古今数学思想》读书笔记
古今数学思想读后感

古今数学思想读后感1、古今数学思想读后感华应龙老师出身农人家庭,从一二岁起干了许多农活,他对农人有着自然的情结。
他说,教育像农业那样需要信托、宽容、耐烦、期待和守望。
教育是农业,不是产业,更不是商业。
能像农人种地那样教书,真好!是的,做老师就当有强烈的时不再来的认识,像农人通过看天、摸土,确定收获机遇那样寻找讲堂上大胆地退与适宜地进的机遇。
农人种的庄稼长得欠好,历来不求全谴责庄稼,而是反思自己。
黄继光的故事读后感是的,华老师一直用农人种地的精力鞭策自己,用积极的偷懒敞亮教学生活。
他让我们在熟习的讲堂里看到了另类的风物。
学习数学,重要的是理解,而不是像别的科目一样死背下来.数学有一个特点,那就是闻一知十”.做会了一道标题,就可以总结这道标题所包含的方法和原理,再用总结的原理去办理这类题,董存瑞事迹读后感见效就会更好我就是数学读后感.学习数学还有一点很重要,那就是从根本的动手,稳妥当当的去练,不求全部题都市做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是大意大意.每每一道标题会做,却因大意做错了,是很不值得的.所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法来片面分析标题,尽量做到不漏.学习是终身的事情,不要过于着急,一步一个脚迹的来,就肯定会取得一想不到的效果.我就是数学读后感华老师对数学课的计划与引导,对学生头脑条理的'开发, 名著读后感范文对探究体验数学本质的发掘,对数学学习过程和方法的把握,以及在熟习教学中巧妙渗入渗出的情绪、态度、代价观的做法,带给我许许多多的思索。
是的,华老师一直用农人种地的精力鞭策自己,用积极的偷懒敞亮教学生活。
他让我们在熟习的讲堂里看到了另类的风物。
2、《小学数学与数学思想方法》读后感《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。
古今数学思想读书笔记

古今数学思想读书笔记古今数学思想读书笔记篇1《古今数学思想》读书笔记《古今数学思想》是一本由托马斯·J·希夫里森所著的数学教育书籍,它涵盖了从古代到20世纪中期西方数学的发展历程。
这本书以一种独特的方式展示了数学思想的发展,以及这些思想如何影响了现代数学的各个领域。
在阅读这本书的过程中,我深深地感受到了数学思想的伟大与多样性。
作者在描述数学思想的发展时,以历史的视角对每个重要的数学分支进行了深入的研究和阐述。
从古希腊的几何学到中世纪的算术,再到文艺复兴时期的解析几何,以及后来的微积分和概率论,作者以生动的笔触揭示了数学思想的演变过程。
同时,书中还对一些重要的数学家和他们的思想进行了详细的介绍和分析。
例如,阿基米德、欧几里得、牛顿、莱布尼茨等,他们的数学思想不仅推动了数学的发展,也影响了人类文明的发展进程。
通过这些介绍,我更加深入地了解了数学的历史和文化价值。
但是,我认为这本书的缺点在于,它的内容过于繁杂,涵盖的数学思想太多,读者可能会有一种“消化不良”的感觉。
此外,书中的一些概念和术语可能对于初学者来说过于复杂和晦涩。
因此,我建议作者在写作时可以对一些复杂的概念进行更为直观和通俗的阐述。
总的来说,《古今数学思想》是一本很好的了解数学历史的书籍,它以独特的方式展示了数学思想的发展历程。
但是,对于初学者来说,可能需要一些时间来适应书中的一些概念和术语。
希望作者可以在未来的作品中继续努力,为读者带来更加通俗易懂的作品。
古今数学思想读书笔记篇2古今数学思想读书笔记第一章引言本书是一部关于古今数学思想的导论性著作,旨在通过梳理数学思想的历史演变,让读者了解数学学科的起源、发展和应用。
全书共分为四章,分别涵盖了古代、中世纪、近代和现代数学思想的发展历程。
在阅读本书的过程中,我深刻地感受到了数学思想在人类文明中的重要地位,以及其与社会、文化、科学等领域的密切联系。
第二章古代数学思想古代数学思想主要起源于古埃及、古巴比伦和古希腊等文明。
