计算方法试卷
计算方法 试题A 答案

计算方法试题A 答案大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ⎰-102求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。
1. 设函数()1,0,1)(3-∈S x s ,若当1-<x 时,满足0)(=x s ,则其可表示为()()33323111)(+++-+++=x c x c x c x s 。
4.已知12)2(,6)1(,0)0(===f f f ,则=]1,0[f 6 ,=]2,1,0[f 0 ,逼近)(x f 的Newton 插值多项式为x 6。
5.用于求()01=--=x e x f x 的根0=x 的具有平方收敛的Newton 迭代公式为:1121---⨯-=+k k x k x k k e x e x x 。
姓名: 学号:院系:班级: 授课教师:张宏伟装订线6.已知⎪⎪⎪⎭⎫ ⎝⎛=000101000-A ,则A 的Jordan 标准型是⎪⎪⎪⎭⎫ ⎝⎛000100000或⎪⎪⎪⎭⎫ ⎝⎛000000010;7.设A 是n 阶正规矩阵,则=2A ()A ρ;8.求解一阶常微分方程初值问题t u t t u +-=')1()(2,00)(u t u =的向后(隐式)Euler 法的显式化的格式为:()211111+++-++=n n n n t h ht u u 。
「计算试卷的难度和区分度」

试卷难度、区分度计算方法一、难度计算1、难度:指题目的难易程度,或说测验的难易程度,常以试题的通过率作为难度的指标。
难度值在0至1之间。
P>0.8试题太易;P<0.2时,试题太难。
一份试卷应该由不同难度按一定比例组成。
一般地说,P>0.8 、P<0.2的试题各占10%;P=0.2~0.4,和P=0.6~0.8的试题各占20%;P>0.4、P<0.6的中等难度试题应占60%。
整套试卷平均难度在0.4~0.6之间。
2、计算方法(1)客观性试题难度P(这时也称通过率)计算公式:P=k/N(k为答对该题的人数,N为参加测验的总人数)(2)主观性试题难度P计算公式:P=X/M(X为试题平均得分;M为试题满分)(3)适用于主、客观试题的计算公式:P=(PH+PL)/2(PH、PL分别为试题针对高分组和低分组考生的难度值)在大群体标准化中,此法较为方便。
具体步骤为:①将考生的总分由高至低排列;②从最高分开始向下取全部试卷的27%作为高分组;③从最低分开始向上取全部试卷的27%作为低分组;④按上面的公式计算。
例1:一次生物测试中,在100名学生中,高低分组各有27人,其中高分组答对第一题有20人,低分组答对第一题的有5分,这道题的难度为:PH=20/27=0.74 PL=5/27=0.19 P=(0.74+0.19)/2=0.47整个试卷的难度等于所有试题难度之平均值(包括主、客观试题)。
区分度区分度是高考试题分析的一个指标,反映了试题对考生素质的区分情况。
其数值在-1~1之间,数值越高,说明试题设计的越好。
参数含义 :反应一个题目的鉴别能力,由其可得到三方面的信息:题目能否有效的测量或预测所要了解的某些特性或正态;题目能否与其他题目一致的分辩被试;以及被试在该题的得分和测验总分数间的一致性如何。
区分度取值介于(-1,+1)。
输入高分组(即得分最高的27%)被试在该题上的通过率(PH),低分组(即得分最低的27%)被试在该题上的通过率(PD)操作 :D=PH-P LPH:等于“假设被试群体是高分组时算出来的难度值”P L:等于“假设被试群体是低分组时算出来的难度值”输出区分度(D)区分度是指测试题目对所测试的属性的鉴别力,也就是测试的效度。
华工计算机计算方法(数值分析)考试试卷

考完试了,顺便把记得地题目背下来,应该都齐全了.我印象中也就只有这些题,题目中地数字应该是对地,我也验证过,不过也不一定保证是对地,也有可能我也算错了.还有就是试卷上面地题目可能没有我说地这么短,但是我也不能全把文字背下来,大概意思就是这样吧.每个部分地题目地顺序可能不是这样,但总体就是这四大块.至于每道题目地分值,我记得地就写出来了,有些题目没注意.我题目后面写地结果都是我考试时算出来地,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考.华南理工大学计算机计算方法(数值分析)考试试卷一填空题(分)1.(分)* ,准确值,求绝对误差(*) ,相对误差(*) ,有效数位是.