关于古今数学思想的论文
中国数学的历史论文摘要

中国数学的历史论文摘要中国数学源远流长,其发展历程可以追溯到古代华夏文明。
古代中国数学主要表现在算术、几何以及对数学理论的探索。
在算术方面,古代中国人创造了九章算术,使用筹算术等方法解决实际问题。
而在几何方面,古代中国人探索了诸如勾股定理等内容。
进入宋明时期,中国数学迎来了辉煌的发展时期,数学家杨辉、秦九韶等人在代数和数论方面取得了重要成就。
近代以来,中国数学家在国际上也取得了突出的成就,例如华罗庚对数论和代数的贡献,以及杨振宁在数学物理方面的研究。
中国数学的不断发展,为世界数学研究做出了积极贡献。
中国数学的历史可以追溯到公元前约二三千年前的商代,当时古代中国人已经有了较为发达的几何和代数知识。
随着时间的推移,数学的发展取得了一系列重要成就,其中包括著名的《九章算术》的问世,这是一部系统而完整的古代数学著作,对后世的数学研究起到了重要的影响。
在明清时期,中国数学进入了一个相对较为衰落的时期,但是仍然有一些数学作品值得一提,如《数书九章》对中国后世的数学发展也有着深远的影响。
中国数学的现代化发展可以追溯到19世纪末20世纪初,中国的数学家开始接触和学习西方的数学知识,逐渐引进了西方数学的现代方法和理论。
到20世纪中叶,中国的数学家们开始走上了自己的道路,发展了一些独特的数学理论和方法。
20世纪以来,中国数学的发展迅速,中国数学家在代数、几何、数论、概率统计等领域取得了一系列重要成果,在国际数学界也崭露头角。
例如,华罗庚在代数和数论方面的研究成果为中国数学的发展树立了典范,而由其领导的中国数学界在国际上的地位也逐渐提升。
总的来说,中国数学源远流长,经历了曲折而又辉煌的发展历程。
古代中国的数学成就为世界数学发展做出了不可磨灭的贡献,近代以来中国数学的现代化发展更是展现出了勃勃生机,中国数学家们也正以崭露头角的姿态展现在国际数学舞台上,为世界数学的发展贡献着中国的智慧和力量。
中国古代数学论文3900字_中国古代数学毕业论文范文模板

中国古代数学论文3900字_中国古代数学毕业论文范文模板中国古代数学论文3900字(一):从性格审视中国古代数学的发展论文摘要:关于中国古代数学发展缓慢的解释有许多观点,有从表面的经济总量去解释的,有从数学本身的缺陷去解释的,等等。
这些观点基本上都是从内因外因的某个角度为出发点去解释古代数学发展的滞后,但也因为只是从某个角度去解释,虽有其合理的部分,却难免存在以偏概全的不足。
笔者认为中国人的性格与古代数学的发展缓慢之间存在着一种关联性。
从中国人的性格这个角度能够更加全面、深刻地从整体上阐释导致古代数学发展缓慢的原因。
关键词:古代数学解释性格李约瑟在其《中国科学技术史》著作中,提出“在欧洲文艺复兴时代究竟发生了什么情况,从而使数学化的自然科学得以兴起?这种情况又为什么不在中国出现呢?”[1]他认为阻碍中国古代数学的发展是因为数学没有实现符号化,以及中国人对自然科学的不感兴趣和缺乏抽象的思维。
自从“李约瑟难题”的提出后,中外许多学者对此做出了回应,但还没有统一的看法。
对于为什么中国古代数学在13世纪后发展停顿的探讨,虽然学者们已经提出许多有益的观点,但都只是从某个方面解释。
因此,重新审视这个问题是有意义的。
一、关于中国古代数学发展缓慢的观点针对中国古代数学13世纪以后发展缓慢的原因,许多人进行解释,基本上都是从内因外因的某个角度为出发点去解释,主要有以下几种说法。
(一)思维方式中国古代重整体轻逻辑,重技轻理,重道轻器导致科学精神的缺失,阻碍数学的发展。
中国古代重视直观整体的思维,缺乏实证分析的精神,轻视基础理论的研究,数学的研究也都围绕着实际应用的问题,缺乏发展的后劲。
(二)创新说中国古代数学不能产生出近代数学其根源正是在于国家创新体系的匮乏和丧失,导致数学科学家缺乏创新意识,阻滞了数学家发明或创造新的数学方法、思想和原理。
[2](三)古代数学本身的缺陷认为中国古代数学的停滞发展是因为数学没有实现符号化,总是用文字描述,表现形式冗杂,没有发展抽象简便的思维,不利于传播传承创新。
数学史毕业论文

数学史毕业论文数学,这门古老而又充满活力的学科,如同一条源远流长的大河,贯穿了人类文明的发展历程。