《古今数学思想》读书笔记(二)

《古今数学思想》读书笔记(二)《古今数学思想》读书笔记(二)第二章:埃及的数学。
题词是穆尔(E. H. Moore)的:“所有科学,包括逻辑和数学在内,都是有关时代的函数——所有科学连同它的理想和成就统统都是如此。
”跟上一章《美索不达米亚的数学》的题词,亥维赛(Oliver Heaviside)的:“逻辑可以等待,因为它是永恒的。
”相映成趣。
两句话都正确,但侧重点刚好相反。
逻辑等待了中国文明很长时间,但一直没有等到,浩叹~“古埃及人造出了他们自己的几套文字。
其中有一套是象形文字……从公元前2500年左右起,埃及人用一种所谓僧侣文(hieratic writing)来作日常书写。
……书写的方式是用墨水写在草片(papyrus)上,这是把一种木髓紧压后切成的薄片。
因草片会干裂成粉末,所以除了铭刻在石头上的象形文字外,古埃及的文件很少保存下来。
”Papyrus也译作莎草纸或纸草。
“莎草纸”并不是现今概念的“纸”,它是对纸莎草这种植物做一定处理而做成的书写介质,类似于竹简的概念,但比竹简的制作过程复杂。
对古代写在莎草纸上手稿的研究,或称为纸莎草学,是古希腊古罗马历史学家的基本工具。
“现存的数学文件主要是两批草片文书:一批是保存在莫斯科的,叫莫斯科草片文书;一批是1858年英国人莱因德(Henry Rhind)发现的,现存英国博物馆,,叫莱因德草片文书。
莱因德草片文书又叫阿梅斯(Ahmes)草片文书,因其作者叫阿梅斯。
他在这文书的开首写了如下这句话:‘获知一切奥秘的指南。
’这两批草片文书都是公元前1700年左右的东西。
”阿梅斯很有老子的范儿:玄之又玄,众妙之门~“此外还存有写于这一时代及其后的一些草片文书的片断。
数学草片文书的作者是在古埃及政府和教会行政机构中工作的书记。
”看来埃及人还实现了秦朝的“以吏为师”。
“埃及数系中分数的记法比我们今日的复杂得多。
……除了几个特殊分数之外,所有分数都拆成一些所谓单位分数。
古今数学思想读后感,数学与猜想读后感

读《古今数学思想》第一、二分册,《数学与猜想》有感在今年暑假里,我阅读了数学老师推荐的这几本书,颇有感触。
以前,我以为数学只是用来算大小、多少的,数学只能死学,高深的数学没有什么很实际的用处。
但是现在,我陈旧的观念变化了,我决心学好数学。
数学学习的意义《古今数学思想》通过概述外国的数学创作和发展,向读者们展示了一个庞大的数学世界。
书中对于数学课题的介绍让我基本上明白了数学学习的意义。
人类的数学发展,从初等到高等,从具象到抽象,从实际到理论,从粗略到精密。
这使我看到了人类的思维在不断地进步。
从书中我了解到:从古至今,人们不断地解决旧的数学问题,却又发现了更多新的数学问题,从而不停地发明数学课题。
例如美索不达米亚、古埃及的数学只是计算,而到了古希腊、古印度、古代阿拉伯,数学有了更抽象的意义,有了一般的方法。
再后来是欧洲,符号体系更加成熟,数学从感觉的学科转向思维的学科,在自然科学研究上有着非常重要的作用,代数、几何的地位越来越高。
这些数学课题促进了人类思想空间的扩大,促成了人类想象力的丰富。
这些居于领导地位的数学课题还开拓了新的疆域,与其他学科相辅相成,为其他学科提供了发展基础。
比如说大物理学家牛顿的巨著《原理》,这本书虽然是研究天体力学的,但对于数学史有着极大的重要性;牛顿用数学方法证明了地球是扁球,说明了潮汐的特征,用沿着圆锥曲线运动的物体证明力学定理。
再比如说十九世纪研究流体和热学的科学家,他们用偏微分方程得出了流体运动、内部摩擦产热的规律。
培根曾经说过,数学是科学的大门和钥匙。
数学使人类更加深刻地推究事理,更清晰地了解自然。
数学是万物的基础。
有了数学,人类才能更加正确地研究科学。
数学不仅深入具象的物质世界,还感染了抽象的精神世界。
哥白尼、开普勒研究天文,前者提出了日心说,后者采用椭圆为行星运动轨迹。
他们在研究中反对基督教的一条中心教义,因此他们的学说被宗教势力压迫。
