土木工程结构设计

合集下载

土木工程中的结构设计原理 - 教案

土木工程中的结构设计原理 - 教案

教案土木工程中的结构设计原理教案1引言1.1结构设计的重要性1.1.1结构设计是土木工程的核心,决定了建筑的稳定性、耐用性和安全性。

1.1.2结构设计的合理性直接影响建筑的成本、施工难度和使用寿命。

1.1.3结构设计需要综合考虑材料性能、力学原理和环境因素。

1.2结构设计的基本原则1.2.1安全性原则:确保结构在各种荷载作用下不发生破坏。

1.2.2适用性原则:满足使用功能,提供舒适、便利的空间。

1.2.3经济性原则:在保证安全和适用的前提下,尽量降低成本。

1.3结构设计的挑战1.3.1地震、台风等自然灾害对结构设计提出了更高的要求。

1.3.2新材料、新技术的应用带来了新的设计思路和方法。

1.3.3环保和可持续发展的要求对结构设计提出了新的挑战。

2知识点讲解2.1结构类型与受力分析2.1.1框架结构:以梁、柱、板为主要承重构件,适用于多层建筑。

2.1.2剪力墙结构:通过剪力墙承担水平荷载,适用于高层建筑。

2.1.3桁架结构:以杆件组成的几何不变体系,适用于大跨度建2.1.4网格结构:空间受力体系,适用于大型公共建筑。

2.2结构材料与性能2.2.2混凝土:抗压强度高,适用于各种建筑类型。

2.2.3砌体:施工简便,保温隔热性能好,适用于低层建筑。

2.2.4木材:轻质、环保,适用于小型建筑和临时建筑。

2.3结构设计软件的应用2.3.1SAP2000:适用于复杂的结构和非线性分析。

2.3.2ETABS:专门用于高层建筑结构分析。

2.3.3PKPM:国内常用软件,适用于各种建筑类型。

2.3.4Revit:BIM软件,可实现结构设计的可视化。

3教学内容3.1结构设计的基本流程3.1.1荷载计算:确定结构承受的永久荷载、活荷载和偶然荷载。

3.1.2结构布置:根据建筑功能和受力特点选择合适的结构体系。

3.1.3结构计算:利用结构设计软件进行内力分析和构件设计。

3.1.4施工图绘制:根据计算结果和规范要求绘制施工图。

土木工程毕业设计—建筑结构设计

土木工程毕业设计—建筑结构设计
算验证。
柱配筋
箍筋
已知BxH,已知混凝土强度(C30), 箍筋强度(HPB300),已知V,求解 Asv/s
纵筋
已知BxH,已知混凝土强度(C30), 箍筋强度(HRB400),已知M、N, 已知计算长度L0,求解As,A’s
求解过程中一个重要内容——内力(M、N、V) 主要问题:怎样得出梁柱杆件上的内力? 怎么求? 结构设计全过程——求内力
16、地震剪力
定义:由于水平地震作用的施加,而使结构产生剪力。 求解方法: 周期为什么要折减? (用于计算内力)
(1)填充墙会增大框架结构的刚度,使周期减小,而计算时幵没有考虑填充墙。 (2)结构自振周期大部分处于反应谱下降段,填充墙的存在使自振周期减小,意味 着地震影响系数会比较大,FEK=α1Geq,即水平地震作用会比较大。因此按反应谱 方法计算,不折减活折减不够,不安全。
计算过程
1.0恒载+0.5活载(屋面活荷载不计)
13、结构的自振周期
定义:某一结构按某一特定振型完成一次自由振动所需时间,反映了结构的 动力特性,与结构的质量和刚度有关。 求解方法 能量法 顶点位移法(选用此方法)
什么是D值?
当柱子上下端产生单位相对横向位移时,柱所承受的剪力。
位移方向
为什么可以使用D值求位移? 为什么要考虑梁刚度增大系数?
(培养设计思路和概念的过程)
效应组合或内力组合
各工况效应计算
各工况荷载大小
各种内力的不利组合
剪重比调整、侧移计算 恒载工况:分层法、弯矩二次分配法 、位移法、力学求解器 活载工况:同上 地震荷载工况:D值法、位移法、结 构力学求解器 风荷载工况
地震工况 风荷载工况 恒载工况 活载工况
恒载计算(面荷载、线荷载、集中荷载) 恒载工况 哪些属于恒载?

