k ,则OAB ∆的面积21122OA OB k ==,而矩形ODCE 的面积为k ,则212k k =,解得:0k =(舍去)或2, 故答案为2.31.(2020成都)(4分)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为 12m >. 【解答】解:一次函数(21)2y m x =-+中,函数值y 随自变量x 的增大而增大, 210m ∴->,解得12m >. 故答案为:12m >. 32.(2020成都)(4分)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与双曲线4y x=交于A ,C 两点(点A 在第一象限),直线(0)y nx n =<与双曲线1y x=-交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为A 的坐标为 或.【解答】解:联立(0)y mx m=>与4yx=并解得:xy⎧=⎪⎨⎪=±⎩,故点A的坐标为,,联立(0)y nx n=<与1yx=-同理可得:点D,这两条直线互相垂直,则1mn=-,故点D,则点(B,则22255AD mm=+=+,同理可得:2255AB m ADm=+=,则14AB=⨯225552AB mm==+,解得:2m=或12,故点A的坐标为或,故答案为:或.33.(2020福建)设,,,A B C D是反比例函数kyx=图象上的任意四点,现有以下结论:⊥四边形ABCD可以是平行四边形;⊥四边形ABCD可以是菱形;⊥四边形ABCD不可能是矩形;⊥四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】⊥⊥【详解】解:如图,反比例函数kyx=图象关于原点成中心对称,,,OA OC OB OD∴==∴四边形ABCD是平行四边形,故⊥正确,如图,若四边形ABCD是菱形,则,AC BD⊥90,COD∴∠=︒显然:COD∠<90,︒所以四边形ABCD不可能是菱形,故⊥错误,如图,反比例函数kyx=的图象关于直线y x=成轴对称,当CD垂直于对称轴时,,,OC OD OA OB∴==,OA OC=,OA OB OC OD∴===,AC BD∴=∴四边形ABCD是矩形,故⊥错误,四边形ABCD不可能是菱形,∴四边形ABCD不可能是正方形,故⊥正确,故答案:⊥⊥.34.(2020陕西)在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y =(k ≠0)的图象经过其中两点,则m 的值为 ﹣1 . 解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A (﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =(k ≠0)的图象经过其中两点, ∴反比例函数y =(k ≠0)的图象经过B (3,2),C (﹣6,m ), ∴3×2=﹣6m , ∴m =﹣1, 故答案为:﹣1.35.(2020哈尔滨)(3分)已知反比例函数ky x=的图象经过点(3,4)-,则k 的值为 12- . 【解答】解:反比例函数ky x=的图象经过点(3,4)-, 3412k ∴=-⨯=-,故答案为:12-.36.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7 【详解】解:(1)由图像可知T 1(-16,1)又⊥.函数ky x=(0x <)的图象经过T 1 ⊥116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ⊥L 过点4T ⊥k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)⊥T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ⊥要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ⊥k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7.37.(2020苏州)若一次函数36y x =-的图像与x 轴交于点(),0m ,则m =__________. 【详解】解:⊥一次函数y=3x -6的图象与x 轴交于点(m ,0), ⊥3m -6=0, 解得m=2. 故答案为:2.38.(2020乐山)我们用符号[]x 表示不大于x 的最大整数.例如:[]1.51=,[]1.52-=-.那么:(1)当[]12x -<≤时,x 的取值范围是______;(2)当12x -≤<时,函数[]223y x a x =-+的图象始终在函数[]3y x =+的图象下方.则实数a 的范围是______.【答案】 (1). 03x ≤< (2). 1a <-或32a ≥【详解】(1)因为[]x 表示整数,故当[]12x -<≤时,[]x 的可能取值为0,1,2. 当[]x 取0时,01x ≤< ;当[]x 取1时,12x ≤< ;当[]x =2时,23x ≤<. 故综上当[]12x -<≤时,x 的取值范围为:03x ≤<.(2)令[]2123y x a x =-+,[]23y x =+,321y y y =-,由题意可知:30y >,[]23(21)y x a x =-++.⊥当10x -≤<时,[]x =1-,23(21)y x a =--+,在该区间函数单调递增,故当1x =-时,min 220y a =--> ,得1a <-.⊥当01x ≤<时,[]x =0,230y x =-< 不符合题意.⊥当12x ≤<时,[]x =1,2321y x a =-++ ,在该区间内函数单调递减,故当x 取值趋近于2时,min 230y a =->,得32a >, 当32a =时,234y x =-+,因为2x ≠ ,故3y ≠0,符合题意. 故综上:1a <-或32a ≥. 39.(2020南京)(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 40.(2020贵阳)如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.解:如图所示:可得OB×AB =|xy|=|k|=3,则四边形OBAC 的面积为:3,故答案为:3.41.