但只有数学家支持日心说,因为他们相信宇宙按照数学方式设计。
古今数学思想

《古今数学思想》读后感读完了《古今数学思想》,从奇迹文库网上下载的电子书,是谁写的谁翻译的,是什么时候哪里出版的,这个电子文件里都没有写,从网上书讯中看到的是美国的莫里斯·克莱因著,张理京、张锦炎、江泽涵译,上海科学技术出版社2002年7月1日第一版第一次印刷。
从内容上看,这本书应该在上个世纪八十年在中国已经有过翻译版本,因为它讨论的数学史到1950年就为止了。
一共四大本,从考古上的数学发现一直到20世纪中叶,主要讲的是数学在西方的发展,按照时间顺序把数学的各个科目逐个的细说,援引了大量的原始文献,比方说数学家的书信、论文、著作等;此书涉及到的都是纯粹数学方面的东西,对于应用数学在第一本书里说的篇幅较多了,至于还来出现的概率统计方面的数学就根本没提了;此书除了古印度数学外没有涉及到亚洲更多。
这些在网络上已经有大量的书评了。
他讲的不完全是数学,书里也说得明白,限于篇幅只能大概说说某些方面的主要进展,所以即使是把这四本书看完了也仅仅对数学本身的发展有一个很粗浅的理解,关键的所得是知道当时的人们是怎么想的,这也是我最关心的地方。
相比那些累牍的数学知识来说,我关心的是他们怎么想的,怎么就想到这些的,知道了这些之后对于理解数学、创造和发展自己的想法是非常有用的。
寻找到数学思想发展的脉络,还能够对人们思想发展的一些规律做到很好的总结。
在看这些书的同时我也和周围的朋友经常提到数学,他们大多对这个话题望而却步,或者觉得我说的这些没什么意思,总是他们认为这些优秀的思想是晦涩的离人类很远的不易接受的。
嗯,我也以前对数学抱有这样的想法,当我翻开一本儿数学论文集的时候,简直是立即就被里面的那些天书般的论述搞得昏头胀脑。
现在我理解到了他们是怎么想的之后,就感觉亲切多了,并且也会被他们的精彩的思考论述搞得神经很兴奋。
嗯,其实都很容易理解,假如你明白那些概念那些性质是什么,而且知道他们使用的方法是怎么来的怎么用的,那五里雾也就从容的看破了。
古今数学思想读后感

古今数学思想读后感篇一:古今数学思想读后感古今数学思想读后感王平学习数学,重要的是理解,而不是像别的科目一样死背下来、数学有一个特点,那就是闻一知”、做会了一道标题,就可以总结这道标题所包含的方法和原理,再用总结的原理去办理这类题,董存瑞事迹读后感见效就会更好我就是数学读后感、学习数学还有一点很重要,那就是从根本的动手,稳妥当当的去练,不求全部题都市做,只求做过的题不会忘,会用就行了、在做题的过程中,最忌讳的就是大意大意、每每一道标题会做,却因大意做错了,是很不值得的、所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分、相比之下,我会接纳稍慢的计算方法来片面分析标题,尽量做到不漏、学习是终身的事情,不要过于着急,一步一个脚迹的来,就肯定会取得一想不到的效果、课堂上努力营造一个明主平等、宽松和谐的学习氛围。
关于学习气氛,苏霍姆林斯基认为:儿童的思维同他的情感分不开,这种情感是发展儿童智力和创造力极其重要的土壤,学生只有在情感愉悦的气氛里,思维才会活跃。
因此,课堂上关注每一位学生,鼓励学生课堂上发表不同意见,即使说错了,对学生思维中合理的因素也加以肯定,保护学生的自尊心,激发学生的自信力。
鼓励学生课堂上提出问题,对教师的讲授、学生的发言,大家随时可以发问。
对提问的学生给与表扬鼓励,这样就形成了课堂上生生、师生的互动交流。
课堂上还经常开展学习竟赛“最佳问题奖、最佳发言人”的评比活动,激发了学生的学习热情。
创设情境,激励学生主动参与教学过程。
学生常常把自己当作是或希望自己是一个探索者、研究者和发现者。
因此,教学中提供一些富有挑战性和探索性的问题,就会推动学生学习数学的积极性。
例如书中举了这样的一例:在教学三角形内角和等于180的知识时,教师请同学们事先准备好各种不同的三角形,并非别测量出每个内角的角度,标在图中。
上课伊始的第一个教学活动就是“考考老师”。