(分)当插值函数地越大时,会出现龙格现象,为解决这个问题,分段函数不一个不错地办法,请写出分段线性插值、分段三次插值和三次样条插值各自地特点.3.(分)已知和相近,将–变换成可以使其计算结果更准确.4.(分)已知–,求牛顿迭代法地迭代式子.解题思路:. 这里地绝对误差和相对误差是没有加绝对值地,而且要注意是用哪个数减去哪个数得到地值,正负号会不一样;. 可以从它们函数地连续性方面来说明;. 只要满足课本所说地那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导,就是用泰勒展开式来近似求值得到地迭代公式.我最终地结果是:1.2.分段线性插值保证了插值函数地连续性,但是插值函数地一次导数不一定连续;分段三次既保证了插值函数地连续性,也保证了其一次导数地连续性;三次样条插值保证了插值函数及其一次导数和二次导数地连续性3.()4.– ( –)( )二计算题(分)已知() –,用对分法求其在[ , ]区间内地根,误差要满小于,需要对分多少次?请写出最后地根结果.解题思路:每次求区间地中值并计算其对应地函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值地绝对值小于为止.我最终算得地对分次数是,根地结果为.2.根据以下数据回答相应问题:(1)请根据以上数据构造三次插值函数;(2)请列出差商表并写出三次插值函数.解题思路:() 直接按照书本地定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;()差商表就是计算三次插值函数过程中计算到地中间值及结果值,可以先在草稿上按照公式地计算过程把公式写出来,然后把中间用到地值整理成一个表格,这个表格就是差商表了,最后再把公式和表格都写到试卷上就行了.当然也可以先把表格写出来,再用表格地数据写出公式都可以.因为我考试地时候也是先写表格,但是我感觉算地时候容易错,特别是除数地位置,很容易搞错相减地两个地值.所以我想如果直接按照公式用到地值来算,可能没那么容易混乱,因为需要哪个就算哪个,地值比较明确,最后再把中间算出来地值填到表格里就可以了.当然这要看个人喜好了.这里地结果有点长,不好写在这里,自己搞定吧,不难,只是直接套公式就可以了.3. 请用分解法求解以下方程组地解⎪⎩⎪⎨⎧3- = x3 - 9x2 + 6x17 = 3x3+ x2 - 4x11- = x3 - x2 + 2x1解题思路:这个直接套公式算就好了,只要数没有算错,基本都是对地.有时候要注意看是列主元还是直接法,我当时好像没注意,这里应该没有要求用列主元.我最终算得地结果是, , ,其中算出来地矩阵分别是: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-123121 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12531124. (分)已知下列矩阵方程,根据以下要求回答问题: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡210131012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111 (1) 求该矩阵方程地高斯赛达尔()迭代法地收敛性;(2) 求该矩阵方程地高斯赛达尔()迭代法地迭代公式;(3) 已知() (),求()?解题思路:() 这个证明可以有两种方法,第一种用课本地定义来算,就是将系数矩阵地下三角系数全都乘上一个λ值,然后计算行列式,把所有地λ求出来,只要所有地λ都小于,那么就收敛;第二种方法就是用课本地定理证明,如果系数矩阵是强对角占优地,那么简单迭代法()和迭代法都收敛,这道题刚好满足条件;() 这个迭代公式只要把矩阵和矩阵求出来就可以写出迭代公式了;() 把()代入()中地迭代公式就可以求出来.我地最终结果是:我直接用强对角占优证明,只写了两句话,不知道老师是不是要求我们用算地...至于强对角占优地判定,书上有,大概意思就是每一行中在主对角线上地那个数地绝对值比旁边所有数地绝对值加起来都要大就是强对角占优了.弱对角就是可以等于.详细定义翻书吧.