第三章离子交换树脂
离子交换IX 第三章 基本理论

相)。在树脂的内部溶液中存在着大量可以自由移动的反离子。因此,树脂成为
充满电解质溶液的海绵。
如果水溶胀的离子交换树脂处于非极性并且不与水混溶的有机溶剂(例如在
41
有机萃取剂的煤油溶液)中,由于树脂优先选择水并且有机相不可能进入树脂取 代溶胀水,因此存在着三相,即:树脂骨架(固相)、树脂的内部水溶液(水相) 和树脂外部的有机溶剂(有机相)。这三相由于互不混溶,所以整个体系存在着 两个相界面,这就是曾经提出的“树脂双界面模型”[10](见图 3-4)。
易地把金从树脂上解吸下来,这是因为在解吸过程存在以下反应:
在界面(I)发生离子交换反应: (R4N)Au(CN)2(R) + HSO4-(a) = (R4N)HSO4(R) + Au(CN)2-(a)
在界面(II)发生液液萃取反应:
(3-7)
42
(R3NH)HSO4(o) + Au(CN)2-(a) = (R3NH)Au(CN)2(o)+ HSO4-(a) (3-8) 式(3-7)和式(3-8)中的下标(R)、(a)和(o)分别代表树脂骨架、树脂内部溶液 和有机相。
R-A+ + B+ = R-B+ + A+
(3-2)
R. Gans 应用质量作用定律,用最简单的形式(没有考虑活度系数)得到平
衡常数 Kc 的表示式:
KC=[R-B+] [A+] / [R-A+][B+]
式中:[R-A+]和[R-B+]为 A+和 B+在树脂相的浓度。
(3-3)
[A+]和[B+]为 A+和 B+在溶液相的浓度。
离子交换树脂分离原理

离子交换树脂分离原理离子交换树脂是一种常用的分离纯化技术,它基于离子交换的原理,可以有效地分离溶液中的离子。
离子交换树脂是一种高分子材料,具有固定的离子交换基团,通过与待分离溶液中的离子发生反应,实现对离子的选择性吸附和释放,从而实现离子的分离纯化。
离子交换树脂的分离原理可以简单地理解为离子的交换。
离子交换树脂中的固定离子交换基团以及溶液中的离子之间会发生离子交换反应。
当溶液中的离子与树脂上的固定离子交换基团具有相同的电荷时,它们会发生吸附作用,被树脂固定下来。
而对于与树脂上的固定离子交换基团具有不同电荷的离子,则不会被树脂吸附,保持在溶液中。
离子交换树脂的选择性吸附和释放离子的能力是由其固定离子交换基团的化学性质决定的。
树脂上的固定离子交换基团可以是阴离子交换基团或阳离子交换基团,分别用于吸附阳离子和阴离子。
固定离子交换基团具有特定的电荷性质,可以与溶液中的离子发生静电作用引起离子的吸附。
离子交换树脂的分离效果可以通过调节溶液的pH值来实现。
当溶液的pH值发生变化时,溶液中的离子的电荷状态也会发生变化。
这样一来,原本被树脂吸附的离子可能会被释放出来,而原本没有被吸附的离子可能会被吸附。
通过调节溶液的pH值,可以实现对特定离子的选择性吸附和释放,从而实现离子的分离纯化。
离子交换树脂在实际应用中有着广泛的用途。
它可以用于水处理领域,用于去除水中的杂质离子,提高水的纯度。
此外,离子交换树脂还可以用于药物纯化、食品加工等领域,用于提取和纯化特定的离子物质。
离子交换树脂还可以用于离子交换色谱分析,用于分离和检测溶液中的离子成分。
离子交换树脂分离原理是基于离子交换反应的,通过树脂上的固定离子交换基团与溶液中的离子发生交换作用,实现对离子的选择性吸附和释放,从而实现离子的分离纯化。
离子交换树脂具有广泛的应用领域,可以用于水处理、药物纯化、食品加工等方面,为我们的生活和工业生产提供了便利和支持。
离子交换树脂工作原理

离子交换树脂工作原理离子交换树脂是一种吸附介质,它能够通过交换其固定的离子与溶液中的离子达到去除或吸附某些成分的目的。
其工作原理可以分为吸附、解吸和再生三个过程。
1. 吸附:当溶液通过离子交换树脂时,树脂中固定的离子会与溶液中的离子发生交换反应,树脂上的固定离子释放到溶液中,而溶液中的离子则附着在树脂上。
