中考数学专题复习——分类讨论问题
中考数学专题复习~分类讨论

已知等腰三角形的两条边长分别为5cm和 6cm,则它的周长为 ㎝。
一、分类讨论的意义及标准
意义:分类讨论是一种重要的数学思想,也是一种重要的解题策略,它体现了化整 为零,积零为整的数学思想与归类整理的方法。它揭示着数学对象之间的内在规 律,有助于总结归纳数学知识,使所学知识条理化,提高思维的条理性和概括性。 标准:分类必须有一定的标准,标准不同分类的结果也就不同。分类要做到不 遗漏,不重复;再对所分类逐步进行讨论,分级进行,得到不同条件下同一问题 的结论;最后问题结论进行归纳小结,综合得出结论。
1
2.3、图形的形状
12、如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作 ⊙C,抛物线y=ax2+bx+c过A、C、O三点. (1)求点C的坐标和抛物线的解析式; (2)过点B作直线与x轴交于点D,且OB2=OA·OD,求证:DB是⊙C的切线; (3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形 为直角梯形,如果存在,求出点P的坐标;如果不存在,请说明理由.
y
B
O
ห้องสมุดไป่ตู้
A
x
2.4、对应关系不确定
14、(2013年上海市)如图,在平面直角坐标系xoy中,顶点为M的抛物线 y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO =2,∠AOB=120°。 (1)求这条抛物线的表达式; (2)联结OM,求∠AOM的大小; (3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标。
2.5、图形的相对位置发生改变
15、(四川凉山州2011年)如图,∠AOB=100°,C在⊙O上,且点C不与A、B重 合,则∠ACB的度数为 A、50° B、80° 或130° C、130° D、50°或130°
中考数学专题复习:分类讨论-课件

A
P
B
在矩形ABCD中:①当QABA=BACP 时,△QAP∽△ABC,则612t
=
2t 6
,
解得t=
6 5
=1.2秒。所以当t=1.2秒时,△QAP∽△ABC。
②当QBCA=
AP AB
时,△PAQ∽△ABC,则
66t= 122t,
Hale Waihona Puke 解得t=3(秒)。所以当t=3秒时,△PAQ∽△ABC。
10。已知二次函数y=2x2-2的图像与x轴交于A、B两点 (点A在点B的左边),与y轴交于点C,直线x=m(m> 1)与x轴交于点D。
0, 解得,t1
16 3
, t2
16(不符合题意,舍去)
综合上面的讨论可知:当t 7 秒或t 16 秒时,以B、P、Q三点为顶点的
2
3
三角形是等腰三角形。
(1)求A、B、C三点的坐标;
(2)在直线x=m(m > 1)上有一点P(点P在第一象
限),使得以P、D、B为顶点的三角形与以B、C、O为顶
点的三角形相似,求点P的坐标。
y
O AB
C
X D
解(1)A(-1,0),B(1,0),C(0,-2)
(2) 当 △ PDB
∽
△
BOC时,
PD
BO=
有P(m,
m 2
-
1 2
)
BD CO
当 △ PDB ∽ △ COB时, 有P(m, 2m-2);
O AB
C
P
X D
11. 如图所示,在直角梯形ABCD中,AD//BC, C 90°,BC 16,DC 12,
AD=21。动点P从点D出发,沿射线DA的方向以每秒2个单位 长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单 位长的速度向点B运动,点P,Q分别从点D,C同时出发,当 点Q运动到点B时,点P随之停止运动。设运动的时间为(秒)。 (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当线段PQ与线段AB相交于点O,且BO=2AO时,求
中考数学之分类讨论问题

分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在历年中考试题中多以压轴题出现,对考生的能力要求较高,具有很强的选拔性。
综合中考的复习规律,我觉得分类讨论的知识点有三大类:1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等.2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.3.综合类:代数与几何类分类情况的综合运用.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级有序进行.(4)以性质、公式、定理的使用条件为标准分类的题型.题型1.考查数学概念及定义的分类规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。
例1. 化简a 32a ---。
例2. 求11+--=x x y 的最大值与最小值 例3.求函数251()(3)22y k x k x =-+-+的图象与x 轴的交点? 变式思考:1.化简:1x 2x --+2.已知关于x 的方程22(4)(4)0kx k x k +++-=(1)若方程有实数根,求k 的取值范围(2)若等腰三角形ABC 的边长a=3,另两边b 和c 恰好是这个方程的两个根,求ΔABC 的周长.题型2:考查字母的取值情况或范围的分类.规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围.例1. 已知0≠abc ,且,p ba c a cbc b a =+=+=+,那么直线p px y +=一定过 A . 第一第二象限 B 第二第三象限 C 第三第四象限 D 第一第四象限例题2、如图(1)边长为2的正方形ABCD 中,顶点A 的坐标是(0,2)一次函数y x t =+的图像l 随t 的不同取值变化时,位于l 的右下方由l 和正方形的边围成的图形面积为S (阴影部分).(1)当t 取何值时,S =3?(2)在平面直角坐标系下(图2),画出S 与t 的函数图像.变式思考: 1.已知实数b ,a 满足0ab ,1b a 22>=+,求22a 1b b 1a -+-的值。
中考数学专题复习分类讨论经典例题