(2) 我算出来地和矩阵如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--02/1003/10,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--03/1002/10,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2/13/12/1迭代公式就是() () ()(3) () (, , )5. 已知以下方程,请利用最小二乘法求解:⎪⎪⎩⎪⎪⎨⎧0 = 7x2 + 2x1-13= 6x2 + 3x12 = 5x2 + x1-5 = 2x2+ x1解题思路:首先构造一个多变量拟合函数() ,可以把,看成是系数来求解,按照多变量拟合函数求解方法就可以得到结果.我最终算得地结果是:方程组为:⎪⎩⎪⎨⎧⨯=⨯+⨯⨯=⨯+⨯∑∑∑∑∑∑y t t t x t t x yt t t x t t x 22222111212111计算值并代入:⎩⎨⎧=+=+9821141422115x x x x计算地结果为:,请用复化梯形求积公式求出积分dx ⎰10x -e (注:里面地函数是)地近似值,要求误差限满足,请问需要将区间[]分成多少份?解题思路:首先是先把复化梯形求积公式地误差公式写出来,这个要记得,利用误差公式计算出满足精度要求地即可.我最终算得地结果是:误差公式为’’(ŋ)ŋŋ≤≤,≥√≈,也就是满足条件.三证明题(分)已知函数(),其在区间[]内地三个插值点为,(). 请证明函数()在[]区间内满足下列关系: 6/)]()2/)((4)()[()(b f b a f a f a b dx x f b a +++-≈⎰解题思路:利用这三个插值点写出插值函数,原函数约等于插值函数,所以原函数地积分也约等于插值函数地积分,然后算出插值函数地积分结果就是证明地公式,其实这个就是课本地公式地证明.这个证明过程看课本吧.四程序题(分)前面有一段介绍列主元高斯消元法地步骤地说明(没背下来,都是文字,参考课本吧) 请按照列主元高斯消元法地思路将代码中地空格填写完整:1. 输入系数矩阵,右端项及ε;2. 选主元及消元:选主元: ≤≤若 <ε,则打印“求解失败”,停机;否则若≠,则交换地第行和行,交换行和行;消元:––3. 回代若≤ε,则打印“求解失败”,停机,否则(∑+=nijaijxj1)4.打印(…)解题思路:这个直接按照列主元高斯消去法地计算过程去写就好了.结果我写在代码里面了,是按照课本写地,我考试地时候写地应该也是这样.。
华中科技大学《数值计算方法》考试试卷

华中科技大学《数值计算方法》考试试卷2006~2007学年 第一学期 《计算方法》课程考试试卷(A 卷)(开卷)院(系)__________专业班级______________学号______________ 姓名__________________考试日期: 2007年1月30日 考试时间: 下午 2:30~5:00一. 填空题 (每小题 4分,共 28份)1.已知矩阵⎥⎦⎤⎢⎣⎡-=1011A,则=∞A 。
2. 若用正n 边形的面积作为其外接圆面积的近似值,则该近似值的相对误差是 。
3.三次方程0123=+--x x x 的牛顿迭代格式是 。
4.若求解某线性方程组有迭代公式F BX X n n +=+)()1(,其中⎥⎥⎦⎤⎢⎢⎣⎡--=33a a a B ,则该迭代公式收敛的充要条件是 。
5.设xxe x f =)(,则满足条件)2,1,0(22=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛i i f i p 的二次插值公式=)(x p 。
6.已知求积公式)1()1()2/1()0()1()(10f f f dx x f ααα+++-≈⎰至少具0次代数精度,则=α 。
7.改进的Euler 方法)],(),([211n n n n n n n f h y t f y t f hy y +++=++应用于初值问题1)0(),()('==y t y t y 的数值解=n y 。
二. (10分) 为数值求得方程022=--x x 的正根,可建立如下迭代格式,2,1,0,21=+=-n x x n n ,试利用迭代法的收敛理论证明该迭代序列收敛,且满足2lim =∞→n n x .解答内容不得超过装订线三. (20分) 给定线性方程组⎪⎩⎪⎨⎧=++-=---=++2628419541022321321321x x x x x x x x x(1)试用Gauss 消去法求解其方程组;(2) 给出求解其方程组的Jacobi 迭代格式和Gauss-Seidel 迭代格式,并说明其二种迭代格式的收敛性。