这个过程可以选择性地去除特定的离子或分子,使溶液中的成分得到富集或去除。
2. 解吸:当树脂吸附达到一定饱和度后,需要对树脂进行解吸,即从树脂上去除吸附的离子或分子。
可以通过改变溶液的性质,如改变酸碱度、浓度等,使溶液中的离子与树脂上的固定离子交换,使树脂上的离子释放到溶液中,达到解吸的目的。
3. 再生:树脂在多次使用后会逐渐失去吸附能力,此时需要对树脂进行再生。
再生的方法有多种,常见的包括用盐水洗涤、用酸或碱洗涤等。
通过这些方法,可以将吸附在树脂上的离子彻底去除,使树脂恢复到初始状态,再次用于吸附过程。
综上所述,离子交换树脂通过固定离子与溶液中的离子交换,达到去除或吸附特定成分的目的。
通过解吸和再生,树脂可以多次使用,提高了其经济性和可持续性。
继续:离子交换树脂的工作原理可以进一步细分为两个方面:固定相和移动相。
1. 固定相:离子交换树脂的固定相是树脂内部的交联聚合物。
交联聚合物中含有特定的离子基团,如偶氮树脂中的-NH2基团或阴离子树脂中的-RSO3H基团,这些基团会与溶液中的离子交换。
2. 移动相:溶液中的离子是离子交换树脂工作的移动相。
当溶液从树脂上流经时,其中的离子会与树脂上的固定离子发生交换,并附着在树脂上。
这个过程中,离子在树脂与溶液之间交换位置,从而实现了溶液中特定成分的去除或富集。
离子交换树脂的选择性是由其固定相的種類或結構所决定的。
例如,阴离子树脂主要用于吸附溶液中的阳离子,而阳离子树脂则用于吸附溶液中的阴离子。
此外,还有具有特定的选择性的离子交换树脂,如特异性吸附镁离子、铝离子等的树脂。
离子交换树脂的原理

离子交换树脂的原理首先,离子交换树脂的结构特点。
离子交换树脂通常是由高分子聚合物构成的,其中含有一定数量的功能基团,如硫酸基、羧基、氨基等。
这些功能基团能够与水溶液中的离子发生置换反应,从而实现对离子的吸附和分离。
离子交换树脂的结构特点决定了它具有很强的选择性吸附能力,可以根据需要选择特定的功能基团来实现对目标离子的高效吸附和分离。
其次,离子交换树脂的工作原理。
离子交换树脂的工作原理主要是离子置换反应。
当离子交换树脂与含有离子的水溶液接触时,树脂中的功能基团会与水溶液中的离子发生置换反应,树脂吸附了水溶液中的离子,同时释放出树脂中原有的离子。
这样,离子交换树脂就实现了对水溶液中离子的选择性吸附和分离。
通过控制反应条件和树脂的功能基团类型,可以实现对不同离子的高效吸附和分离。
最后,离子交换树脂的应用领域。
离子交换树脂在水处理、药物分离、金属提取等领域具有广泛的应用。
在水处理领域,离子交换树脂可以用于去除水中的重金属离子、软化水质、去除有机物等。
在药物分离领域,离子交换树脂可以用于药物的纯化和分离。
在金属提取领域,离子交换树脂可以用于金属离子的富集和分离。
离子交换树脂凭借其高效的离子交换能力和广泛的应用领域,成为了化工、环保、医药等领域中不可或缺的重要材料。
总之,离子交换树脂作为一种具有广泛应用前景的化学材料,其原理主要是利用树脂中的功能基团与水溶液中的离子发生置换反应,实现对离子的选择性吸附和分离。
离子交换树脂的结构特点、工作原理和应用领域决定了它在水处理、药物分离、金属提取等多个领域中具有重要的应用价值。
希望本文的介绍能够帮助大家更好地理解离子交换树脂的原理和应用。
离子交换树脂

离子交换树脂的型号由三位阿拉伯数字组成。第 一位数字代表产品分类;第二位数字代表骨架结构; 第三位数字为顺序号,用于区别离子交换树脂树脂中 基团、交联剂、致孔剂等的不同,由各生产厂自行掌 握和制定。对凝胶型离子交换树脂,往往在型号后面 用“×”和一个阿拉伯树脂相连,以表示树脂的交联度 (质量百分数),而对大孔型树脂,则在型号前冠以 字母“D”。