以OE为半径画弧EF.P是EF上的一个动点,连接OP,并延长OP交线段BC于点K,过点2018(上)NS数理推演拓展11专题复习(二)分类思想姓名___________班级___________一.基础练习1.半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10B.430C.10或430D.10或216512.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()2A、0B、0或2C、2或﹣2D、0,2或﹣23.如图,在平面直角坐标系x Oy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.如图,矩形A BCD中,AB=4,BC=43,点E是折线段A-D-C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2B.3C.4D.55.如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,⌒P作⊙O的切线,分别交射线AB于点M,交直线BC于点G.若BGBM=3,则BK=_______.6.如图,在△Rt ABC中,∠C=90°,∠A=30°,AB=43.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=_______;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=____________时,⊙C与直线AB相切.7.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B (-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°)得到四边形O′A′B′C′,此时直线OA′、直线′B′C′分别与直线BC相交于P、Q.在四边形OABC旋转过程中,若BP=12BQ,则点P的坐标为_______.8.已知实数a,b满足a-b=1,a2-ab+2>0,当1≤x≤2时,函数y=a(a≠0)的最大值与最小值之差是1,求a的值。
中考数学专题复习教学案--分类讨论题(附答案)

分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。
初中数学专题复习分类讨论问题(含答案)

初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。
另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。
把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。
它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。
分类讨论思想方法也是一种重要的解题策略。
分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先可以求出B 点坐标()033,,A 点坐标(9,0)。
设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。
(不适合条件的解已舍去)点拨:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。
课标版数学中考第二轮专题复习-分类讨论型试题(含答案