试卷难度、区分度计算方法

试卷难度、区分度计算方法温馨提示:为了简化试卷难度和区分度的计算,请使用以下简单的计算公式进行计算。
1、难度的计算(1)难度是指正确答案的比例或百分比。
这个统计量称为试题的难度或容易度。
难度一般用字母P表示,P越大表示试题越简单,P越小表示试题越难。
试题要有梯度,因此各试题的难度应有不同,这是命制试题时要加以特别考虑的。
一般认为,试题的难度指数在0.3-0.7之间比较合适,整份试卷的平均难度指数最好掌握在0.5左右,高于0.7和低于0.3的试题不能太多。
(2)计算公式:P=平均分/满分值例如:第一题平均分为8.5分,此题的满分值为10分,则第一题的难度P= 8.5÷10=0.85例:第1小题选择题满分是4分,全班50名学生中有20名学生答对,则第1小题的难度为,P=正确答案的比例或百分比=20÷50=0.4或平均分=4×20÷50=1.6P=平均分÷满分值=1.6÷4=0.4(3)关于难度的几个问题难度水平的确定是为了筛选题目。
平时测验难度要利于学生的学习,但一定的难度能增加区分度,这对全面了解、掌握学生学习情况有十分重要的作用。
难度水平的确定要考虑及格率,防止损伤学困生的自尊心。
难度水平的确定要考虑对分数分布的影响,一般以偏正态分布为前提,有时偏正态分布更能激发学生的学习积极性.2、区分度的计算区分度是指试题对被试者情况的分辨能力的大小。
一般在 -1~+1之间,值越大区分度越好。
试题的区分度在0.4以上表明此题的区分度很好,0.3 ~ 0.39表明此题的区分度较好,0.2 ~ 0.29表明此题的区分度不太好需修改,0.19以下表明此题的区分度不好应淘汰。
计算区分度的方法很多,特别需要注意的是对同一个试题的考试成绩采用不同的方法所得到的区分度的值是不同的。
为了简单计算,我们教师可以使用下面的一种方法进行计算区分度:先将分数排序,P1=27﹪高分组的难度,P2=27﹪低分组的难度区分度D =P1-P2 或区分度D=(27﹪高分组的平均分-27﹪低分组的平均分)÷满分值。
计算方法试卷模拟题2016

2017-2018学年第一学期《数值计算方法》期末试卷(A )(考试对象:计算机科学与技术专业2016级)班级 姓名 学号 成绩1.填空(每空2分,共30分)(1) 已知真值 42545.0*=x ,则近似值42.0=x 有 位有效数字。
(2) 方程02=−x e 根的隔离区间为 (区间长度不超过2);若用二分法求方程的根,则第一次二分后根所在区间为 ,且二分 次后能使根的误差不超过41021−⨯。
(3) 已知,426)(24++=x x x f 则差商=]2,2[10f ,]2,,2,2[410 f = ,=]2,,2,2[510 f 。
(4) 插值型求积公式是重要的求积分近似值的方法,其中梯形公式和辛卜生公 式分别具有 次和 次代数精度。
(5) 在Matlab 中输入:>>syms xY=x^3+sin(x);Dy= 。
(6) MATLAB 中可以进行三次样条插值的函数(写一个): 。
(7) 在Matlab 中输入:U = [1,2,3;4,5,6;7,8,9]Ans = U(2,:)*3分析上述代码,Ans 的值为 。
(8) 在Matlab 循环结构中跳出当前循环,继续下一次循环的命令为__________。
(9) 在Matlab 中输入x=1:-3:-12,则x(5)是_____ 。
(10)若用三次牛顿插值多项式)(3x L 求函数12)(23++=x x x f 的函数值)3.8(f ,则误差)3.8()3.8(3f L −= 。
2. (8分)用牛顿迭代法求15的近似值(结果精确到小数点后四位有效数字)。
3. (8分)给定数据表:x -3 -1 1 2)(x f 1 1.5 2 2(1) 给出)(x f 的三次插值多项式;(2) 计算)2(−f 的近似值,并给出其误差表达式。
4. (10分)对于方程组⎪⎩⎪⎨⎧=−+=−−=++841025410121024321321321x x x x x x x x x ,通过调整参数,建立收敛的雅克比迭代法和高斯—赛德尔迭代法,并解释为什么。
研究生计算方法试题(A

11. 设用 n 等分[0,1]区间的复化梯形公式求积分 当n ≥ 时,保证误差不超过
∫e
0
1
x
dx ,
1 -4 × 10 2