从远古时期简单的计数方法,到现代复杂的数学理论,数学的发展不仅见证了人类智慧的演进,也对社会的进步和科技的发展产生了深远的影响。
在古代文明中,数学的萌芽已经显现。
古埃及人在建造金字塔的过程中运用了几何知识来计算和测量;巴比伦人发明了六十进制,用于天文观测和土地测量;而古代中国的数学家们则在《九章算术》中总结了丰富的数学方法和问题,涵盖了算术、代数、几何等多个领域。
这些早期的数学成就为后来数学的发展奠定了基础。
古希腊时期是数学发展的一个重要阶段。
古希腊数学家欧几里得的《几何原本》被视为数学史上的经典之作,它系统地整理和阐述了几何知识,通过严密的逻辑推理构建了一个完整的几何体系。
阿基米德则在计算几何图形的面积和体积方面做出了杰出贡献,他的方法至今仍被广泛应用。
此外,古希腊的毕达哥拉斯学派对于数的研究以及柏拉图学园对数学的重视,都使得古希腊成为数学发展的重要摇篮。
中世纪时期,数学在欧洲的发展相对缓慢,但在阿拉伯世界却取得了显著的成就。
阿拉伯数学家们在继承古希腊和印度数学成果的基础上,发展了代数学,引入了“零”的概念,并完善了十进制计数法。
他们的工作为后来欧洲数学的复兴提供了重要的基础。
文艺复兴时期,欧洲的数学迎来了新的发展机遇。
随着科学研究的兴起和对自然现象的探索,数学成为了科学研究的重要工具。
意大利数学家卡尔达诺在代数方程求解方面取得了重要突破;法国数学家韦达则系统地研究了代数符号,使得代数运算更加简洁和规范。
17 世纪,微积分的创立是数学史上的一个重大里程碑。
牛顿和莱布尼茨分别独立地发明了微积分,为解决力学、天文学等领域的问题提供了强大的工具。
微积分的出现使得对运动和变化的研究成为可能,极大地推动了物理学和工程技术的发展。
18 世纪,数学在分析学、数论、概率论等领域取得了丰硕的成果。
欧拉是这一时期的杰出代表,他在多个数学领域都有重要的贡献,其著作涵盖了数学的广泛领域。
浅谈中国古代数学论文4100字_浅谈中国古代数学毕业论文范文模板

浅谈中国古代数学论文4100字_浅谈中国古代数学毕业论文范文模板浅谈中国古代数学论文4100字(一):中国古代数学思想的重大突破及现代教育价值论文【内容摘要】《新课标》要求在数学教学中渗透数学思想方法,加强对中华优秀传统文化的学习教育。
中国古代数学思想博大精深,在长期的发展过程中出现了数与形的概念、算法化的计算思想、极限思想以及数形结合思想等重大思想突破。
这些数学思想在当代具有极高的教育价值,现代数学教学应该与古代优秀数学思想文化兼容并包。
【关键词】古代数学思想;极限思想;数形结合思想;现代教育价值数学思想是人类知识领域最富有理性魅力的科学,起着统帅和支撑数学科学发展的重要作用。
数学思想是数学的精髓,是创造的源泉,是发展的基础,是数学能力的集中体现。
中国古代数学发展自成体系,表现出了强烈的算法化倾向,提炼出的数学思想,几乎涵盖了义务教育阶段所需要学习的大部分数学思想,在当今时代有着很大的教育价值。
《新课标》中明确要求增加对“数学思想结构”和“数学思维能力”的培养,加强数学学科知识教育和中国优秀传统思想文化学习的有机结合,增强学生的民族文化自信。
在数学教学过程中要紧密联系生活实践,深刻理解数学精神,渗透重要数学思想方法,使学生增进对数学的理解和学好数学的信心,提高数学学习质量和数学能力。
一、中国古代重大数学思想突破中国古代数学思想博大精深,极大地推动了中国乃至世界的数学教育和实践应用发展。
数学思想的形成和发展不仅是新思想在数量上的不断积累发展,而且在某些条件下还产生了一些根本性的重大飞跃进展,即质的突破。
(一)形成数与形的概念是对人类原始“数觉”和“形觉”的突破。
中国远古人类在长期的生产实践中逐渐形成了数与形的概念,初步掌握了甲骨文数字、筹算数码、规、矩的使用以及一些简单的数的运算方法,并积累了一些数学知识。
它们的产生标志着人类从蒙昧时代原始的“数觉”、“形觉”认识迈出了具有决定性意义的一步,抽象的“数”“形”概念及多种记数方式是社会生产实践活动中必不可少的数学工具,在实际生活中有着广泛的应用。
由中国数学史审视近代中国数学的停滞 古今数学思想论文