强碱型阴离子交换树脂制备实例: 将1 g BPO 溶于85 g 苯乙烯与15 g 二乙烯基苯的 混合单体中,在搅拌下加入含有0.05%~0.1%聚乙烯 醇的500 mL去离子水中,分散成所需的粒度。在80℃ 下搅拌反应5~10 h,得球粒聚合物。过滤洗涤后,于 100~125℃下干燥。 将所得聚合物在100 g二氯乙烷中加热溶胀,冷却 后加入200 g 氯甲醚,50 g 无水ZnCl2,50~55 ℃下加 热5 h。冷却后投入水中,分解过剩的氯甲醚,然后过 滤、水洗,并于100℃下干燥。
编号 0 1 2 3 骨架分类 聚苯乙烯系 聚丙烯酸系 酚醛树脂系 环氧树脂系
4
5 6
聚乙烯吡啶系
脲醛树脂系 聚氯乙稀系
例如,D113树脂是水处理应用中用量很大的一种 树脂。从命名规定可知,这是—种大孔型弱酸型丙烯 酸系阳离子交换树脂;而001×10树脂则是指交联度 为10%的强酸型苯乙烯系阳离子交换树脂。 我国有些生产厂在部颁标准制定前已开始生产离 子交换树脂,它们自己有一套编号,已经为人们所熟 悉和接受。因此,至今尚未改名。例如上海树脂厂的 735树脂,相当于命名规定中的001树脂;724树脂相 当于命名规定中的110树脂;717树脂相当于命名规定 中的201树脂等等。
COOCH3 CH2 CH
CH3 NaOH H2O CH2 C CH2 CH + CH3OH
离子交换树脂原理及使用方法

离子交换树脂原理及使用方法以离子交换树脂原理及使用方法为题,本文将介绍离子交换树脂的基本原理、分类、应用以及使用方法。
一、离子交换树脂的原理离子交换树脂是一种能够与溶液中的离子发生交换反应的高分子材料。
其原理基于离子交换反应,通过树脂中的功能基团与溶液中的离子发生化学反应,将溶液中的离子吸附到树脂上,并释放出与之相对应的离子。
离子交换树脂的功能基团可以是酸性基团或碱性基团,根据功能基团的不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂。
二、离子交换树脂的分类1. 阴离子交换树脂:阴离子交换树脂是具有具有碱性功能基团的树脂,能够吸附溶液中的阴离子。
常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。
强碱性树脂通常是以季胺基或氨基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱碱性树脂则是以胺基或次胺基作为功能基团,离子交换容量和吸附能力较强碱性树脂较低。
2. 阳离子交换树脂:阳离子交换树脂是具有具有酸性功能基团的树脂,能够吸附溶液中的阳离子。
常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。
强酸性树脂通常是以磺酸基或磷酸基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱酸性树脂则是以羧基或酚基作为功能基团,离子交换容量和吸附能力较强酸性树脂较低。
三、离子交换树脂的应用离子交换树脂在各个领域都有广泛的应用,主要包括水处理、制药、食品加工、环境保护等方面。
1. 水处理:离子交换树脂可用于去除水中的阳离子或阴离子,从而净化水质。
常见的应用包括软化水、去除重金属离子和放射性核素等。
2. 制药:离子交换树脂可用于药物的分离纯化、药物吸附和药物释放控制等方面。
在制药工业中,离子交换树脂广泛应用于药物的纯化和分离、药物固定化以及药物缓释等方面。
3. 食品加工:离子交换树脂可用于食品加工中的脱色、脱苦味、去除重金属离子等。
例如,可用于提取咖啡因、去除苦味物质和脱色等。
4. 环境保护:离子交换树脂可用于废水处理、废气治理和固体废物处理等方面。
离子交换树脂的原理
离子交换树脂的原理
离子交换树脂是一类具有离子交换功能的高分子材料。
在溶液中它能将本身的离子与
溶液中的同号离子进行交换。
按交换基团性质的不同,离子交换树脂可分为阳离子交换树
脂和阴离子交换树脂两类。
阳离子交换树脂大都含有磺酸基(—so3h)、羧基(—cooh)或苯酚基(—c6h4oh)