结构设计知识:土木工程结构的设计与应用

结构设计知识:土木工程结构的设计与应用

结构设计知识:土木工程结构的设计与应用土木工程结构的设计与应用土木工程结构设计是一种重要的技术,它涵盖了各种建筑物、桥梁、道路、隧道和水利工程等领域。

土木工程结构的设计涉及使用物理、数学及工程学的知识,以确保建筑物的稳定性、安全性和经济性。

在实际应用中,工程师必须考虑材料的特性、设备的可用性、环境的影响以及与其他构件的交互作用等多种因素。

土木工程结构的设计是一个复杂的过程,其中包括针对土壤类型和地形的勘探、对建筑物负载和同胞结构的评价,以及对结构的设计和分析过程。

该过程大致可分为:设计概念化、设计详细化、施工计划、施工管理和结构的维护等步骤。

在设计概念化的阶段,工程师将开展早期调查和研究,以确定建筑物的基本要素。

这包括规划、市场分析、预算和商业可行性等。

在此过程中,还会考虑到环境和可持续性的因素,如能源效率、质量和建筑物与周围环境的关系。

设计这些因素旨在确保建筑物能够进行持久的运用,同时满足投资回收和运营效益等经济目标。

设计详细化的阶段旨在生成建筑物的详细设计,包括基础、框架、支撑结构、板和墙体,以及电力、水力和供暖系统等。

为了确保每个组件的稳定性和可靠性,工程师将利用各种计算机和分析工具以进行更精确的结构和力学分析。

这些分析工具包括CAD设计软件和3D模型,结构和力学分析工具,以及有限元分析和实验室测试设备等。

施工计划和施工管理是土木工程结构设计的重要组成部分。

在施工前,工程师必须协调设计、公共卫生和安全规定、环境和社会因素等详细方案,以确保在建造过程中的所有步骤都符合这些规定。

工程师还必须监督施工人员的现场工作,以确保它们按照预定计划进行。

结构的维护是土木工程结构设计的关键领域之一。

结构的维护旨在确保建筑物的的长期性和安全性。

这包括定期检查、维护和修复结构上的任何损坏或缺陷,以及执行大型预防性维修项目。

在实际应用中,土木工程结构设计与应用是相互联系的。

设计师必须了解其他领域,例如机械、材料、土力学和环境保护等,以确保他们的方案能够最大限度地提高建筑物的安全性和复原能力。

毕业土木结构设计

毕业土木结构设计

对桥梁的细部构造进行设计,如桥面 铺装、防撞栏杆、排水系统等,以确 保桥梁的安全性和耐久性。
荷载与作用力分析
根据桥梁的使用要求和交通流量,确 定合理的车辆荷载、人群荷载和自然 作用力等,并进行作用力分析。
路基结构设计
01
02
03
路基类型选择
根据道路等级、交通流量 和地质条件等因素,选择 合适路基类型,如整体式 路基、分离式路基等。
适用于大跨度、高层建筑和大型工业厂房,具有较高的承载能力和 抗震性能,但成本较高。
混合结构
结合钢筋混凝土和钢结构的特点,适用于大型复杂建筑,具有较好 的综合性能。
著名桥梁结构解析
悬索桥
以钢缆悬吊主梁,适用于 跨越深谷和宽阔河流,具 有较大的承载能力和跨越 能力。
斜拉桥
以斜拉索拉住主梁,适用 于跨越较宽的河流和道路, 具有自重轻、跨越能力大 等优点。
高效结构设计软件应用
有限元分析软件
利用高效、精确的有限元分析软件进行结构分析 和优化设计,提高设计效率和准确性。
结构优化软件
采用结构优化软件对结构进行优化设计,实现结 构轻量化、经济性和安全性的平衡。
BIM技术
应用建筑信息模型(BIM)技术进行结构设计, 实现信息的集成和协同工作。
绿色结构设计理念与实践
拱桥
以拱结构作为主要承重结 构,适用于跨越峡谷和河 流,具有较好的承载能力 和景观效果。
典型路基结构评估
土质路基
适用于一般道路和场地,要求对 土质进行充分压实和处理,以保
证稳定性和安全性。
石质路基
适用于山区和岩石地段,要求对 岩石进行爆破和整平,以保证稳
定性和安全性。
特殊路基
适用于特殊场地和工程要求,如 软土地基、盐渍土地基等,需要