分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。
分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。
练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。
中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。
这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。
例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。
如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。
因此,顶角可能是50°或80°。
同样地,在解决三角形高的问题时,也需要分类讨论。
例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。
如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。
圆形分类讨论圆形分类讨论主要是解决圆的有关问题。
由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。
例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。
这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。
函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。
在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。
例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。
从而可以得到方程的解的取值范围。
总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。
在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。
本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——分类讨论问题一、教学目标使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。
形成一定的分类体系,对待问题能有更严谨、缜密的思维。
二、教学重点对常见题型分类方法的掌握;能够灵活使用一般的分类技巧。
三、教学难点对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。
四、板书设计1:分式方程无解的分类讨论问题;2:“一元二次”方程系数的分类讨论问题;3:三角形、圆等几何图形相关量求解的分类讨论问题;4:分类问题在动点问题中的应用;4.1常见平面问题中动点问题的分类讨论;4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。
五、教学用具打印互动背景资料、三角板、多媒体。
六、作业布置附后1:分式方程无解的分类讨论问题例题1:方程=+=-+-a 349332无解,求x x ax x 解:去分母,得: 1.6,801a 31-a 21-31-a 21-211-a )3(4)3(3=-==∴=-=-=-=⇒-=++a a a x x ax x 或者或或由已知)( 猜想:把“无解”改为“有增根”如何解? 68-==a a 或例题2: ==--+a 2112无解,求x a x2:“一元二次”方程系数的分类讨论问题例题3:已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。
(1) 当02=m 时,即m=0时,方程为一元一次方程x+1=0,有实数根x=1-(2) 当02≠m 时,方程为一元二次方程,根据有实数根的条件得:41-m ,0144)12(22≥≥+=-+=∆即m m m ,且02≠m 综(1)(2)得,41-≥m 常见病症:(很多同学会从(2)直接开始而且会忽略02≠m 的条件)总结:字母系数的取值范围是否要讨论,要看清题目的条件。
一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。
这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零实行讨论的。
例题4:当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的根都是整数。
A C 解:因为是一元二次方程,所以二次项系数不为0,即02≠m ,0≠m ,1.m ,01≤≥∆解得 同理,.45m ,02-≥≥∆解得1m 45≤≤-∴且0≠m ,又因为m 为整数.11或取-∴m (1)当m=—1时,第一个方程的根为222±-=x 不是整数,所以m=—1舍去。
(2)当m=1时,方程1、2的根均为整数,所以m=1.练习:已知关于x的一元二次方程01)1(2=++-x x m 有实数根,则m的取值范围是: 1m 45001≠≤⇒⎩⎨⎧≥∆≠-且m m3:三角形、圆等几何图形相关量求解的分类讨论问题例题:5:方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定例题6:三角形一边长AB 为13cm ,另一边AC 为15cm ,BC 上的高为12cm,求此三角形的面积。
(54或84)例题7:若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为:3或11.例题8:一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为:60cm 或120cm4:动点问题的分类分类讨论问题4.1:常见平面问题中动点问题的分类讨论;A B1p CD 2p 4p 3p例题9:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时, P ,D 两点间的距离。
解:点P从A 点出发,分别走到B ,C ,D ,A 所用时间是 秒, 秒, 秒, 秒,即5秒,10秒,15秒,20秒。
∴(1)当0≤t<5时,点P 在线段AB 上,|PD|=|P 1D|=(cm)(2)当5≤t<10时,点P 在线段BC 上,|PD|=|P 2D|=(3)当10≤t<15时,点P 在线段CD 上,|PD|=|P 3D|=30-2t(4)当15≤t ≤20时,点P 在线段DA 上,|PD|=|P 4D|=2t-30综上得:|PD|=总结:本题从运动的观点,考查了动点P 与定点D 之间的距离,应根据P 点的不同位置构造出不同的几何图形,将线段PD 放在直角三角形中求解或直接观察图形求解。
4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。
例题10:已知一次函数3333+-=x y 与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
分析:本题中△PAB 因为P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。
△PAB 是等腰三角形有几种可能?我们能够按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。
先能够求出B 点坐标()033,,A 点坐标(9,0)。
设P 点坐标为)0(,x ,利用两点间距离公式可对M E A B C D N三种分类情况分别列出方程,求出P 点坐标有四解,分别为)0369()0369()03()09(,、,、,、,-+-。
(不适合条件的解已舍去)总结:解答本题极易漏解。
解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。
另外,由点的运动变化也会引起分类讨论。
因为运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。
例11:如图,正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端在CD 、AD 上滑动.当DM= 时,△ABE 与以D 、M 、N 为项点的三角形相似。
分析与解答 勾股定理可得ABE 与以D 、M 、N 为项点的三角形相似时,DM 能够与BE 是对应边,也能够与AB 是对应边,所以本题分两种情况: (1) 当DM 与BE 是对应边时,DM MN AB AE=,即1DM DM =.(2)当DM 与AB 是对应边时,DMMN AB AE =,即2DM DM=故DM例题12:如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A,B 两点的抛物线交x 轴于另一点C (3,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存有点Q ,使三角形ABQ 是等腰三角形?若存有,求出符合条件的Q 点坐标;若不存有,请说明理由。
说明 从以上各例能够看出,分灯思想在几何中的较为广泛.这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,准确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证.解析:(1)抛物线解析式的求法:1,三点式;2,顶点式(h,k );3,交点式。
易得: 32)3,0()3)(1(2++-=∴-+=x x y B x x a y 在抛物线上再结合点(2) 依题意得10=AB ,抛物线的对称轴为x=1,设Q(1,y)1) 以AQ 为底,则有AB=QB,及22)3(110-+=y 解得,y=0或y=6,又因为点(1,6)在直线AB 上(舍去),所以此时存有一点Q(1,0)2) 以BQ 为底,同理则有AB=AQ,解的Q(1,6) Q(1,6-)3) 以AB 为底,同理则有QA=QB,存有点Q(1,1).综上,共存有四个点分别为:(1,0)、(1,1)、(1,6) 、(1,6-)【作业训练】1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.(2010衡阳)若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。
A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.(2011株洲市)两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .6.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为的弦AB ,连续PB ,则PB 的长为7.(2010四校联考)在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.8:变换例题12,请问是否在x 轴,y 轴上存有点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。
【参考答案】1.D 2 .C 3. A 4.A5.外切 6. 2或 7. 7或11。