(2020贵州黔西南)(3分)如图,正比例函数的图象与一次函数y =﹣x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是 y =﹣2x .解:∵点P 到x 轴的距离为2,∴点P 的纵坐标为2,∵点P 在一次函数y =﹣x +1上,∴2=﹣x +1,得x =﹣1,∴点跑的坐标为(﹣1,2),设正比例函数解析式为y =kx ,则2=﹣k ,得k =﹣2,∴正比例函数解析式为y =﹣2x ,故答案为:y =﹣2x .42.(2020山东青岛)如图,点A 是反比例函数(0)k y x x=>图象上的一点,AB 垂直于x 轴,垂足为B .OAB 的面积为6.若点(),7P a 也在此函数的图象上,则a =__________.解: OAB 的面积为6.2612,k ∴=⨯= k >0,12,k ∴= 12,y x ∴=把(),7P a 代入12,y x=127,a ∴= 12.7a ∴= 经检验:127a =符合题意. 故答案为:12.743.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,矩形ABCD 的边AB 在y 轴上,点C 坐标为(2,﹣2),并且AO :BO =1:2,点D 在函数y =k x (x >0)的图象上,则k 的值为 2 .解:如图,∵点C 坐标为(2,﹣2),∴矩形OBCE 的面积=2×2=4,∵AO :BO =1:2,∴矩形AOED 的面积=2,∵点D 在函数y =k x(x >0)的图象上,∴k =2,故答案为2.44.(2020重庆A 卷)A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160解:设乙货车行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160)故答案为:(4,160). 45.(2020上海)(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.的【解答】解:当8≤t ≤20时,设s =kt +b ,将(8,960)、(20,1800)代入,得:{8k +b =96020k +b =1800,解得:{k =70b =400, ∴s =70t +400;当t =15时,s =1450,1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.46.(2020贵州遵义)(4分)如图,直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx +b <2的解集为 x <4 .【解答】解:∵直线y =kx +b 与直线y =2交于点A (4,2),∴x <4时,y <2,∴关于x 的不等式kx +b <2的解集为x <4.故答案为x <4.47.(2020上海)(4分)已知f (x )=2x−1,那么f (3)的值是 1 .【解答】解:∵f (x )=2x−1,∴f (3)=23−1=1, 故答案为:1.48.(2020辽宁抚顺)(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =(k >0,x >0)的图象上,点B ,C 在x 轴上,OC =OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 3 .解:作AE ⊥BC 于E ,连接OA ,∵AB =AC ,∴CE =BE ,∵OC =OB ,∴OC =CE ,∵AE ∥OD ,∴△COD ∽△CEA ,∴=()2=4,∵△BCD 的面积等于1,OC =OB ,∴S △COD =S △BCD =,∴S △CEA =4×=1,∵OC =CE ,∴S △AOC =S △CEA =,∴S △AOE =+1=,∵S △AOE =k (k >0),∴k =3,故答案为3.49.(2020江苏泰州)(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)k y k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 3 .【解答】解:点P 在反比例函数3y x =的图象上,且横坐标为1,则点(1,3)P , 则点A 、B 的坐标分别为(1,)k ,1(3k ,3), 设直线AB 的表达式为:y mx t =+,将点A 、B 的坐标代入上式得133k m t km t =+⎧⎪⎨=-+⎪⎩,解得3m =-,故直线AB 与x 轴所夹锐角的正切值为3,故答案为3.50.(3分)(2020•玉林)已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大;②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2;④函数y =y 1+y 2的最小值是2.则所有正确结论的序号是 ②③④ .【解答】解:补全函数图象如图:①当x <0时,y 1随x 的增大而增大,y 2随x 的增大而减小;故①错误;②当x <﹣1时,y 1>y 2;故②正确;③y 1与y 2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y =y 1+y 2的最小值是2,故④正确.综上所述,正确的结论是②③④.故答案为②③④.51.(3分)(2020•常德)如图,若反比例函数y=kx(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12.【解答】解:∵AB⊥OB,∴S△AOB=|k|2=6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.52.(3分)(2020•荆门)如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,OE交BC于点G,若反比例函数y=kx(x<0)的图象经过点G,则k的值为−12.解:∵B(﹣2,1),∴AB=1,OA=2,∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,∴DE=AB=1,OE=OA=2,∠OED=∠OAB=90°,∵∠COG=∠EOD,∠OCG=∠OED,∴△OCG∽△OED,∴CGDE =OCOE,即CG1=12,解得CG=12,∴G(−12,1),把G(−12,1)代入y=kx得k=−12×1=−12.