土木工程结构设计岗位职责

土木工程结构设计岗位职责

土木工程结构设计岗位职责
土木工程结构设计师是负责在土木工程项目中进行结构设计的
专业人员,主要职责包括:
1. 负责指导和协调土木工程结构设计项目全过程,包括需求确认、设计方案制定、详细设计、最终定稿等环节的工作,并与客户、建筑师、工程师和承包商等合作完成项目。

2. 根据项目需求进行土木工程结构设计,包括建筑物、桥梁、
道路、隧道、水利工程和海洋工程等,确定最佳的结构形式、设计
方案和材料等,保证设计方案满足项目的技术、安全和经济要求。

3. 根据项目需要,进行结构分析和计算,使用各种工程软件和
计算方法,确定结构荷载、建筑物高度、建筑物层数、桥梁跨度、
基础类型、墙壁厚度、结构连接等。

4. 根据设计方案进行施工图纸的制作,包括图纸的平面布置、横、纵、高断面的绘制、节点的设计、详图的制作等,以满足工程
施工的要求。

5. 根据项目需要撰写土木工程设计报告,包括结构设计报告、
建筑工程评估报告和施工图纸说明等,对于设计中涉及的技术、工艺、经济等方面进行说明和分析。

6. 可以参与工地现场检查和评估工作,评估工程的完整性、安
全性和一致性,以确保工程的执行符合设计要求和标准。

7. 在项目执行过程中,与相关人员协调沟通,确保结构设计方
案得到贯彻,以实现整个项目的顺利进行。

综上所述,土木工程结构设计师是负责在土木工程项目中进行结构设计的专业人员,需要广泛的知识和技能,以确保项目的成功实施。

土木工程结构分析与设计要点总结

土木工程结构分析与设计要点总结

土木工程结构分析与设计要点总结土木工程结构分析与设计是土木工程学科的核心内容之一,旨在通过系统的分析和设计方法,确保土木结构的安全可靠性。

本文将总结土木工程结构分析与设计的要点,帮助读者更好地理解和应用这一领域的知识。

一、结构分析要点1. 结构力学基础:在进行结构分析之前,首先需要掌握结构力学的基本原理和概念,包括静力学、动力学、弹性力学等内容。

只有通过对力学规律的理解和应用,才能准确地分析结构的受力情况。

2. 结构模型建立:结构分析的第一步是建立结构模型,通常使用数学模型或物理模型来描述结构。

数学模型包括刚体模型、弹性模型、板壳模型等。

在建立模型时,需要考虑结构的几何形状、材料特性和边界条件等因素。

3. 荷载分析:荷载是结构分析中十分重要的一个部分。

不同类型的结构承受的荷载不同,例如静力荷载、动力荷载、温度荷载等。

在荷载分析中,需要考虑荷载的大小、方向、作用位置等因素,并进行准确的计算和估算。

4. 受力分析:受力分析是结构分析的核心要点。

通过对结构的受力分析,可以确定结构各部分的受力情况,包括内力、剪力、弯矩等。

受力分析需要运用平衡条件、受力平衡方程和应力应变关系等原理。

5. 结构稳定性分析:结构的稳定性分析是确保结构安全可靠的重要环节。

在结构设计中,需要考虑结构的整体稳定性和局部稳定性,避免出现失稳现象。

结构稳定性分析的方法包括弯曲屈曲、局部失稳、整体失稳等。

二、结构设计要点1. 结构设计原则:结构设计应遵循合理、安全、经济、美观的原则。