等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。
例如苯乙烯和
二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为r—
so3h,式中r代表树脂母体,其交换原理为2r—so3h+ca—(r—so3)2ca+2h这也是硬
水软化的原理。
阴离子互换树脂所含季胺基[-n(ch3)3oh]、胺基(—nh2)或亚胺基为(—nh2)等
碱性基团。
它们在水中能够分解成oh-离子,可以与各种阴离子起至互换促进作用,其互
换原理为r—n(ch3)3oh+cl-r—n(ch3)3cl+oh
由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱
进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。
阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。
色谱法树脂的用途很广,主要用作拆分和纯化。
比如用作硬水软化和制备去离子水、
废旧工业废水中的金属、拆分稀有金属和贵金属、拆分和纯化抗生素等。
-2++。
离子交换树脂工作原理
离子交换树脂工作原理
离子交换树脂是一种吸附物质,其工作原理基于离子交换的原理。
离子交换树脂具有特殊的化学结构,可以吸附溶液中的离子并释放其他离子。
以下是离子交换树脂的工作原理:
1. 吸附:离子交换树脂具有一些特殊的化学基团,例如带正电荷的阳离子交换基团(如H+、Na+等)和带负电荷的阴离子
交换基团(如OH-、Cl-等)。
当带电的离子溶液通过离子交
换树脂时,离子交换基团与离子发生静电作用,使得溶液中的离子被吸附到树脂上。
2. 离子交换:当树脂上的吸附位点被饱和,树脂需要进行再生或者更新。
离子交换树脂通过与外部提供的具有更高亲和力的离子溶液接触,使吸附在树脂上的离子被替换出来。
例如,对于阴离子交换树脂,将含有更强亲和力的阴离子的溶液通入树脂床层,替换出树脂上原先吸附的阴离子。
3. 再生:当离子交换树脂的吸附位点被饱和,需要将树脂进行再生以恢复其原有的吸附性能。
再生的方法通常是通过使用更浓的盐溶液洗涤树脂,将吸附在树脂上的离子彻底去除,使树脂变得可再次使用。
离子交换树脂的工作原理可应用于多种应用领域,例如水处理、离子交换层析、电解质制备等。
通过调节树脂的交换基团和再生方法,可实现对溶液中特定离子的选择性吸附和分离。
树脂离子交换原理
树脂离子交换原理树脂离子交换是一种常用的物理化学过程,通过树脂材料上的固定离子与溶液中的离子发生交换作用,实现溶液中离子的去除或富集。
本文将详细介绍树脂离子交换的原理及其应用。
一、树脂离子交换原理树脂离子交换的原理基于树脂材料的特殊结构。
树脂是由具有交联结构的高分子化合物组成,其表面带有固定的功能基团,可以与溶液中的离子发生吸附和交换作用。
树脂材料一般为小颗粒状,具有较大的比表面积,从而增加了与溶液中离子接触的机会。
在树脂离子交换过程中,溶液中的离子与树脂上的固定离子之间发生交换作用。
树脂上的固定离子可以是正离子,也可以是负离子。
当溶液中的阳离子与树脂上的固定阴离子发生交换时,树脂释放出等量的阴离子到溶液中;当溶液中的阴离子与树脂上的固定阳离子发生交换时,树脂释放出等量的阳离子到溶液中。
这种离子交换的过程可以使溶液中的离子浓度发生变化,实现离子的去除或富集。
二、树脂离子交换的应用1. 水处理领域:树脂离子交换广泛应用于水处理领域,用于去除水中的硬度离子(如钙离子和镁离子)、重金属离子、有机物离子等。
通过选择合适的树脂材料和操作条件,可以实现对水质的净化和调控。
2. 医药制造:在医药制造过程中,树脂离子交换被用于药物分离纯化、离子交换色谱等过程。
通过树脂离子交换技术,可以实现对药物成分的纯化和分离,提高药物的纯度和质量。
3. 食品加工:树脂离子交换在食品加工中也有广泛应用。