故答案为−1 2.53.(2020四川自贡)(4分)如图,直线y=−√3x+b与y轴交于点A,与双曲线y=kx在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.54.(2020浙江宁波)(5分)如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,ba 的值为−13.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等, ∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =bx 的图象上,∴E ,C 关于原点对称, ∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形, ∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24, ∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12, ∴BC ∥AD ,∴BC AD=TB TA,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=1:3, ∴BC :AD =1:3,∴TB :TA =1:3,设BT =a ,则AT =3a ,AK =TK =1.5k ,BK =0.5k , ∴AK :BK =3:1,∴S △AOK S △BKO=12a −12b =13,∴a b=−13.故答案为24,−13.55.(2020浙江温州)(5分)点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的 值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =3k 3a ,DQ =k 2a ,ER =k a, ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27, ∴S 3=815,S 1=545,S 2=275, 故答案为275.56.(4分)(2020•株洲)如图所示,在平面直角坐标系xOy 中,四边形OABC 为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数y 1=kx(x >0,k 为常数且k >2)的图象上,边AB 与函数y 2=2x (x >0)的图象交于点D ,则阴影部分ODBC 的面积为 k ﹣1 .(结果用含k 的式子表示)【解答】解:∵D 是反比例函数y 2=2x (x >0)图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为12×2=1.∵点B 在函数y 1=kx (x >0,k 为常数且k >2)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k . ∴阴影部分ODBC 的面积=矩形ABCO 的面积﹣△AOD 的面积=k ﹣1. 故答案为:k ﹣1.三、解答题57.(2020北京)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数)0(≠+=k b kx y 由x y =平移得到,∴1=k 将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数)0(≠=m mx y 的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.)0(≠=m mx y 都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m58.(2020成都)(10分)在平面直角坐标系xOy 中,反比例函数(0)my x x=>的图象经过点(3,4)A ,过点A 的直线y kx b =+与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若AOB ∆的面积为BOC ∆的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数(0)my x x=>的图象经过点(3,4)A , 3412k ∴=⨯=,∴反比例函数的表达式为12y x=; (2)直线y kx b =+过点A , 34k b ∴+=,过点A 的直线y kx b =+与x 轴、y 轴分别交于B ,C 两点, (bB k∴-,0),(0,)C b ,AOB ∆的面积为BOC ∆的面积的2倍,∴114||2||||22b bb k k⨯⨯-=⨯⨯-⨯, 2b ∴=±,当2b =时,23k =, 当2b =-时,2k =,∴直线的函数表达式为:223y x =+,22y x =-. 59.(2020成都)(8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224)x <满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)y 与x 满足一次函数的关系,∴设y kx b =+,将12x =,1200y =;13x =,1100y =代入得:120012110013k b k b =+⎧⎨=+⎩,解得:1002400k b =-⎧⎨=⎩,y ∴与x 的函数关系式为:1002400y x =-+;(2)设线上和线下月利润总和为m 元,则2400(210)(10)4004800(1002400)(10)100(19)7300m x y x x x x x =--+-=-+-+-=--+,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.60.(2020广州)(本小题满分12分)如图9,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数ky x=0x >()的图象经过点A (3,4)和点M .(1)求k 的值和点M 的坐标; (2)求OABC 的周长.【详解过程】解:(1)∵函数ky x=0x >()的图象经过点A (3,4)∴k =xy =3×4=12.∴12y x=。