合理性是指结构设计应符合工程要求和规范标准;安全性是保证结构在设计寿命内不发生破坏或失稳;经济性是指在满足工程要求的前提下,尽量减少工程成本;美观性是考虑到建筑结构对环境的影响,追求艺术和人文价值。

2. 结构材料选择:结构设计中需要根据具体工程要求选择合适的材料。

常见的结构材料包括钢材、混凝土、木材等。

选择材料时需要考虑材料的强度、刚度、耐久性和施工性能等因素。

土木工程毕业设计建筑结构设计

土木工程毕业设计建筑结构设计

14、地震作用计算
按底部剪力法计算水平地震作用,仅仅考虑了第一振型
的影响,而且还把第一振型强行假定为直线倒三角分布。
底部剪力法求解过程
为什么要增加顶部附加水平地震作用△Fn?
鞭梢效应的概念
实际上,当周期较长时,高阶振型
的影响变大,按底部剪力法计算则
低估了结构底部的地震剪力。因此
要做高振型的修正,具体方法就是
7、结构计算简图的确定
与柱截面不变时相同
将上层柱轴线作为整个框架柱轴线
定义:柱轴线间距
跨度
柱形心重合
手算的近似处理方法
上下层柱尺寸不同
柱形心不重合
柱变截面处的附近弯矩
截面变化不能太大
如:建筑外墙要求是平的
土木工程毕业设计—建筑结构设计
7、结构计算简图的确定
首层:嵌固端至上层楼面的距离
层高
其它层:本层楼面至上层楼面的距离
13、结构的自振周期
梁线刚度 =20/
柱线刚度 =/ℎ
一层柱:
一般层柱:
2
2

1层边柱
土木工程毕业设计—建筑结构设计
1
2

1层中柱

4
一般层边柱
1
3
2

4
一般层中柱
13、结构的自振周期
将重力代表值水平施加 G=V
D由前面计算得到
土木工程毕业设计—建筑结构设计
地震工况
将动力问题转化为静力问题
如何计算地震惯性力?
底部剪力法
如何求加速度?
如何求质量?
土木工程毕业设计—建筑结构设计
地震作用是加速度,用加速度
去乘以质量(重力荷载代表值),
就可以得到惯性力。

结构设计知识:土木工程建筑结构设计原理与方法

结构设计知识:土木工程建筑结构设计原理与方法

结构设计知识:土木工程建筑结构设计原理与方法土木工程建筑结构设计原理与方法在建筑物的设计中,结构设计是不可或缺的一个环节。

结构设计的目的是为了使建筑物满足其使用条件下的力学性能,保证建筑物的安全稳定,并满足建筑美学、经济性等方面的要求。

本文将从土木工程建筑结构设计的原理和方法两个方面探讨结构设计的相关知识。

一、土木工程建筑结构设计的原理1.力学原理建筑物作为一种力学系统,必须遵循力学定律,满足力学平衡条件。

在结构设计过程中,需要考虑建筑物受到的荷载(包括自重、使用荷载、风荷载、地震荷载等),并根据荷载大小和分布对结构进行分析、计算,确定结构的形式、尺寸、材质等参数,以满足建筑物的强度、刚度、稳定性等力学要求。

2.材料力学原理土木工程建筑中常用的材料包括:钢材、木材、混凝土、砖等,每种材料都有其特定的力学性能。

在结构设计中,需要根据材料的弹性模量、极限强度、屈服强度等参数,对材料的力学性能进行分析和计算,以确定在荷载作用下材料的应力、应变等信息,从而保证结构的受力性能。