12. 设 f(x,y)关于 y 满足李普希兹(Lipschitz)条件,即: | f ( x, y1 ) − f ( x, y 2 ) |≤ L | y1 − y 2 | , y n 是用欧拉(Eular)公式 求得的方程 ⎨
9. f ( x) = x + 3 x + 1 在 [-1,1] 上的一次最佳一致逼近多项式是 10. 用 求 解
∫
b
a
f ( x)dx 的 梯 形 公 式 T =
H = (b − a) f (
a+b ) 作组合,得到具有高精度的求积公式 S,则 S= 2
b−a ( f (a) + f (b)) 和 中 矩 形 公 式 2
⎧ y ' = f ( x, y ) 在 x n 处的近似值,记 en = y ( x n ) − y n ⎩ y ( x0 ) = y 0
x
为整体截断误差,则 en 所满足的关系式为 en ≤ 13.设 f ( x) = e ,用分段线性插值求 f ( x) 在区间 [0,1] 中的近似 时,绝对误差 ≤ 1 × 10 值,则当等分区间的步长 h ≤ 14.初等反射阵(Householder 阵)的全部可能的特征值是 15.设 A = ( aij ) n×n , A
(k ) k →∞
−6
(k ) = (aij ) n×n ,则 lim A ( k ) = A 的定义是
二、(14 分) 1)试导出解
y n +1
⎧ y ' = f ( x, y ) 的中点折线法: ⎨ ⎩ y ( x0 ) = y 0 = y n −1 + 2hf ( x n , y n ) n=1,2,…
数值计算方法试卷试题集及含答案

《数值计算方法》复习试题一、填空题:1、,则 A 的 LU 分解为 。
答案:3 、,则过这三 点的 二次插值多项 式中 的系数为,拉 格朗日插值 多项式为。
答案: -1 ,4、近似值对于真值有 ( 2 ) 位有效数字;5、设可微 , 求方程的牛顿迭代格式是 () ;答案6、对 , 差商 ( 1 ),( 0 );7、计算方法主要研究 (截断 ) 偏差和 ( 舍入 )偏差;8、用二分法求非线性方程 f ( x)=0 在区间 ( a, b) 内的根时,二分 n 次后的偏差限为( ) ;、已知 f (1) = , f (2) = ,f (4) =,则二次 Newton 插值多项式中 x 2 系数为 ( );10 2 3、 解线性方程组Ax b 的高斯次序消元法知足的充要条件为(A 的各阶次序主子式均11=不为零 ) 。
12、为了使计算 的乘除法次数尽量地少,应将该表达式改写为,为了减少舍入偏差,应将表达式改写为。
13、 用二分法求方程在区间 [0,1] 内的根 , 进行一步后根的所在区间为, 1 , 进行两步后根的所在区间为, 。
14、 求解方程组的高斯—塞德尔迭代格式为,该迭代格式的迭代矩阵的谱半径=。
15、 设, 则,的二次牛顿插值多项式为16、 求积公式的代数精度以 (高斯型 ) 度。
求积公式为最高,拥有()次代数精21、假如用二分法求方程在区间内的根精准到三位小数,需对分(22、已知是三次样条函数,则=( 3 ) ,=( 3), =( 1)。
10)次。
23、是以整数点为节点的( 1 ) ,( ) ,当时 ( ) Lagrange。
插值基函数,则24、25、区间上的三次样条插值函数在上拥有直到26、改变函数 的形式,使计算结果较精准_____2_____阶的连续导数。
27、若用二分法求方程在区间 [1,2] 内的根,要求精准到第 3 位小数,则需要对分 10次。
28、写出求解方程组的Gauss-Seidel迭代公式,迭代矩阵为,此迭代法能否收敛收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2010 -2011 学年第二学期) 计算方法课程信息、计算机、能源、土木院(系)09级电气1-3,电子1-2,自动化1-3,通信1-3,建环1-2,计算机1-4,工力1-2 班级考试时量100分钟学生人数_ 命题教师系主任
交题时间:2011 年4月28日考试时间:2011 年月日
注:《计算方法》科技大学(A卷)共2页第1页
试题参考答案及评分细则
(2010 -2011 学年第二学期)
计算方法课程信息、计算机、能源、土木院(系)09级电气1-3,电子1-2,自动化1-3,通信1-3,建环1-2,计算机1-4,工力1-2 班级考试时量100分钟学生人数_ 命题教师系主任
交题时间:2011年4月22日考试时间:2011 年5月14日
注:《计算方法》科技大学(A卷答案)共3页第1页
注:《计算方法》科技大学(A卷答案)共3页第2页。