学生报出三角形两个内角的度数,请老师猜一猜第三个角是多少度。
(完整版)古今数学思想读书笔记

古今数学思想读书笔记M·克莱因(Morris·Kline,莫里斯·克莱因,1908.5.1-1992.5.10 ),美国数学史家、数学教育家与应用数学家,数学哲学家,应用物理学家。
生于美国纽约市布鲁克林。
1930年,他以优异的成绩毕业于纽约大学,随之攻读学位,并于1932年获硕士学位,1936年获得博士学位。
获博士学位后,他1936年至1938年在普林斯顿高等研究院研究拓扑学,1938年回纽约大学任文理学院教授,并在著名数学家库朗指导下研究应用数学。
二战期间,M·克莱因作为一个物理学家任职于位于美国新泽西州的Belmar的美国陆军通信部队,他所工作的工程实验室曾发明雷达。
战争结束后,他继续在那里研究电磁学。
由于他在应用数学的研究上取得重要成就,1946年起他担任库朗研究所电磁理论研究室主任达20年之久,并于1952年获得正教授职位。
从1959年起,他还担任纽约布鲁克林大学文理学院数学系主任,直到1970年退休。
他担任纽约大学研究生数学教学委员会主席11年。
1976年他被纽约布鲁克林大学任命为荣誉教授。
他拥有无线电工程方面的多项发明专利,是《数学杂志》、《精密科学史档案》两家刊物的编委。
其代表作《西方文化中的数学》、《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。
1992年5月10日病逝于纽约,终年84岁。
本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。
本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
本书的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性。
再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。
古今数学思想读后感

《古今数学思想》读后感23中陈玲莫里斯•克莱因(Morris Kline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。
他的著作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。
数学的高度客观性和高度创造性,正是《古今数学思想》的主题思想。
在《古今数学思想》这部经典著作中,美国著名的应用数学家、数学教育家莫里斯•克莱因重点关注数学家的思想,描述了数学家在高度抽象的数学世界里开疆拓土的冒险历程。
该书的中译本分为四册:第一册重点讲述古埃及、古巴比伦的原始数学乃至古希腊数学体系的初步建立,突出了欧几里得《几何原本》和阿基米德的工作,兼顾了中世纪和文艺复兴的代数学和数论。
第二册可以看成数学中最重要的分支——微积分的发展史,包括解析几何、微分、积分、级数论和微分方程等,特别合乎高校数学教师和大学新生的胃口。
第三册重点讲述了19世纪的数学(其中大多数分支也已走进大学一二年级的课堂),比如复变函数、行列式与矩阵、群论、数论、非欧几何、微分几何和代数几何等。
第四册则是现代数学的一个概观,包括分析的严密化、实变函数、泛函分析、抽象代数、拓扑学和数理逻辑等。
数学是如何从蒙昧时代到古希腊的繁荣,又如何跨越漫长的中世纪,完成常量数学向变量数学的飞跃的呢?作者告诉我们,这一切都离不开人类经济贸易、自然科学尤其是天文学、物理学等方面研究的需要,也离不开理性主义哲学的影响。
但数学自有其发展的内在逻辑,19世纪的三大领域——数系、运算、空间维数——的推广,分别革新了函数论、代数学和几何学;而数理逻辑的发展,又重新使人们思考与数学有关的哲学问题,这是数学的内部矛盾所推动的。
每门科学都有它最基本的矛盾,物理学的基本矛盾是唯象与实证的矛盾,生物学的基本矛盾是简单与复杂的矛盾,数学中的最基本矛盾,则是有限与无限的矛盾。