3.稳定性原理稳定性是指建筑物在荷载作用下保持平衡的能力,也就是建筑物的抗倒塌能力。

在设计过程中,需要根据建筑物的高度、形状、结构体系等因素,对其进行稳定性分析,为其设计合适的支撑结构和斜撑系统,以保证建筑物在荷载作用下的稳定性。

4.条件合理原理条件合理原则是指在满足建筑物的安全、经济、美观等基本要求的前提下,设计方案中各种条件应尽量得到合理利用,提高建筑物的效益和艺术效果。

在结构设计中,需要综合考虑材料、形式、尺寸、成本等因素,选择最优的设计方案。

二、土木工程建筑结构设计的方法1.估算荷载估算荷载是结构设计的第一步,也是最为关键的一步。

在估算荷载时,需要考虑建筑物所处的地理位置、建筑类型、结构系统、使用环境等因素,并根据规范和实际情况对荷载进行计算、校核。

2.选择结构类型结构类型的选择需要考虑建筑物的形状、高度、使用功能等因素。

通常情况下,建筑物的结构类型可以分为框架结构、桥梁结构、拱形结构、索结构、壳体结构等,每一种结构类型都有其优缺点和适用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学土木工程结构设计作业如图所示,预应力混凝土两跨连续梁,截面尺寸b×h = 350mm×900mm,预应力筋线性布置如图所示(二次抛物线),且已知有效预应力为1200kN (沿全长)。

(9根直径为15.2mm 低松弛1860级钢绞线)混凝土的弹性模量为MPa E c 4103.25⨯=,(C40混凝土),抗拉强度MPa f tk3=。

(1)若作用60m kN /向下均布荷载(含自重),试计算此时跨中挠度;(2)若均布荷载增加到120m kN /(含自重),此时跨中挠度是否为60m kN /均布荷载下跨中挠度的两倍?如恒载与可变荷载各为60m kN /,梁跨中需要配HRB400钢筋的面积为多少?单位:mm10010010010000100001. 预应力梁等效荷载法由题意,预应力钢筋的轴线为二次抛物线,则有效预加力N Pe 产生一个与均布荷载作用下梁的弯矩图相似的弯矩图。

预应力筋的轴线为单波抛物线,则有效预加力N Pe 在单波抛物线内的梁中将产生一个等效的均布荷载q e ,其值:(1-1)e pn为该抛物线的垂度,即单波抛物线中点到两端点所连成直线的距离,即:(1-2)l为该抛物线在水平线上的投影长度。

对称结构选取单跨梁进行分析,其中,,,,,,代入式(1-1)和式(1-2),得:,。

作用在双跨连续梁上的等效均布荷载如图1-1所示。

p=50.4 KN/m图1-1:双跨连续梁等效均布荷载图2.连续梁弯矩等效荷载q e及恒活荷载q均为作用在双跨连续梁上的均布荷载,计算简图如图2-1所示,根据结构力学相关知识,对称双跨梁在对称荷载作用下,可以等效为一半结构进行分析,约束可以简化为一端简支、一端固定,如图2-2所示,其弯矩、剪力、支座反力及挠度如下表2-1所列。

q图2-1 连续梁均布荷载计算简图q图2-2 等效计算表2-1 一端简支一端固定梁受均布荷载的反力、剪力、弯矩和挠度荷载qA Bl反力剪力弯矩M2M1Mma x弯矩剪力R AR B扰度根据表2-1所列各式,在各均布荷载作用下,跨中截面及支座截面的弯矩值计算如表2-2所示(不考虑活荷载的最不利布置,即满跨布置均布活荷载)。

表2-2 各均布荷载下跨中截面及支座截面弯矩值(kN·m)荷载(kN/m)M1,k M2,k M max,k1 315 630 354.3752 375 750 421.8753 750 1500 843.754 375 750 421.8755 375 750 421.875对于使用等效荷载法分析后后张法预应力混凝土超静定梁,其综合弯矩可以分为主弯矩和次弯矩两部分,其中,主弯矩为预加力值与偏心距的乘积,次弯矩为综合弯矩减去主弯矩(也可理解为由等效荷载作用下,中间支座反力所产生的附加弯矩)。