例如,可以利用树脂离子交换去除食品中的过量盐分、金属离子和有害物质,提高食品的质量和安全性。
4. 生物技术:在生物技术领域,树脂离子交换被用于分离纯化生物大分子(如蛋白质、核酸等)。
通过树脂离子交换技术,可以实现对生物大分子的纯化、富集和分离,为后续的生物学研究和工业应用提供基础。
5. 离子交换色谱:树脂离子交换也是离子交换色谱技术的基础。
离子交换色谱是一种分离和分析离子的方法,广泛应用于环境监测、食品安全、药物分析等领域。
三、树脂离子交换的优缺点树脂离子交换具有以下优点:- 可以选择不同类型的树脂材料,适应不同的应用需求;- 操作简单,可以实现连续或间歇运行;- 成本较低,适用于大规模应用。
离子交换-树脂部分(共68张PPT)
阴离子交换树脂交换容量
• 阴离子交换树脂交换容量测定包括对强碱性和弱碱性 两种阴树脂的全交换容量、强碱基团及弱碱基团容量 的测定。
第一节 离子交换树脂根本概念
国产离子交换树脂的分类 国产离子交换树脂命名法那么及型号
国产离子交换树脂的分类
离子交换树脂品种很多,因其原料、制法和用途不同,分类方 法各异。主要分类方法下:
1.按功能基类别分:
a. 强酸性阳离子交换树脂,其功能基为:磺酸基R-SO3H
b. 弱酸性阳离子交换树脂,其功能基为:羧酸基R-COOH, 磷酸基 R-CHPO(OH)2
• 湿态离子交换树脂:是指吸收了平衡水量并除 去外部游离水分后的树脂。
粒度和粒度分布
• 一般用悬浮法制得的球状颗粒的粒径并不一致,大体 上处在0.2mm~1.5mm范围内〔经筛分取0.3mm~ 1.2mm的颗粒用于制造树脂〕,其中0.3mm~ 0.6mm的占60%左右,0.6mm~1.0mm的占30%左 右。经过筛分的树脂,应该用4个指标:范围粒度、 有效粒度和均一系数、下限粒度〔或上限粒度〕。
• M = c×V×d
(2-8)
• 式中:d——再生剂溶液密度,kg/m3。
再生剂耗的公式为:
R=M/(QI× VR)
(2-9)
式中:R——再生剂耗,g/mol;
M——周期再生剂用量,g;
Q工——工作交换容量,mol/m3
• 平衡交换容量 :用于表示到达平衡状态时单位质量或单位体积 的树脂中参于反响的交换基团的量。它表示在给定条件下,该 树脂可能发挥的最大交换容量,是离子交换体系的重要参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.密度 干真密度:干燥状态下,树脂材料本身具有的密度。 湿真密度:在水中充分溶胀后湿树脂本身的密度。 湿视密度:树脂在水中充分溶胀后的堆积密度(视密 度) 。 单位均为mg/L. 4.交联度 交联度为树脂合成时交联剂的用量,一般为7%~10%。 交联度越高,孔隙度越低,密度越大,对半径较大的 离子和水合离子扩散速度越低,交换量越小。 在水中浸泡,形变小,较稳定。
二. 离子交换树脂的分类
3.1.3 强碱性阴树脂
有两种强碱性树脂:功能基团为 三甲胺基称为强碱Ⅰ型 二甲基-β-羟基-乙基胺为强碱II型 水溶液中 R ≡ N+OH-(Cl-)
-
I型的碱性比II型强,但再生较困难,II型树脂的稳定性较差。 和强酸性树脂一样,强碱性树脂使用的pH范围没有限制
1/2H2SO4 1/2SO4 HNO3 NO3 1/2H2CO3 +ROH→ R 1/2CO3 + 2H2O HCl CI 1/2H2SiO3 HSiO3
发展史
1805年英国科学家发现了土壤中Ca2+和NH4+的交换 现象;
1876年Lemberg 揭示了离子交换的可逆性和化学 计量关系; 1935年人工合成了离子交换树脂;
1940年应用于工业生产;
1951年我国开始合成树脂。
2、离子交换树脂的定义
2.1离子交换树脂的定义
离子交换树脂是一类带有可离子化基团的三维 网状高分子材料,其外形一般为颗粒状。 不溶于水和一般的酸、碱,也不溶于普通的有机 溶剂,如乙醇、丙酮和烃类溶剂。 常见的离子交换树脂的粒径为0.3~1.2mm。
