数学建模案例分析ppt共18页
合集下载
数学建模-第四篇-典型案例分析课件

问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响
数学建模案例PPT课件

第12页/共39页
模型构成
2.考虑n块积木的叠放情况
为有利于问题的讨论,我们把前两块搭好的积木看作一 个整体且不再移动它们之间的相对位置,而把增加的积木插 入在最底下的积木下方。于是,我们的问题又归结为两块积 木的叠放问题,不过,这次是质量不同的两块积木叠放问题。
这个处理可以推广到n+1块积木的叠放问题:即假 设已经叠放好n(n>1)块积木后,再加一块积木的怎 样叠放问题。
200
学生人数比例 100/200 60/200 40/200
席位分配
10
6
4
20
按比例分配方法:分配人数=学生人数比例总席位
第17页/共39页
若出现学生转系情况:
系名
甲
乙
学生数
103
63
学生人数比例 103/200 63/200
按比例分配席位 10.3
6.3
按惯例席位分配 10
6
丙
总数
34
200
对只有两块积木的叠放,注
意到,此时使叠放后的积木
平衡主要取决于上面的积木,
而下面的积木只起到支撑作
用。假设在叠放平衡的前提
下,上面的积木超过下面积
x
木右端的最大前伸距离为x。
上面积木在位移最大且不掉下来的中心坐标为x=1/2(因为积 木的长度是1),于是,上面的积木可以向右前伸的最大距离 为1/2。
Q 8h1 d
显然Q/Q'可以反映双层玻璃在减少热量损失 的功效,它是h的函数.
从图形考察它的取值情况.
第6页/共39页
此函数无极小值,从图中可知: 当h从0变大时,Q/Q'迅速下降,但h超过4后下
降变慢. h不易选择过大,以免浪费材料!
数学建模课堂PPT(部分例题分析)

和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
《数学建模案例》课件

《数学建模案例》PPT课 件
本课程将带你深入了解数学建模的基本概念、流程和方法,并通过真实案例 解析,帮助你实战体验数学建模的魅力。
数学建模的基本概念
定义
数学建模是用数学工具和方法研究现实问题,提出数学模型、进行分析和求解的过程。
意义
数学建模可以帮助我们理解和解决复杂实际问题,并为决策提供科学依据。
存在的问题和挑战
数学建模面临数据获取、模型不确定性和求解难 题等挑战。
重要性
数学建模是培养创新思维、科学素养和解决实际 问题的重要途径。
发展的趋势
随着信息技术的发展,数学建模将更加智能化、 复杂化和实用化。
数学建模实战体验
1
选
2
从多个问题选择一个感兴趣的项目进行
研究。
3
结果报告
4
呈现研究结果和解决方案,并与其他团 队交流讨论。
组队
与同学们组队,合作解决真实问题。
模型的建立、求解、验证、优化
学习并实践数学建模的全过程,通过团 队协作完成项目。
总结
意义和应用价值
数学建模在科学研究、工程技术和决策分析等领 域具有广泛的应用和重要的价值。
特点
数学建模具有抽象性、理论性和实际可行性的特点,Байду номын сангаас一个综合运用数学、科学、技术和经 济知识的过程。
数学建模的流程和方法
1
模型的求解
2
利用数学分析和计算工具,求解数学模
型得到问题的解。
3
模型的优化
4
根据问题的要求和实际情况,对数学模 型进行改进和优化。
模型的建立
根据问题的具体情况,选择适当的数学 工具和方法,构建数学模型。
模型的验证
通过与现实数据和观察结果的比较,验 证数学模型的有效性。
本课程将带你深入了解数学建模的基本概念、流程和方法,并通过真实案例 解析,帮助你实战体验数学建模的魅力。
数学建模的基本概念
定义
数学建模是用数学工具和方法研究现实问题,提出数学模型、进行分析和求解的过程。
意义
数学建模可以帮助我们理解和解决复杂实际问题,并为决策提供科学依据。
存在的问题和挑战
数学建模面临数据获取、模型不确定性和求解难 题等挑战。
重要性
数学建模是培养创新思维、科学素养和解决实际 问题的重要途径。
发展的趋势
随着信息技术的发展,数学建模将更加智能化、 复杂化和实用化。
数学建模实战体验
1
选
2
从多个问题选择一个感兴趣的项目进行
研究。
3
结果报告
4
呈现研究结果和解决方案,并与其他团 队交流讨论。
组队
与同学们组队,合作解决真实问题。
模型的建立、求解、验证、优化
学习并实践数学建模的全过程,通过团 队协作完成项目。
总结
意义和应用价值
数学建模在科学研究、工程技术和决策分析等领 域具有广泛的应用和重要的价值。
特点
数学建模具有抽象性、理论性和实际可行性的特点,Байду номын сангаас一个综合运用数学、科学、技术和经 济知识的过程。
数学建模的流程和方法
1
模型的求解
2
利用数学分析和计算工具,求解数学模
型得到问题的解。
3
模型的优化
4
根据问题的要求和实际情况,对数学模 型进行改进和优化。
模型的建立
根据问题的具体情况,选择适当的数学 工具和方法,构建数学模型。
模型的验证
通过与现实数据和观察结果的比较,验 证数学模型的有效性。
《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
优选数学建模案例分析PPT演示ppt