由中国数学史审视近代中国数学的停滞(人文学院公管112班朱琳1140450201)摘要:中国古代数学在14世纪以前一直是世界上数学最为发达的国家之一,16世纪以后,中国数学日益走向衰落。
其主要原因有:近代数学的发展与社会工业化紧密相联,而中国封建落后,严重阻碍了资本主义萌芽的发展,依然为农业社会,未能步人工业社会,这就阻碍了和工商业有关的数学发展;日趋腐朽的封建制度也是阻碍中国近代数学发展的根本原因之一;考察中国古代数学自身运动的逻辑,可以发现它是一种零散的、经验的数学知识,缺乏较严密理性的自组织结构系统,有着内在机制上的缺陷。
关键字:古代数学成就外在机制内在机制一、中国古代的数学成就的透视与分析我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。
这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。
下面的例子即是最好的证明:1、中国是最早应用“十进制制”计数法的国家。
2、中国的数学专着《九章算术》,最早引入了负数概念。
3、中国最早提出联立一次方程组的解法。
4、中国最早研究不定方程的问题。
5、中国最早得出有六位准确数字的π值。
6、中国南宋的伟大数学家秦九韶,在《数书九章》(公元1247年)中最早提出了高次方程的数值解法。
7、中国最早引用“内插法”。
明代以前,世界上重要的创造发明和重大的科学成就大约300项,其中中国大约175项,占总数的57%以上。
英国剑桥大学的李约瑟博士在研究后指出,中国的发明和发现,远远超过同时代的欧洲。
中国古代科技长期领先于世界,这主要是在天文、数学、化学、医药等方面的科学知识,曾传播到世界各地,对世界科技的发展作出了重要贡献。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家之一,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式东西辉映,交替影响世界数学的发展。
数学史论文

数学史论文数学史论文(1/2)引言数学作为一门学科,有着悠久的历史和丰富的内容。
它不仅源远流长,而且对人类社会的发展产生了深远的影响。
本文将以古代数学为切入点,探讨数学史的发展和其在人类社会中的重要性。
古代数学的贡献古代数学在古希腊、古埃及和古印度等地都有着独特的贡献。
首先,古希腊的数学家毕达哥拉斯、欧几里得和阿基米德等人提出了许多重要的数学概念和理论。
例如,毕达哥拉斯定理是一条关于直角三角形的重要定理,而欧几里得几何学则奠定了几何学的基础。
古埃及数学的贡献主要体现在他们对算术的研究上。
古埃及人发展了一套独特的记数系统,其中包括了对分数和虚数的研究。
他们还利用算术解决了土地测量和建筑施工等实际问题。
古印度数学家在代数和三角学领域做出了重要贡献。
他们发明了一种复杂的代数符号系统,并使用了零的概念。
此外,他们还发展了三角函数和三角恒等式,为后续的研究提供了基础。
数学在文艺复兴时期的重要性文艺复兴时期(14世纪至17世纪)是欧洲科学与文化发展的关键时期。
数学成为了文艺复兴的核心之一,对科学和艺术的发展产生了深远的影响。
在这一时期,大量的数学家涌现出来。
其中最为重要的是伽利略、笛卡尔和牛顿等人。
伽利略通过研究物体的运动和重力,提出了著名的近似定律并且支持地心说。
笛卡尔则提出了笛卡尔坐标系,将几何问题转化为代数问题,为后来的解析几何学奠定了基础。
牛顿则发现了万有引力定律,并发展了微积分学,从而为现代物理学和数学提供了强大的工具。
此外,在文艺复兴时期,数学的应用领域也得到了扩展。
数学在天文学、地理学和工程学等领域中发挥了重要作用。
例如,开普勒的行星运动定律为天文学提供了新的解释,地理学家使用三角法来测量地球上的距离,建筑师运用几何学来设计建筑物。
结论数学作为一门学科,具有丰富的历史和重要的应用价值。
古代数学家的贡献为数学史的发展奠定了基础,而文艺复兴时期的数学家们推动了数学的快速发展。
数学不仅是一门学习和研究的科学,它还在人类社会的各个领域中发挥着重要的作用,推动着人类文明的进步。
数学史论文

数学史论文
在撰写关于数学史的论文时,以下是一些可以考虑的主题:
1. 古代数学的起源和发展:从古埃及、古希腊到古印度等,探讨不同文明的数学发展,并对其影响进行分析。
2. 数学在古代文明中的应用:探讨古代数学在土木工程、天文学、地理学等领域的应用,以及其在社会发展中的作用。
3. 西方数学的起源和发展:重点考察古希腊数学的贡献,如毕达哥拉斯定理、欧几里得几何等,以及中世纪和文艺复兴时期的数学发展。
4. 古印度数学的研究:探讨古印度数学的发展,包括印度数字系统的起源,布拉马叶的贡献以及后来对数学的发展产生影响的领域。
5. 中国古代数学的发展:研究古代中国数学的发展,包括算术、代数、几何等领域,以及中国古代数学家的重要贡献。
6. 现代数学的兴起:研究欧洲文艺复兴时期以及18世纪到19世纪的数学发展,包括微积分的发现以及数学分析的兴起。
7. 数学思想的传播和影响:探讨数学思想的传播和影响,包括数学
的西方传播、阿拉伯数学的传播以及数学的东方传播等。
8. 数学家的生平与贡献:选取几位著名的数学家,研究他们的生平、思想以及对数学发展的重要贡献。
以上只是一些数学史的论文主题的示例,你可以根据自己的兴趣和
研究重点进行调整和扩展。
另外,确保在论文中引用相关的数学史
文献,并使用正确的引用格式。
数学发展历史研究论文(五篇范文)

数学发展历史研究论文(五篇范文)第一篇:数学发展历史研究论文数学发展历史【摘要】数学发展史就是数学这门学科的发展历程。
数学发展的历史同样也是,人们的思想发生变化的历程,数学中的很多思想也是人类发展的思想。
本文就围绕数学的发展历程和思想进行了论述。
介绍了从古至今数学的发展历程,讲述了数学思想的特点及数学对世界的影响,总结了从数学发展史中得到的启示。
【关键词】数学发展史;数学思想【前言】数学是研究现实世界中数量关系和形式的学问,简单的说就是研究数和形的科学。
众所周知数学与人类社会的发展和人们的生活息息相关,随着社会的进步,科学的发展,数学也在不停地前进;而数学的发展又离不开数学家们的探索和研究,数学家在数学发展史中占据这不可磨灭的作用。
【正文】人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
“结绳记事”也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有“结绳而治”的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
由于生产和劳动上的需求,在古代便产生了以简单的为基础的古代数学,他们用手指或实物计数,由于生产力的需求和发展,他们逐渐过度到用数字计数。
恩格斯很早时就指出:“科学的发生和发展,一开始就是由生产决定的”,这里的生产是指人们使用工具来创造各种生产资料和生活资料。
数学作为研究客观物质世界的数量关系和空间形式的一门科学,它的发生和发展也是由生产决定的。
尽管数与形的最初观念可以追溯到原始社会,但是由于当时生产水平的低下,虽然经历了上万年的漫长时间,也只积累了一些零碎的、萌芽的数学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于古今数学思想的论文
摘要: 数学思想方法是人们从具体数学内容中提炼出来的对数学知识的本质认识,是在研究和解决数学问题的过程中所采用的手段、途径和方式。
它也是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,更是可以应用在人们日常的事务处理、问题思考中。
关键词:数学思想方法
关于数学的定义,《中国大百科全书。
数学卷》吴文俊先生是这样写的:“数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。
”来自恩格斯的《自然辩证法》的定义是:数学是数量的科学,它从数量这个概念开始,它给这个概念下了一个残缺不全的定义,然后再把未包含在定义中的数量的其他基本规定性当作公理从外部引了进来,在这以后,这些规定性就显现为没有证明过的东西,自然也就显现为数学上不能证明的东西。
他还提过:我们的几何学是从空间关系出发,我们的算术和代数学是从数量出发。
数学源自于古希腊,是利用符号语言研究数量、结构、变化以及空间模型等概念的一门科学。