最新中考数学一次函数题型汇总及答案

最新中考数学一次函数题型汇总及答案

2020年中考数学真题分项汇编(全国通用)专题9一次函数(共50题)一.选择题(共12小题)1.(2020•内江)将直线y =﹣2x ﹣1向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .y =﹣2x ﹣5B .y =﹣2x ﹣3C .y =﹣2x +1D .y =﹣2x +3【分析】根据函数图象向上平移加,向下平移减,可得答案.【解析】直线y =﹣2x ﹣1向上平移两个单位,所得的直线是y =﹣2x +1, 故选:C .2.(2020•凉山州)若一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围是( ) A .m >−12B .m <3C .−12<m <3D .−12<m ≤3【分析】根据题意得到关于m 的不等式组,然后解不等式组即可. 【解析】根据题意得{2m +1>0m −3≤0,解得−12<m ≤3. 故选:D .3.(2020•泰州)点P (a ,b )在函数y =3x +2的图象上,则代数式6a ﹣2b +1的值等于( ) A .5B .3C .﹣3D .﹣1【分析】把点P 的坐标代入一次函数解析式,得出3a ﹣b =2.代入2(3a ﹣b )+1即可. 【解析】∵点P (a ,b )在函数y =3x +2的图象上, ∴b =3a +2, 则3a ﹣b =﹣2.∴6a ﹣2b +1=2(3a ﹣b )+1=﹣4+1=﹣3 故选:C .4.(2020•乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤﹣2B .x ≤﹣4C .x ≥﹣2D .x ≥﹣4【分析】根据待定系数法求得直线的解析式,然后求得函数y =2时的自变量的值,根据图象即可求得.【解析】∵直线y =kx +b 与x 轴交于点(2,0),与y 轴交于点(0,1), ∴{2k +b =0b =1,解得{k =−12b =1 ∴直线为y =−12x +1,当y =2时,2=−12x +1,解得x =﹣2, 由图象可知:不等式kx +b ≤2的解集是x ≥﹣2, 故选:C .5.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,方程x +5=ax +b 的解是( )A .x =20B .x =5C .x =25D .x =15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解. 【解析】∵直线y =x +5和直线y =ax +b 相交于点P (20,25) ∴直线y =x +5和直线y =ax +b 相交于点P 为x =20. 故选:A .6.(2020•安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k +3=3, 解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意; B 、当点A 的坐标为(1,﹣2)时,k +3=﹣2, 解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.7.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【解析】∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴,且过点(1,2),故选:A.8.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解析】∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上; D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .9.(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系【分析】根据题意可得容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系式,进而判断出相应函数类型.【解析】设容器内的水面高度为h ,注水时间为t ,根据题意得: h =0.2t +10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系. 故选:B .10.(2020•陕西)在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2B .3C .4D .6【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】在y =x +3中,令y =0,得x =﹣3, 解{y =x +3y =−2x 得,{x =−1y =2,∴A (﹣3,0),B (﹣1,2), ∴△AOB 的面积=12×3×2=3, 故选:B .11.(2020•连云港)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④【分析】根据题意可知两车出发2小时后相遇,据此可知他们的速度和为180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,据此可得慢车的速度为80km/h,进而得出快车的速度为100km/h,根据“路程和=速度和×时间”即可求出a的值,从而判断出谁先到达目的地.【解析】根据题意可知,两车的速度和为:360÷2=180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6﹣2.5)=80(km/h),则快车的速度为100km/h,所以快车速度比慢车速度多20km/h;故②结论错误;88+180×(5﹣3.6)=340(km),所以图中a=340,故③结论正确;(360﹣2×80)÷80=2.5(h),5﹣2.5=2.5(h),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.12.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【解析】由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .二.填空题(共16小题)13.(2020•辽阳)若一次函数y =2x +2的图象经过点(3,m ),则m = 8 . 【分析】利用一次函数图象上点的坐标特征可求出m 的值,此题得解. 【解析】∵一次函数y =2x +2的图象经过点(3,m ), ∴m =2×3+2=8. 故答案为:8.14.(2020•南京)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 y =12x +2 .【分析】直接根据一次函数互相垂直时系数之积为﹣1,进而得出答案. 【解析】在一次函数y =﹣2x +4中,令x =0,则y =4, ∴直线y =﹣2x +4经过点(0,4),将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,则点(0,4)的对应点为(﹣4,0), 旋转后得到的图象与原图象垂直,则对应的函数解析式为:y =12x +b , 将点(﹣4,0)代入得,12×(−4)+b =0,解得b =2,∴旋转后对应的函数解析式为:y =12x +2, 故答案为y =12x +2.15.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解析】∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.16.(2020•天津)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为y=﹣2x+1.【分析】根据一次函数图象上下平移时解析式的变化规律求解.【解析】将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.17.(2020•苏州)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=145.【分析】作CD⊥x轴于D,CE⊥y轴于E,则BE=4﹣n,CE=3,CD=n,AD=7,根据平行线的性质得出∠ECA=∠CAO,根据题意得出∠BCE=∠CAO,通过解直角三角形得到tan∠CAO=CDAD=tan∠BCE=BECE,即可得到n3+4=4−n3,解得即可.【解析】作CD⊥x轴于D,CE⊥y轴于E,∵点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,则E(0,n),D(3,0),∴BE=4﹣n,CE=3,CD=n,AD=7,∵CE∥OA,∴∠ECA=∠CAO,∵∠BCA=2∠CAO,∴∠BCE=∠CAO,在Rt △CAD 中,tan ∠CAO =CD AD ,在Rt △CBE 中,tan ∠BCE =BECE , ∴CD AD=BE CE ,即n3+4=4−n 3,解得n =145, 故答案为145.18.(2020•苏州)若一次函数y =3x ﹣6的图象与x 轴交于点(m ,0),则m = 2 . 【分析】把点(m ,0)代入y =3x ﹣6即可求得m 的值. 【解析】∵一次函数y =3x ﹣6的图象与x 轴交于点(m ,0), ∴3m ﹣6=0, 解得m =2, 故答案为2.19.(2020•达州)已知k 为正整数,无论k 取何值,直线11:y =kx +k +1与直线12:y =(k +1)x +k +2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x 轴围成的三角形面积为S k ,则S 1=14,S 1+S 2+S 3+…+S 100的值为50101.