30.0%
25.0%
20.0%
15.0%
10.0%
5.0%
0.0% 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
区域经济发展分析——东、中、西部
1995
2000
2008
GDP比重
东部 中部 西部 东部 中部 西部 东部 中部 西部 49.0 37.6 52.8 52.8 33.6 13.6 58.2 27.4 14.4
12:28
匹配度的计算步骤:
GDP与居民收入、财政收入匹配度建模思想:设匹配度量化取值为(0, 1),当相关指标占GDP的比例达到理想标准时,匹配度为0;但相关指标 占GDP比例为0时,匹配度为1;并设匹配度随指标比例在(0,1)上非 线性变动(二次函数曲线y a (x b)2 )。
12:28
0
0
500
1000
1500
2000
2500
第一产业比重
第二产业比重
第三产业比重
12:28
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: 参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
年度
人均GDP (美元)
一产业
2007 2675 0.1151
标准值 二产业 0.3636
三产业 0.5213
12:28
Part Two 基本统计分析
12:28
一、定性分析
定性分析思路——对命题中四个经济指标的发展现状做描述性分析。 统计方法——统计图、统计表。
12:28
总体经济发展——经济增长和经济结构变动分析
400,000.00 300,000.00 200,000.00 100,000.00
数学建模案例分析PPT课件

25.5
29
31.4 33.2
第三产业比重 44.4 46.5
47.8
49.2
50
50.5
2021/2/6
-
15
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: l 参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
y32.6lnx31.6
y26.0lnx11.0 y18.6lnx79.37
2021/2/6
-
10
区域经济发展分析——东、中、西部
1995
2000
2008
GDP比重 财政收入占比
东部 中部 西部 东部 中部 西部 东部 中部 西部 49.0 37.6 52.8 52.8 33.6 13.6 58.2 27.4 14.4 5.3 4.9 5.5 7.1 5.6 6.6 9.8 6.9 9.2
Statistics
建模大赛案例分析
-
1
Topic
我国经济增长与经济结构、财政收入、居民收入关系之研究
2021/2/6
-
2
我国经济增长与经济结构、财政收入居 民收入关系之研究
2021/2/6
赛题要求
> 论证经济增长、经济结构、与财政收入、居
民收入的匹配度. > 分析经济增长、财政收入、经济结构、与居
l目标——研究各经济指标对经济增长的影响。 l 变量选择
被解释变量:GDP 解释变量:财政收入、农村居民人均纯收入、城镇居 民人均可支配收入、经济结构
2021/2/6
-
30
二、模型构建方法
l模型一:GDP和收入——偏最小二乘回归(Partial Least-Squares Regression)。 l 模型二:经济增长和产业结构模型——多元回归
数学建模思想及案例分析PPT课件