预应力筋等效弯矩法的综合弯矩图、主弯矩图、次弯矩图如图2-3至2-5所示。

630315315354.4354.4图2-3 预应力等效荷载的综合弯矩图(kN·m )420420420图2-3 预应力等效荷载的主弯矩图(kN·m )210105105图2-4 预应力等效荷载的主弯矩图(kN·m )3. 裂缝控制验算对于裂缝控制验算,应取支座及跨中最不利截面进行验算。

由于跨内最不利截面的位置及弯矩与多种因素有关,一般情况下,可取跨中截面和荷载作用下的最大弯矩截面进行验算,即对支座截面和跨中弯矩最大截面验算。

3.1. 计算截面特征矩形截面梁的截面几何性质如表3-1所列(不考虑后张法预应力孔道对截面积及截面惯性矩的影响)。

表3-1 矩形截面梁的截面几何性质3.2.验算裂缝控制等级对于问题(1)、(2),可定义三种不同的荷载组合分别计算,荷载组合如表3-2所示。

表3-2 荷载组合荷载组合荷载工况组合1组合2组合33.2.1.按荷载效应的标准组合对于预应力混凝土梁,荷载效应的标准组合下抗裂验算边缘的混凝土法向应力及扣除全部预应力损失后在抗裂度验算边缘的混凝土预压应力计算公式如式(3-1)及式(3-2)所示(考虑到截面积相对于预应力孔道面积及预应力筋的面积大的多,实际计算时用I、A代替I0、I n、A n计算)。

(1)中间支座截面:(3-1) (2)跨中截面:(3-2)梁的标准组合弯矩值为:,按荷载效应的标准组合时的抗裂等级验算如表3-2所示。

表3-2 荷载效应标准组合抗裂等级验算组合截面(kNm)(MPa)(MPa)(MPa)支座750 15.87 17.14 -1.27<0,一级组合1跨中421.88 8.93 11.31 -2.38<0,一级支座1500 31.74 17.14 14.6>f tk=3.0,三级组合2跨中843.75 17.86 11.31 6.55>f tk=3.0,三级支座1500 31.74 17.14 14.6>f tk=3.0,三级组合3跨中843.75 17.86 11.31 6.55>f tk=3.0,三级3.2.2.按荷载效应的准永久组合根据《建筑结构荷载规范》(GB50009-2012)表5.1.1,梁的活荷载准永久值系数取为0.5。

梁的准永久组合弯矩值为:,按荷载效应的准永久组合时的抗裂等级验算如表3-3所示。

表3-3 荷载效应准永久组合抗裂等级验算组合截面(kNm)(MPa)(MPa)(MPa)支座750 15.87 17.14 -1.27<0,一级组合1跨中421.88 8.93 11.31 -2.38<0,一级支座1500 31.74 17.14 14.6>f tk=3.0,三级组合2跨中843.75 17.86 11.31 6.55>f tk=3.0,三级支座1125 23.81 17.14 6.67>f tk=3.0,三级组合3跨中632.81 13.40 11.31 2.09<f tk=3.0,三级对于裂缝控制等级为三级时,需要验算荷载标准组合的裂缝宽度。

根据《混凝土结构设计规范》(GB50010-2010)表3.4.5查环境类别为二类a(一般环境)时预应力混凝土构件裂缝等级为三级时的。

对荷载组合3,即恒活荷载各为60 kN/m时,进行裂缝宽度的验算。

4.正截面受弯承载力计算当内力按弹性理论进行分析时,受弯承载力计算应考虑次弯矩的作用,但次弯矩的荷载系数取为1.0(跨中截面处的应取处对应次弯矩)。

对于正截面受弯承载力计算,应取支座截面和跨内最不利截面进行计算。

由于跨内最不利截面的位置及内力不易确定,因此,在一般情况下可取恒荷载作用下弯矩最大的截面进行计算(不考虑活荷载的不利布置)。

支座截面与跨中截面弯矩设计值计算公式为式(4-1)及式(4-2)(1)中间支座截面:(4-1)(2)跨中截面:(4-2)各工况组合下,预应力梁的正截面弯矩设计值如下表4-1所列。