骨架:接有功能基团,本身是惰性 固定离子:连接在骨架上,可与相 反离子结合 活性离子:与功能基团所带电荷相 反的可移动的离子 待交换离子:在吸附阶段可与活 性离子交换,与骨架上的功能基 团结合
3、离子交换树脂的分类
3.1 按交换基团的性质分类
强酸型 例:R—SO3H (磺酸基)
阳离子交换树脂
中酸型 例:R—PO(OH)2 (磷酸基) 弱酸型 例:R—COOH (羧基) 强碱型 例:R3—NCl
离子交换树脂的选择、保存、使用和鉴别
树脂选择 选择树脂时应综合考虑原水水质、处理要求、交换工艺以及 投资和运行费用等因素。 树脂保存 树脂宜在0~40℃下存放,通常强性树脂以盐型保存,弱酸 树脂以氢型保存,弱碱树脂以游离胺型保存。 树脂使用 树脂在使用前应进行适当的预处理,以除去杂质。最好分别 用水、5%HCl、2%~4%NaOH反复浸泡清洗两次,每次4~ 8h。
强酸性 磺酸
无
弱酸性 羧酸 在酸性中交 换能力很小
强碱性 季氨
无 稳定
弱碱性 胺 在碱性溶液中交 换能力很小
洗涤时要水解
活性基团 pH对交换能力 的影响
盐的稳定性 再生 交换速度
稳定 洗涤要水解 需过量的 强酸 快 很容易 慢(除非离 子化后)
需要过量 再生容易,可用 的强碱 碳酸钠或氨 快
慢(除非离子化后)
- + R SO3 H + Na Cl
+
-
+ + R SO3 Na + H Cl
机理:化学吸附 历程: 与液固相反应的历程类似,
①溶液内Na离子扩散至树脂表面,
②由表面扩散到树脂内部, ③与H离子交换, ④被交换的H离子从树脂内部扩散至表面, ⑤被交换的H离子再扩散至溶液中, 控制步骤为内扩散。
阴离子交换过程
3、离子交换树脂的分类
3.3 按单体的种类分类
苯乙烯树脂:
丙烯酸树脂:
离子交换树脂的性能
物理性能 1.外观 常用凝胶型离子交换树脂为透明或半透明的珠体,大孔 树脂为乳白色或不透明珠体。优良的树脂圆球率高,无裂纹, 颜色均匀,无杂质。 2.粒度 一般树脂粒径0.3~1.2mm有效粒径(d10)0.36~0.61, 均一系数(d40/d90)为1.22~1.66,均一系数的含义是筛上 体积为40%的筛孔孔径与筛上体积为90%的筛孔孔径之比。
RH → R
1/2Mg + Na
二. 离子交换树脂的分类
3.1.2 弱酸性阳树脂
功能团可以为羧基-COOH,-OH (酚羟基)
这类树脂的电离程度小,其交换性能和溶液的pH有很大 关系。在酸性溶液中,这类树脂几乎不能发生交换反应, 交换能力随溶液的pH增加而提高。
•对于羧基树脂,应该在pH > 7的溶液中操作, •而对于酚羟基树脂,溶液的pH应>9。
大孔型离子交换树脂:外观不透明,表面粗糙,为非均相凝胶结构。 即使起 离子交换和吸附作用。比表面积大,因此其吸附功能十分显著。
载体型离子交换树脂:一种特殊用途树脂,主要用作液相色谱的固定 相。一般是将离子交换树脂包覆在硅胶或玻璃珠等表面上制成。它可经受 液相色谱中流动介质的高压,又具有离子交换功能。
可交换离子
树脂的合成
苯乙烯(单体) + 二乙烯苯(交联剂)
共聚
母体
功 能 H2SO4 基 反 应
聚苯乙烯型阳离子 交换树脂的示意图
R —SO3 H
母体 固定离子 可交换离子
离子交换树脂结构的简单表示: R-SO3 H (Na ) R-SO3-骨架;
- + +
阳离子交换树脂
高分子基质; 固定离子基团;活性离子
离子交换树脂的命名和型号
1、命名
2、型号 离子交换产品的型号以三位阿拉伯数字组成,第一位数字 代表产品的分类,第二位数字代表骨架的差异,第三位数字为 顺序号用以区别基团、交联剂等的差异。
离子交换树脂命名
2.3 离子交换的原理
当与溶液接触时,离子交换剂会与溶液中的带相同 电荷的离子进行交换,即离子交换树脂上的可交换 离子(阳离子或阴离子)被溶液中带同种电荷的特 定离子取代,而不溶性固体骨架在这一交换过程中 不发生任何化学变化。 该过程一般可以用方程式表达为:R-B+A+ → R-A+B+(R代表树脂中除可交换离子以外的其它部分, 即惰性骨架与固定基团;B为可交换离子;A+为待分 离离子)。