值得一提的是,克莱因在写这本书时,既没有偏袒纯数学,视应用数学为“二等公民”;也不是宣扬狭隘的实用主义,这一点难能可贵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《古今数学思想》读书笔记
数科院1201 杨瑞阅读克莱因的《古今数学思想》一书后,使我了解了数学的乐趣所在。
克莱因原著的书名是“Mathematical Thought from Ancient to Modern Time”,1972年由牛津大学出版社出版。
甫经面世,即博得了好评。
誉称是“就数学史而论,这是迄今为止最好的一本。
”(见Bulletin of the American Mathematical Society,
1974.9,Vol.80,No.5,pp.805~807)整整30年过去了,仍未有同类的著作可与之比肩。
说是“新版”,1979年,上海科学技术出版社就推出了该书的中译本,现在斥资购买了版权,再度隆重推出,可以说是“旧貌换新颜”。
正如书名所指出,本书着重在论述数学思想的古往今来,努力说明数学的意义是什么,各门数学之间以及数学和其他自然科学尤其是和力学、物理学的关系是怎样的。
本书特别关注数学在近二、三百年的历史发展,着重在19世纪,有些分支写到了20世纪的30或40年代。
克莱因教授本人深受哥廷根大学数学传统的影响,注意研究数学史和数学教育,是一位著名的应用数学家和数学教育家,因此,他很能体会到读者的心情。
今天,学生们的数学知识,主要是从数学课程中获得的。
通常的数学课程给出的是一个系统的逻辑叙述,这些课程经过编纂者的锤炼,成为“完美”的典范。
这就使学生们淹没在成串的定理中,并产生一种幻象:数学就是从定义到定理,数学家们都是无坚不克的英雄。
历史却恰恰相反,克莱因在该书的序言中指出:“课本中的字斟句酌的叙述,未能表现出创造过程的斗争、挫折,以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。
学生一旦知道这一点,他将不仅获得真知灼见,还将获得顽强地追究他所攻问题的勇气,并且不会因为他自己的工作并非完美无缺而感到颓丧。
实在说,叙述数学家如何跌跤,如何在迷雾中摸索前进,并且如何零零碎碎得到他们的成果,应能使搞研究工作的任一新手鼓起勇气。
”
我想,每一位数学工作者、数学教师、数学系的大学生,甚至普通的数学爱好者,都会被克莱因话拨动自己的心弦。
克莱因教授希望“本书对于专业的数学家和未来的数学家都有所帮助”,因为,专业的数学家今天不得不把大量的时间和精力倾注到他的专题上去,使得他没有机会去熟悉他的
学科的历史。
事实上,这种历史背景是非常重要的。
现在的根,深扎在过去。
“数学是一个有机体,它的生命力的一个必要条件是所有各个部分的不可分离的结合。
”如果割断历史,可以说,那一门学科都不会向数学这样受到伤害。
克莱因以其在数学领域的专业造诣和对数学历史的高超驾驭,对数学分支的历史发展,对数学思想演变的历史脉络,和对数学家的评述都有一些独到的见解。
克莱因善于把历史叙述和内容介绍结合起来,通过比较丰富的史料来阐述观点。
阅读此书,不仅专业的数学家和数学史工作者感到受益非浅,就是要想了解数学的普通公众,也可以从中获得宝贵的启示。
原书51章,共1238页,中译本分成四册。
短短的书评无法描述原著恢宏的气势,但是,如果您打开扉页,浏览一下目录,就会被深深地吸引住:数学是从那里出现的?希腊数学的辉煌成就中存有那些局限性?数学中的人文主义活动;数学设计信念的发展;促使微积分产生的社会因素;18世纪数学工作的推动力;作为人的创造物的数学;真理的丧失;等等。
这些论题已经远远超出一般数学史的论域,而涉及数学与社会、数学与文化以及数学与哲学这些在今天引起广泛关注的课题。
上述目录中问题,有些克莱因曾经做过专题论著,如《西方文化中的数学》(Mathematics in Western Culture, 牛津大学出版社,1953年,中译本为张祖贵译,台湾九章出版社),有些则后来被克莱因进一步扩展为新的学术专著,如《数学:确定性的丧失》(Mathematics The loss of Certainty,牛津大学出版社,1980年,中译本为李宏魁译,湖南科学技术出版社)。