中间支座弯矩跨中弯矩组合1 -802.5 648.23组合2 -1815 1217.81组合3 -1740 1175.644.1. 中间支座截面根据《混凝土结构设计规范》(GB50010-2010),连续梁跨中截面相关计算过程如表4-2所列(取为40mm ,取为100mm ,则近似取)。

表4-2 各工况组合下预应力梁中间支座截面配筋计算计算公式 `组合1 组合2 组合3 M B (m kN ⋅)-802.5 -1815 -1740 0h (mm)820 820 820 210Bs c M f bh αα=0.178 0.4040.387112s ξα=--0.198 0.562>ξb =0.518 0.525>ξb =0.518 x=ζh 0162.36 取ξb h 0=424.76取ξb h 0=424.76-1407<03927 3301 2min/mm s A , 673.31 673.31 673.31 实配钢筋(2mm )4251964 8253436 72534364.2. 跨中截面跨中截面取距边支座处的截面进行计算,近似取,取,则可取。

计算过程如表4-3所示。

表4-3 各工况组合下预应力梁跨中截面配筋计算计算公式 `组合1 组合2 组合3 M B (m kN ⋅)648.23 1217.81 1175.64 0h (mm)820 820 820 210Bs c M f bh αα=0.144 0.271 0.262 112s ξα=--0.156 0.323 0.310 x=ζh 0127.92 264.86 254.20 <0692 494 2min/mm s A , 673.31 673.31 673.31 实配钢筋(2mm )3251473 3251473 32514735. 预应力混凝土受弯构件的变形验算 5.1. 考虑长期影响时刚度B 的计算 5.1.1. 短期刚度B s 计算对于组合1,其裂缝控制等级为一级,即预应力混凝土受拉区不出现拉应力,其短期刚度B s 计算公式见式(5-1),对于组合2和组合3,其裂缝控制等级为三级,允许出现裂缝,其短期刚度计算公式见式(5-2)。

(5-1)(5-2) 其中:()注:1.矩形截面,=1.55,=02.矩形截面,h小于400取400mm,大于1600,取1600mm。

3.为纵向受拉钢筋配筋率,,其中对于灌浆后的后张法,。

对于3种工况组合下梁的跨中截面短期刚度计算如下表5-1所列:计算过程组合1 组合2 组合3 裂缝控制等级一级三级三级计算截面纵筋配筋率6 64.0 4.01.2922.192M k843.75 843.7511.31 11.310.706 0.7061.91 1.91短期刚度B s(Nm2) 5.874×1014 3.080×1014 3.080×1014 5.1.2.考虑长期荷载影响的刚度对于预应力梁,取,对于等截面梁,取处弯矩计算B和挠度f 。

考虑荷载的长期影响下预应力梁的刚度B的计算如式(5-3)所示:(5-3)5.2.计算长期挠度f根据表2-1的连续梁跨中最大挠度计算公式,对于长期荷载影响下连续梁的跨中最大扰度f max计算见式(5-4)。

(5-4)其中为横荷载和活荷载按标准效应组合的梁线荷载。

则三种组合的长期扰度计算如表5-1所列。

表5-2 计算长期扰度f组合1 组合2 组合360 120 120梁线荷载(kN/m)短期刚度B s(Nm2) 5.874×1014 3.080×1014 3.080×1014长期刚度B(Nm2) 2.937×1014 1.540×1014 1.760×1014跨中扰度f max(mm)11.07 42.23 36.955.3.计算使用阶段预应力反拱值预应力筋考虑预应力损失后,对于短期预应力反拱值及考虑长期作用下的预应力反拱值计算见式(5-5)。

相关文档
最新文档