16
如何准备
三个人都需要 –学习-交流-再学习 –以往年论文为线索,逐篇学习交流 –不要浅谈辙止,要深入 –有问题要追根问底 –把自己当成一个科研工作者
17
如何准备
程序员 –了解Matlab的各种功能 –熟悉m文件结构 –读文章时认认真真编写每个程序 –注意提高编程效率
18
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
到生活中去
3
什么是数学模型(二)
问题
问题
新问题
提炼归纳得 到数学结论
延伸,推导
数学方法
解决问题 解决问题
解决问题
4
怎样建立一个数学模型
数学建模所需具备的能力
细心观察 平时积累 扎实基础 高效编程 流畅文笔
在身边寻找问题,勤于思考 学习他人如何数学建模 扎实,娴熟的数学基础 高效,可靠的程序保障求解过程 条理清晰,点到为止
20
好的科技论文具备的要素
行文流畅
简明扼要
条理清晰
结构明朗
切忌拖沓
注意对象
10
什么样的模型是一个好模型(一)
正确性 简要性 创新性 稳定性
11
正确性
模型的正确性是模型存在的基础
建模的目的在于正确的解决实际问题
宁可牺牲创新性,也要保证正确性。 正确性的标准
能够较好的解决或合理的解释实际问题
本质的正确性
简要性包含两层意思:
对实际问题进行简化,是实际问题的一个近似。 抓住主要矛盾,去掉次要矛盾,抓本质
物理定律的提出是模型简要性的典范例子
如何准备
三个人都需要 –学习-交流-再学习 –以往年论文为线索,逐篇学习交流 –不要浅谈辙止,要深入 –有问题要追根问底 –把自己当成一个科研工作者
17
如何准备
程序员 –了解Matlab的各种功能 –熟悉m文件结构 –读文章时认认真真编写每个程序 –注意提高编程效率
18
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
到生活中去
3
什么是数学模型(二)
问题
问题
新问题
提炼归纳得 到数学结论
延伸,推导
数学方法
解决问题 解决问题
解决问题
4
怎样建立一个数学模型
数学建模所需具备的能力
细心观察 平时积累 扎实基础 高效编程 流畅文笔
在身边寻找问题,勤于思考 学习他人如何数学建模 扎实,娴熟的数学基础 高效,可靠的程序保障求解过程 条理清晰,点到为止
20
好的科技论文具备的要素
行文流畅
简明扼要
条理清晰
结构明朗
切忌拖沓
注意对象
10
什么样的模型是一个好模型(一)
正确性 简要性 创新性 稳定性
11
正确性
模型的正确性是模型存在的基础
建模的目的在于正确的解决实际问题
宁可牺牲创新性,也要保证正确性。 正确性的标准
能够较好的解决或合理的解释实际问题
本质的正确性
简要性包含两层意思:
对实际问题进行简化,是实际问题的一个近似。 抓住主要矛盾,去掉次要矛盾,抓本质
物理定律的提出是模型简要性的典范例子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用4次国际大赛冠军的平均
成绩对模型 t n – 1/ 9 进行检验
t
7.21 •
6.88
•
6.32 5.84
•
•
12 4
8n
t anb
lotgablon g
最小二乘法 t7.2n10.11 与模型巧合!
三、 核军备竞赛
• 冷战时期美苏声称为了保卫自己的安全,实行“核威
背 慑战略”,核军备竞赛不断升级。 景 • 随着前苏联的解体和冷战的结束,双方通过了一系列
y0
0
x
y0yf(x)y0x
y1
y=f(x)
P(xm,ym)甲 安
x=g(y) 全
y0
区
0
x0 x1
x
P~平衡点(双方最少导弹数)
精细 模型
x<y
x=y y<x<2y
x=2y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。
甲方以 x攻击乙方 y个基地中的 x个,
Байду номын сангаас
sx个基地未摧毁,y–x个基地未攻击。
空艇重w0(kg) 浆手数n 16.3 13.6 18.1 14.7
准 调查赛艇的尺寸和重量 备
l /b, w0/n 基本不变
问题分析
分析赛艇速度与浆手数量之间的关系 赛艇速度由前进动力和前进阻力决定
• 前进动力 ~ 浆手的划浆功率
• 前进阻力 ~ 浸没部分与水的摩擦力
浆手 数量
划浆 功率
艇
前进 动力
y0=sx+y–x
y= y0+(1-s)x
y0=sy
y=y0/s
乙的x–y个被攻击2次,s2(x–y)个未摧毁;
y –(x–y)=2y– x个被攻击1次,s(2y– x )个未摧毁
y0= s2(x–y)+ s(2y– x )
y y0 1s x s(2s) 2s