【分析】变形解析式得到两条直线都经过点(﹣1,1),即可证出无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1);先求出y =kx +k +1与x 轴的交点和y =(k +1)x +k +2与x 轴的交点坐标,再根据三角形面积公式求出S k ,求出S 1=12×(1−12)=14,S 2=12×( 12−13),以此类推S 100=12×(1100−1101),相加后得到12×(1−1101). 【解析】∵直线11:y =kx +k +1=k (x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1);∵直线12:y =(k +1)x +k +2=k (x +1)+(x +1)+1=(k +1)(x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1).∴无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1).∵直线11:y =kx +k +1与x 轴的交点为(−k+1k ,0), 直线12:y =(k +1)x +k +2与x 轴的交点为(−k+2k+1,0), ∴S K =12×|−k+1k +k+2k+1|×1=12k(k+1), ∴S 1=12×11×2=14; ∴S 1+S 2+S 3+…+S 100=12[11×2+12×3+⋯1100×101]=12[(1−12)+(12−13)+…+(1100−1101)]=12×(1−1101) =12×100101 =50101. 故答案为(﹣1,1);14;50101.20.(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m 的取值范围为 m >12 . 【分析】先根据一次函数的性质得出关于m 的不等式2m ﹣1>0,再解不等式即可求出m 的取值范围. 【解析】∵一次函数y =(2m ﹣1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m ﹣1>0,解得m >12. 故答案为:m >12.21.(2020•重庆)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则乙比甲晚 12 分钟到达B 地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B 地时,乙离B 地的距离即可解决问题. 【解析】由题意乙的速度为1500÷5=300(米/分),设甲的速度为x 米/分.则有:7500﹣20x =2500, 解得x =250,25分钟后甲的速度为250×85=400(米/分). 由题意总里程=250×20+61×400=29400(米), 86分钟乙的路程为86×300=25800(米), ∴29400−25800300=12(分钟).故答案为12.22.(2020•重庆)A ,B 两地相距240km ,甲货车从A 地以40km /h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD ﹣DE ﹣EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 (4,160) .【分析】根据点C 与点D 的坐标即可得出乙货车的速度,进而得出乙货车从B 地到A 地所用时间,据此即可得出点E 的坐标.【解析】根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km /h ), ∴乙货车从B 地到A 地所用时间为:240÷60=4(小时), 当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米), ∴点E 的坐标是(4,160). 故答案为:(4,160).23.(2020•上海)已知正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小”) 【分析】根据正比例函数的性质进行解答即可.【解析】函数y =kx (k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小.24.(2020•上海)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.【分析】当8≤t ≤20时,设s =kt +b ,将(8,960)、(20,1800)代入求得s =70t +400,求出t =15时s 的值,从而得出答案.【解析】当8≤t ≤20时,设s =kt +b , 将(8,960)、(20,1800)代入,得: {8k +b =96020k +b =1800, 解得:{k =70b =400,∴s =70t +400; 当t =15时,s =1450, 1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米, 故答案为:350.25.(2020•连云港)如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为 2 .【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C ′.求出MN ,当点C 与C ′重合时,△C ′DE 的面积最小.【解析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .∵AC =CB ,AM =OM , ∴MC =12OB =1,∴点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C ′. ∵直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E , ∴D (4,0),E (0,﹣3), ∴OD =4,OE =3, ∴DE =√32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE , ∴△DNM ∽△DOE , ∴MN OE =DM DE ,∴MN 3=35,∴MN =95,当点C 与C ′重合时,△C ′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.26.(2020•黔东南州)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 y =2x +3 .【分析】直接利用一次函数的平移规律进而得出答案.【解析】把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1, 再向上平移2个单位长度,得到y =2x +3. 故答案为:y =2x +3.27.(2020•遵义)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为x<4.【分析】结合函数图象,写出直线y=kx+2在直线y=2下方所对应的自变量的范围即可.【解析】∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为x<4.故答案为x<4.28.(2020•黔西南州)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解析】∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=﹣x+1上,∴2=﹣x+1,得x=﹣1,∴点P的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∴正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.三.解答题(共22小题)29.(2020•贵阳)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=14a+392,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.30.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.【分析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w 元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.【解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:630 0.9x −6001.2x=10,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函数,k=﹣6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500﹣3500=2000(棵),w=﹣6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.31.(2020•苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;(2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.【解析】(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:{350k+b=400800k+b=1200,解得{k=169b=−20009,∴线段BC所在直线对应的函数表达式为y=169x−20009.32.(2020•黑龙江)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME 的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间. (3)求两车最后一次相遇时离武汉的距离.