著名的法国数学家H.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
”那么,如果您真要想了解数学的历史, M.克莱因的《古今数学思想》是一部值得一读的书。
它为初学者展开了一幅数学史发展的全景画卷,也为专家学者提供了深入独到的专题分析。
不论是通读全篇,抑或是择其片段,都会使你有所思考,有所感悟,有所收获。
我们往往太过于吹捧数学的理性精神了。
但实际上这门学科的发展从来都是和经验密不可分,否则负数、无理数、无穷大、无穷小也不会几千年都不被人接受。
有天文才有三角和球面几何,有绘画才有射影几何。
第11章文艺复兴的最后一节,“经验主义的兴起”,观点很精彩。
正是有了经验的材料,数学才得以大跨步向前发展。
没有微积分就没有现代数学,众所周知,从希腊世界到中世纪,一直崇尚几何蔑视代数的情形下,是很难产生变化的思想的,必须要有从几何到代数的适当转移。
经过阿拉伯世界的熏陶,西方人终于开始解放思想。
第13章,“十六七世纪的代数”,牛顿、莱布尼兹、费马等开始登场,代数终于从几何中脱离出来了。
最后一章射影几何,在经验材料的基础上,在人们对现实应用的
需求上,数学(几何学)终于开始走下神坛,新分支新理论终于开始出现。
从此,数学的视野不断放宽。
学习数学,重要的是理解,而不是像别的科目一样死背下来。
数学有一个特点,那就是“闻一知十”。
做会了一道题,就可以总结这道题所包含的方法和原理,再用总结的原理去解决这类题。
学习数学还有一点很重要,那就是从已知、基本的入手,稳妥当当的去练,不好高骛远,不求全部题都做。
在做题的过程中,最忌讳的就是粗心大意。
明明一道题会做,却因大意做错了,是很不值得的。
所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分。
相比之下,我会接纳稍慢的计算方法,多思、多想,尽量做到不漏、不错。
课堂上努力营造一个明主平等、宽松和谐的学习氛围。
关于学习气氛,苏霍姆林斯基认为:儿童的思维同他的情感分不开,这种情感是发展儿童智力和创造力极其重要的土壤,学生只有在情感愉悦的气氛里,思维才会活跃。
因此,课堂上关注每一位学生,鼓励学生课堂上发表不同意见,即使说错了,对学生思维中合理的因素也加以肯定,保护学生的自尊心,激发学生的自信力。
鼓励学生课堂上提出问题,对教师的讲授、学生的发言,大家随时可以发问。
对提问的学生给与表扬鼓励,这样就形成了课堂上生生、师生的互动交流。
课堂上还经常开展学习竟赛“最佳问题奖、最佳发言人”的评比活动,激发了学生的学习热情。
创设情境,激励学生主动参与教学过程。
学生常常把自己当作是或希望自己是一个探索者、研究者和发现者。
因此,教学中提供一些富有挑战性和探索性的问题,就会推动学生学习数学的积极性。
例如书中举了这样的一例:在教学三角形内角和等于180°的知识时,教师请同学们事先准备好各种不同的三角形,并非别测量出每个内角的角度,标在图中。
上课伊始的第一个教学活动就是“考考老师”。
学生报出三角形两个内角的度数,请老师猜一猜第三个角是多少度。
每次问题的抛出,教师都对答如流,准确无误。
同学们都惊奇了,疑问由此产生,之后让学生自己动手实践发现规律。
这样为学生创设猜想的学习情景,让学生凭借直觉大胆猜想,把课本中现成的结论转变成为学生探索的对象,变学生被动学习为主动探索研究。
我想学习是终身的事情,不要过于着急,一步一个脚迹的来,肯定会取得意想不到的效果。
总之,数学知识来源于生活,教师在数学教学中积极的创造条件,充分挖掘生活中的数学,为学生创设生动有趣的生活问题情景来帮助学生学习,鼓励学生善于去发现生活中的数学问题,养成运用的态度观察和分析周围的事物,并学会运用所学的数学知识解决实际问题,在实际生活中尝试到学习数学的乐趣。