y0=s2y
浸没
前进
重
面积
阻力
赛艇 速度
赛艇 速度
• 对浆手体重、功率、阻力与艇速的关系等作出假定 • 运用合适的物理定律建立模型
模型假设
符号:艇速 v, 浸没面积 s, 浸没体积 A, 空艇重 w0, 阻力 f, 浆手数 n, 浆手功率 p, 浆手体重 w, 艇重 W
1)艇形状相同(l/b为常数), w0与n成正比 艇的静态特性
常识:刹车距离与车速有关
问 10英里/小时(16公里/小时)车速下2秒钟行驶
题 29英尺( 9米) >>车身的平均长度15英尺(=4.6米) 分
析 “2秒准则”与“10英里/小时加一车身”规则
不 反 同 反应时间 司机 制动系统
应
状况 灵活性
距
刹离
车速
常数
车 距
制 制动器作用力、车重、车速、道路、气候… …
图 y=f(x)~甲方有x枚导弹,乙方所需的最少导弹数 的 x=g(y)~乙方有y枚导弹,甲方所需的最少导弹数
模 当 x=0时 y=y0,y0~乙方的威慑值
型 y0~甲方实行第一次打击后已经没有导弹,乙方为毁灭
甲方工业、交通中心等目标所需导弹数
y yy0 x
y 乙安全区
双方 安全区
y=f(x)
乙安全线
离
动 距
最大制动力与车质量成正比,
常数
离 使汽车作匀减速运动。
假设与建模
1. 刹车距离 d 等于反应距离 d1 与制动距离 d2 之和
dd1d2
2. 反应距离 d1与车速 v成正比 t1为反应时间
3. 刹车时使用最大制动力F, F作功等于汽车动能的改变;
d1 t1v
F d2= m v2/2 F m
20
1.5
30
1.8
40
2.1
50
2.5
60
3.0
70
3.6
80
4.3
“2秒准则”应修正为 “t 秒准
车速(英里/小则时”) 0~10
10~40 40~60
t(秒)
1
2
3
60~80 4
二、划艇比赛的成绩问题
问
对四种赛艇(单人、双人、四人、八人)4次国际大赛冠 军的成绩进行比较,发现与浆手数有某种关系。试建立
题 数学模型揭示这种关系。
赛艇 2000米成绩 t (分) 艇长l 艇宽b 种类 1 2 3 4 平均 (米) (米) l/b 单人 7.16 7.25 7.28 7.17 7.21 7.93 0.293 27.0 双人 6.87 6.92 6.95 6.77 6.88 9.76 0.356 27.4 四人 6.33 6.42 6.48 6.13 6.32 11.75 0.574 21.0 八人 5.87 5.92 5.82 5.73 5.84 18.28 0.610 30.0
的核裁军协议。
• 在什么情况下双方的核军备竞赛不会无限扩张,而存 在暂时的平衡状态。
• 估计平衡状态下双方拥有的最少的核武器数量,这个 数量受哪些因素影响。
• 当一方采取加强防御、提高武器精度、发展多弹头导 弹等措施时,平衡状态会发生什么变化。
模 以双方(战略)核导弹数量描述核军备的大小。
型
假定双方采取如下同样的核威慑战略:
假
设 • 认为对方可能发起所谓第一次核打击,即倾其全部
核导弹攻击己方的核导弹基地;
• 乙方在经受第一次核打击后,应保存足够的核导弹, 给对方重要目标以毁灭性的打击。
在任一方实施第一次核打击时,假定一枚核导弹只能 攻击对方的一个核导弹基地。
摧毁这个基地的可能性是常数,它由一方的攻击精 度和另一方的防御能力决定。
2)v是常数,阻力 f与 sv2成正比
艇的动态特性
3)w相同,p不变,p与w成正比
浆手的特征
模型 np fv f sv2 p w
v (n/s)1/3
建立 s1/2 A1/3 A W(=w0+nw) n
sn2/3
v n1/9
比赛成绩 t n – 1/9
模型检验
nt 1 7.21 2 6.88 4 6.32 8 5.84
且F与车的质量m成正比
dt1vkv2
d2 kv2
模 型 dt1vkv2
参数估计
• 反应时间 t1的经验估计值为0.75秒 • 利用交通部门提供的一组实际数据拟合 k
车速 (英里/小时) (英尺/秒)
20
29.3
30
44.0
40
58.7
50
73.3
60
88.0
70
102.7
80
117.3
实际刹车距离 (英尺) 42(44) 73.5(78) 116(124) 173(186) 248(268) 343(372) 464(506)
计算刹车距离 (英尺) 39.0 76.6 126.2 187.8 261.4 347.1 444.8
刹车时间 (秒) 1.5 1.8 2.1 2.5 3.0 3.6 4.3
最小二乘法 k=0.06
计算刹车距离、刹车时间
模型
d t1 v k2v 0 .7v 5 0 .0v 2 6
车速
刹车时间
(英里/小时) (秒)