(直接写出答案) 【分析】(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC 与FG 的解析式,再联立解答即可; (3)根据题意列式计算即可.【解析】(1)设ME 的函数解析式为y =kx +b (k ≠0),由ME 经过(0,50),(3,200)可得: {b =503k +b =200,解得{k =50b =50, ∴ME 的解析式为y =50x +50;(2)设BC 的函数解析式为y =mx +n ,由BC 经过(4,0),(6,200)可得: {4m +n =06m +n =200,解得{m =100n =−400, ∴BC 的函数解析式为y =100x ﹣400;设FG 的函数解析式为y =px +q ,由FG 经过(5,200),(9,0)可得: {5p +q =2009p +q =0,解得{p =−50q =450, ∴FG 的函数解析式为y =﹣50x +450, 解方程组{y =100x −400y =−50x +450得{x =173y =5003,同理可得x =7h ,答:货车返回时与快递车图中相遇的时间173h ,7h ;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.33.(2020•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时间/min25202330离宿舍的距离/km0.20.50.70.71(Ⅱ)填空:①食堂到图书馆的距离为0.3km;②小亮从食堂到图书馆的速度为0.06km/min;③小亮从图书馆返回宿舍的速度为0.1km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为6或62min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【分析】(Ⅰ)根据题意和函数图象,可以将表格补充完整;(Ⅱ)根据函数图象中的数据,可以将各个小题中的空补充完整;(Ⅲ)根据(Ⅱ)中的结果和函数图象中的数据,可以写出当0≤x≤28时,y关于x的函数解析式.【解析】(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x =2时,离宿舍的距离为0.1×2=0.2(km ),在7≤x ≤23时,距离不变,都是0.7km ,故当x =23时,离宿舍的距离为0.7km , 在28≤x ≤58时,距离不变,都是1km ,故当x =30时,离宿舍的距离为1km , 故答案为:0.2,0.7,1; (Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km ), 故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km /min ), 故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km /min ), 故答案为:0.1; ④当0≤x ≤7时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为0.6÷0.1=6(min ), 当58≤x ≤68时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min ), 故答案为:6或62; (Ⅲ)由图象可得, 当0≤x ≤7时,y =0.1x ; 当7<x ≤23时,y =0.7; 当23<x ≤28时,设y =kx +b , {23k +b =0.728k +b =1,得{k =0.06b =−0.68, 即当23<x ≤28时,y =0.06x ﹣0.68;由上可得,当0≤x ≤28时,y 关于x 的函数解析式是y ={0.1x(0≤x ≤7)0.7(7<x <23)0.06x −0.68(23<x ≤28).34.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?【分析】(1)根据函数图象中的数据,可以求得游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并计算出同时打开甲、乙两个进水口的注水速度;(2)根据题意和(1)中的结果,可以得到甲进水管的进水速度,从而可以求得单独打开甲进水口注满游泳池需多少小时.【解析】(1)设y 与t 的函数解析式为y =kt +b , {b =1002k +b =380, 解得,{k =140b =100,即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34,∵同时打开甲、乙两个进水口的注水速度是140m 3/h , ∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ),480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .35.(2020•北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x +b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.36.(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【分析】(1)根据题意,可以列出相应的一元一次方程,从而可以求得这个月该公司销售甲、乙两种特产分别为多少吨;(2)根据题意,可以得到利润与甲种特产数量的函数关系式,再根据甲种特产的取值范围和一次函数的性质,可以得到利润的最大值.【解析】(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x =15, ∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨; (2)设利润为w 元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20, ∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.37.(2020•怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x 台,请写出全部售出后该商店获利y 与x 之间函数表达式. (2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润. 【分析】(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;(2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x 取最小值时,y 有最大值,将x =12代入函数解析式求出结果即可.【解析】(1)由题意得:y =(2000﹣1600)x +(3000﹣2500)(20﹣x )=﹣100x +10000, ∴全部售出后该商店获利y 与x 之间函数表达式为y =﹣100x +10000; (2)由题意得:{1600x +2500(20−x)≤39200400x +500(20−x)≥8500,解得12≤x ≤15, ∵x 为正整数, ∴x =12、13、14、15, 共有四种采购方案:①甲型电脑12台,乙型电脑8台, ②甲型电脑13台,乙型电脑7台, ③甲型电脑14台,乙型电脑6台, ④甲型电脑15台,乙型电脑5台, ∵y =﹣100x +10000,且﹣100<0, ∴y 随x 的增大而减小, ∴当x 取最小值时,y 有最大值,即x =12时,y 最大值=﹣100×12+10000=8800,∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.38.(2020•陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y (cm )与生长时间x (天)之间的关系大致如图所示. (1)求y 与x 之间的函数关系式;(2)当这种瓜苗长到大约80cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【分析】(1)分段函数,利用待定系数法解答即可; (2)利用(1)的结论,把y =80代入求出x 的值即可解答. 【解析】(1)当0≤x ≤15时,设y =kx (k ≠0), 则:20=15k , 解得k =43, ∴y =43x ;当15<x ≤60时,设y =k ′x +b (k ≠0), 则:{20=15k ′+b 170=60k′+b ,解得{k ′=103b =−30,∴y =103x −30, ∴y ={43x(0≤x ≤15)103x −30(15<x ≤60);(2)当y =80时,80=103x −30,解得x =33, 33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Oy = - x y 中考数学一次函数试题分类汇编一、选择题1、(2019 最新模拟福建福州)已知一次函数yy = (a - 1)x + b 的图象如图1 所示,那么 a 的取值范 图 1 x围是()AA . a > 1B . a < 1C . a > 0D . a < 02、(2019 最新模拟上海市)如果一次函数 y = kx + b 的图象经过第一象限,且与 y 轴负半轴相交,那么()BA . k > 0 , b > 0B . k > 0 , b < 0C . k < 0 , b > 0D . k < 0 , b < 03、(2019 最新模拟陕西)如图 2,一次函数图象经过点 A ,且与正比例函数 y = - x 的BA2图象交于点 B ,则该一次函数的表达式为( )B -1 OxA . y = - x + 2B . y = x + 2图 2C . y = x - 2D . y = - x - 24、(2019 最新模拟浙江湖州)将直线 y =2x 向右平移 2 个单位所得的直线的解析式是()。

CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y=2(x +2)5、(2019 最新模拟浙江宁波)如图,是一次函数 y=kx+b 与反比例函数 y= 2 的图像,则关于 xx 的方程 kx+b= 2 的解为()Cx(A)x l =1,x 2=2 (B)x l =-2,x 2=-1y (C)x l =1,x 2=-2(D)x l =2,x 2=-16、(2019 最新模拟四川乐山)已知一次函数 y = kx + b 的图象如图(6) y所示,当 x < 1时, y 的取值范围是()C0 2 xA. -2 < y < 0 B. -4 < y < 0 C. y < -2D. y < -4-4图(6)y7、(2019 最新模拟浙江金华)一次函数 y1= kx + by = x + a2与 y2= x + a 的图象如图,则下列结论① k < 0 ;②O3 xy = kx + b1a > 0 ;③当 x < 3 时, 1< y 2中,正确的个数是( ) 第 7 题BA .0B .1C .2D .3二、填空题1、(2019 最新模拟福建晋江)若正比例函数 y = kx ( k ≠ 0 )经过点( - 1, 2 ),则该正比例函数的解析式为 y = ___________。

- 2x2、(2019 最新模拟广西南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量 y(g / m 3 ) 与大气压强 x(kPa) 成正比例函数关系.当 x = 36(kPa) 时, y = 108(g / m 3 ) ,请写出 y 与 x 的函数关系式y = 3x3、(2019 最新模拟湖北孝感)如图,一次函数 y = ax + b 的图象经过 A 、B 两点,则关于 x 的不等式 ax + b < 0 的 解集是 . x <2(第 3 题图)y = -kx + 3 的图象经过点 C , 这个一次函数图象与两坐标轴所围成的三,0) (4 0) 3 4、(2019 最新模拟浙江杭州)抛物线 y = 2 (x - 2)2 - 6 的顶点为 C ,已知则角形面积为。

15、(2019 最新模拟四川成都)在平面直角坐标系 xOy 中,已知一次函数 y = kx + b (k ≠ 0) 的图象过点 P(11) ,与 x 轴交于点 A ,与 y 轴交于点 B ,且 tan ∠ABO = 3 ,那么点 A 的坐标是.(-2,,, .6、(2019 最新模拟山东淄博)从-2,-1,1,2 这四个数中,任取两个不同的数作为一次函数 y = kx + b 的系数 k ,b ,则一y次函数 y = kx + b的图象不经过第四象限的概率是A________. 16O1x7、(2019 最新模拟上海)如图 7,正比例函数图象经过点 A ,该函数解析式是.y = 3x图 7三、解答题1、(2019 最新模拟甘肃白银等 7 市)某产品每件成本10 元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:y x15 20 25 …若日销售量(元)y 是销售价 x 的一次函y25 20 15 … 数.(1)求出日与销售价 x系式;(2 )求销售(件)销售量 y (件)(元)的函数关价定为 30 元时,每日的销售利润.解:(1)设此一次函数解析式为 =kx + b .则 ⎧⎨15k + b = 25, 解得 k = - 1,b =40.⎩20k + b = 20.即一次函数解析式为y = - x + 40 .(2)每日的销售量为y =-30+40=10 件, 所获销售利润为(30 - 10)×10=200 元2、(2019 最新模拟甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度 y (cm )与饭碗数 x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?解:(1)设 y = kx + b .由图可知:当 x = 4 时, y = 10.5 ;当 x = 7 时, y = 15.⎩ 15 = 7k + b .⎧b = 90 ⎪k = - ,所以 s =kt +b ,则 ⎨ ,解得: ⎨3 ⎩ ⎪⎩b = 90 把它们分别代入上式,得⎧10.5 = 4k + b , ⎨,解得 k = 1.5 , b = 4.5 .∴ 一次函数的解析式是 y = 1.5x + 4.5 .(2)当 x = 4 + 7 = 11 时, y = 1.5 ⨯11 + 4.5 = 21 .即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是 21cm .3、(2019 最新模拟浙江嘉兴)周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间9∶00(t = 9∶06(t = 9∶18(t =0) 6) 18)路牌内容 嘉兴 90km 嘉兴 80km 嘉兴 60km(注:“嘉兴 90km”表示离嘉兴的距离为 90 千米)假设汽车离嘉兴的距离 s (千米)是行驶时间 t (分钟)的一次函数,求 s 关于 t 的函数关系式.解:设6k + b = 80⎧ 5 s =- 5 t +90 34、(2019 最新模拟浙江温州)为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月 2000 元基本工资,另加销售额的 2%作为奖金;B 公司每月 1600 元基本工资,另加销售额的4%作为奖金。

已知 A 、B 公司两位销售员小李、小张 1~6 月份的销售额如下表:月销售额(单位:元)份1月 2月 3月 4月 5月 6月销售额小李( A 11600 12800 14000 15200 16400 17600公司)小张( B 74009200 1100 12800 14600 16400公司(2) 小 李 1 ~ 6 月 份 的 销 售 额与月份 x 的函数关系式是⎩9200 = 2k + b , ⎩b =5600(1)请问小李与小张 3 月份的工资各是多少?y1y = 1200 x + 10400, 小张 1~6 月份的销售额 y 也是月份 x 的一次函数,请求12出 y 与 x 的函数关系式;2 (3)如果 7~12 月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资。

解:(1)小李 3 月份工资=2000+2%×14000=2280(元)小张 3 月份工资=1600+4%×11000=2040(元)(2)设 y2= kx + b ,取表中的两对数(1,7400),(2,9200)代入解析式,得⎧7400 = k + b ⎧k =1800 ⎨ 解得 ⎨ 即y = 1800x + 56002(3)小李的工资 w 1 小李的工资 w2= 2000 + 2%(1200x + 10400) = 24 x + 2208= 1600 + 4%(1800x + 5600) = 72 x + 1824当小李的工资 w2> w 时,即72x + 1824 > 24 x + 22081解得,x>8答:从 9 月份起,小张的工资高于小李的工资。

5、(2019 最新模拟江苏盐城)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为 8 元/千克,下面是他们在活动结束后的对话。