5.含水率 树脂的含水率以每克树脂(在水中充分膨 胀)所含水分的百分比(约50%),树脂的含 水率相应地反映了树脂网架中的孔隙率。
6. 机械强度 7. 耐热性 8. 孔结构
化学性能 1.再生:离子交换反应的可逆性交换的逆反应。 2.酸碱性:树脂在水中电离出H+和OH-,表现出酸碱性。树 脂的酸碱性受pH值影响,各种树脂在使用时都有适当 的pH值范围。 3.选择性:树脂对水中某种离子能优先交换的性能称为 选择性,选择性大小用选择性系数来表征。 4.交换容量:表示树脂的交换能力。通常用EV(mmol/ml 湿树脂)表示,也可用EW(mmol/g干树脂)表示。 EV=EW×(1-含水量)×湿视视密度
2.2离子交换树脂的结构 离子交换树脂是一类带有可离子化基团 的三维网状高分子材料。
母体(骨架) 固定离子 活性基团
离子交 换树脂 组成: 三维空间结构的网络骨架(母体) 骨架上连接的可离子化的功能基团, 不能自由移动 功能基团上吸附的可交换的离子,与 功能基团带相反电荷,可移动,称为活 性离子,它在树脂骨架中的进进出出就发 生离子交换现象。
阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2) 或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可 与各种阴离子起交换作用,其交换原理为: R-N(CH3)3OH+Cl-R N(CH3)3Cl+OH
二. 离子交换树脂的分类
3.1.1强酸性阳离子交换树脂
一般以磺酸基一SO3H作为活性基团,交换反应以磺酸型 树脂与氯化钠的作用为例,可表示如下:
软化和除盐基本方法 1.软化
(1)加热:去除暂时硬度
(2)药剂软化:根据溶度积原理 (3)离子交换:离子交换硬度去除比较彻底。
2.除盐 :蒸馏法、电渗析法、反渗透法、离子
交换法
离子交换分离法: 利用离子交换剂与溶液中的离子发生交换反应 进行分离的方法。
特点 优点:分离效率高,设备简单,操作不复杂, 树脂又具有再生能力,可反复使用,应用广泛。 缺点:分离周期长,耗时过多。
SO3- H+(Na+) 离子功能团。
活性离子为阳离子,称阳离子交换树脂, 与阳离子发生交换 活性离子为阴离子,称阴离子交换树脂, 与阴离子发生交换
母体: 为有机化合物(单体)和交联剂组成 的高分子聚合物。 交联剂的作用: 是固定树脂形状和增强树脂机械强 度,使树脂母体形成主体的网状结 构。 交联度:交联剂与母体的重量比的 百分数。 活性基团:起交换作用的离子和与 树脂母体联结的固定离子组成。
二. 离子交换树脂的分类
3.1.4 弱碱性阴树脂
伯胺基 NH2 NH N
功 能 团 为
仲胺基 叔胺基 吡啶基
水溶液中:R-NH3+OH-;RNH2+OH-;R≡NH+OH-
和弱酸性树脂一样,其交换能力随pH变化而变化,pH越 低,交换能力越大。
四类树脂的特性比较
性能 阳离子交换树脂 阴离子交换树脂
3、离子交换树脂的分类
3.2 按树脂的物理结构分类
凝胶型 大孔型
载体型
不同物理结构离子交换树脂的模型
3、离子交换树脂的分类
凝胶型离子交换树脂:外观透明、具有均相高分子凝胶结构。在水中 会溶胀成凝胶状,并呈现大分子链的间隙孔,可供无机小分子自由地通过 离子。这类离子交换树脂在干燥条件下或油类中,分子链紧缩,无机小分 子无法通过,将丧失离子交换功能。
(4) 溶胀性
吸水后体积增大的现象。溶胀程度用溶胀率表示:
溶胀率 溶胀的原因
V后 V前 V前
100 %
水扩散到树脂交联网孔发生溶胀; 活性基团离解形成水合离子。 影响因素 树脂交联度:交联度越大,溶胀率越低。 活性基团:离解程度越大,溶胀率越大; 可交换离子:水合半径越大,溶胀率越高。