恩格斯在《反杜林论》中所说:“数学是在人的需要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产生的。
”数学,作为人类思维的表达形式,
反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。
它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,作为一种文化,它不仅仅是整个人类文化的重要组成部分,也始终是推进人类文化的一种重要力量,对人类文明的发展起着巨大的推动作用。
数学是最讲究真实的一门科学,容不得半点虚假,一切结果都必须有根有据,经得起反复推敲和检验。
法国哲学家、数学家伽森狄说:“谁从小受数学的熏陶到那样一种程度,即已经习惯于数学的那种不容置辩的证明,谁就能培养成认识真理的能力,从而不会轻易放过虚伪和假象”。
西方数学家有着不同的看法,斯蒂恩认为:“传统上把数学描述为数与形的科学,但是随着数学家开发的领域扩展到群论、统计学、最优化和控制理论之中,数学的历史的边界已经完全消失,同样数学的应用的边界也没有了:它不再只是物理学和工程的语言,现在数学已经成为银行、制造业、社会科学以及医药必可不少的工具,如果从这个广泛的背景来观察,我们看到数学不只是讨论数与形,而且还讨论各种类型的模式和次序
数学思想是指人们对数学理论和内容的本质的认识, 较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法, 在运用数学基础知识及方法处理数学问题时,具有指导性的地位。
基本数学思想不应当是个案的,而必须是一般的。
这些大概需要满足两个条件:一是数学产生以
及数学发展过程中所必须依赖的那些思想。
二是学习过数学的人所具有的思维特征。
这些特征表现在日常的生活之中。
这就可以归纳为三种基本思想,即抽象、推理和模型。
抽象主要包括两方面的内容:数量与数量关系的抽象,图形与图形关系的抽象。
其中关系是重要的,正如亚里士多德所说的:数学家用抽象的方法对事物进行研究,去掉感性的东西剩下的只有数量和关系;对于数学研究而言,线、角或者其他的量,不是作为存在而是作为关系。
常用的数学思想有:方程与函数思想,数形结合思想,建模思想,分类讨论思想和化归与转化思想等。
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形
的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的。
综观历史发展的长河,重要思想的诞生离不开重要的人物。
对数学的发展也是如此。
德国著名数学家H.Weyl说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。
”可见人物的重要性了。
牛顿著有《自然哲学的数学原理》、《光学》、《二项式定理》和《微积分》。
他曾经说过:“我的成功当归功于精力的探索。
”“没有大胆的猜想就做不出伟大的发现。
”以及“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。
”
华罗庚被誉为“中国现代数学之父”,被列为“芝加哥科学技术博物馆中当今世界88位数学伟人之一”他的研究领域是解析数论,“中国解析数论学派”即华罗庚开创的学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。
哈贝斯坦:“华罗庚是他这个时代的国际领袖数学家之一。
”克拉达:“华罗庚形成中国数学。
”美国数论学家莱麦尔说:“华罗庚有抓住别人最好的工作的不可思议的能力,并能准确地指出这些结果需要并可以改进的方法。
他有自己的技巧,他广泛阅读并掌握了20世纪数论的所有制高点,他的主要兴趣是改进整个领域,他试图推广他所遇到的每一个结果。
”正是有了这些走在数学尖端的人们,才巨大得推动了数学思想的发展,使得数学的领域越来越广泛。
1.陈克东. 《数学思想方法引论》[M]. 广西师范大学出版社.
2003年
2.莫里斯·克莱因著,张理京等译.古今数学思想[M].上海:
上海科技出版社,2002年.。