小丽:如果以 10 元/千克的价格销售,那么每天可售出 300 千克。

小强:如果以 13 元/千克的价格销售,那么每天可获取利润 750元。

小红:通过调查验证,我发现每天的销售量 y (千克)与销售单价y( 与) 7.5 ⎨ ⎨x (元)之间存在一次函数关系。

(1)求 y (千克)与 x (元)(x >0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为 W 元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价-进价)】6、(2019 最新模拟福建晋江)东从 A 地出发以某一速度向 B 地走去,同时小明从 B 地出发以另一速度向 A 地而行,如图所示,图中的线段y 1、 y 分别表示小东、小明离 B 地的距离(千米)千米所用时间(小时) 2的关系。

y 1y 2⑴试用文字说明:交点 P 所表示的实际意义。

P⑵试求出 A 、B 两地之间的距离。

O1 2 2.5 3 4 x(小时)解:⑴交点 P 所表示的实际意义是:经过 2.5 小时后,小东与小明在距离 B 地 7.5 千米处相遇。

⑵设 y1= kx + b ,又 y1经过点 P (2.5,7.5),(4,0)∴ ⎧2.5k + b = 7.5 ,解得 ⎧m = 20⎩4k + b = 0⎩k = -5∴ y1= -5x + 20 当 x = 0 时, y 1= 20故 AB 两地之间的距离为 20 千米。

7、(2019 最新模拟江苏南京)某市为了鼓励居民节约用水,采用分y x段计费的方法按月计算每户家庭的水费,月用水量不超过 20 m 3 时,按 2 元/ m 3 计费;月用水量超过 20 m 3 时,其中的 20 m 3 仍按 2 元/ m 3收费,超过部分按 2.6 元/ m 3 计费.设每户家庭用用水量为 x m 3 时,应交水费 y 元.(1)分别求出 0 ≤ x ≤ 20 和 x > 20 时 y 与 x 的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份交费金额四月份30 元 五月份34 元 六月份42.6 元小明家这个季度共用水多少立方米?解:(1)当 0 ≤ x ≤ 20 时, y 与 x 的函数表达式是 y = 2 x ;当 x > 20 时, y 与 x 的函数表达式是y = 2 ⨯ 20 + 2.6( x - 20) ,即 y = 2.6 x - 12 ; ················· 3 分(2)因为小明家四、五月份的水费都不超过 40 元,六月份的水费超过 40 元,所以把 y = 30 代入 y = 2 x 中,得 x = 15 ;把 y = 34 代入 y = 2 x 中,得 x = 17 ;把 y = 42.6 代入 y = 2.6 x - 12 中,得 x = 21 . ··· 5 分所以15 + 17 + 21 = 53 . ··············· 6 分答:小明家这个季度共用水 53m 2 .8、(2019 最新模拟江苏泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量 (千克)与市场价格 (元/千克) 0 < x < 30 )存在下列关系:x(元/千 克)510 15 20y(千克)4500400035003000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;y(千克)50004500400035003000O510152025x(元/千克)(第8题图)(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?解:(1)描点略.设y=kx+b,用任两点代入求得y=-100x+5000,再用另两点代入解析式验证.(2)在比赛过程中,甲、乙两队何时相距最远?路程/千米对于乙队,x=1时,y=16,所以y=16x,(2分)⎧20=k+b解得:y=10x+10(3分)⎩35=2.5k+b⎩y=10x+1000.5 1.521(2)Q y=z,∴-100x+5000=400x,∴x=10.∴总销售收入=10⨯4000=40000(元)∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)设这时该农副产品的市场价格为a元/千克,则a(-100a+5000)=40000+17600,解之得:a1=18,a=32.2Q0<a<30,∴a=18.∴这时该农副产品的市场价格为18元/千克.9、(2019最新模拟湖北宜昌)2019最新模拟年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.(1)哪个队先到达终点?乙队何时追上甲队?4035C B解:(1)乙队先达到终点,(1分)20A16对于甲队,出发1小时后,设y与x关系为y=kx+b,2.5时间/时将x=1,y=20和x=2.5,y=35分别代入上式得:⎨第9题)解方程组⎧⎨y=16x得:x=5,即:出发1小时40分钟后(或3者上午10点40分)乙队追上甲队.(4分)(2)1小时之内,两队相距最远距离是4千米,(1分)乙队追上甲队后,两队的距离是16x-(10x+10)=6x-10,当x 为最大,即x=35时,6x-10最大,(2分)此时最大距离为6×35-1616 10=3.125<4,(也可以求出AD、CE的长度,比较其大小)所以比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远(3分)10、(2019最新模拟南充市)平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.求m的值.yxO A解:由已知AP=OP,点P在线段OA的垂直平分线PM上.………………(2分)如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM=OP2-OM2=42-22=23,……………………(4分)∴P(2,23).∵点P在y=-x+m上,∴m=2+23.………………………………(6分)当点P在第四象限时,根据对称性,P'((2,-23).∵点P'在y=-x+m上,∴m=2-23.………………………………(8分)则m的值为2+2yP3或x 2-23.O M AP'11、(2019最新模拟湖北荆门)某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲乙两个工程队分别从A,B两村同时相向开始修筑,施工期间,乙队因另有任务提前离开,余下的任务四甲队单独完成,直到道路修通,下图是甲乙两个工程队修道路的长度Y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,求该的公路的总长度。

相关文档
最新文档