【自制】数学分析 重点概念整理 保研考研面试必备

合集下载

数学分析知识要点整理

数学分析知识要点整理

数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。

以下是对数学分析中的一些关键知识要点的整理。

一、函数函数是数学分析的核心概念之一。

1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。

2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。

(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。

(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。

3、反函数设函数 y = f(x),其定义域为 D,值域为 R。

如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。

二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。

1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。

2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。

【自制】数学分析 重点概念整理 保研考研面试必备

【自制】数学分析 重点概念整理 保研考研面试必备

数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。

定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。

基本初等函数Dirichlet 函数,任何有理数都是其周期。

定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。

定理2.1.2非空有界数集的上(下)确界是唯一的。

2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。

(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。

定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。

定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。

定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。

由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。

实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。

考研数学分析重要考点归纳

考研数学分析重要考点归纳

考研数学分析重要考点归纳1.1考点归纳一、数列极限1.定义设{an}是一个数列,,对∀ε>0,∃正整数N,当时,有,则称{an}收敛于a,则a称为数列的极限,记作.(1)无穷小数列:;(2)无穷大数列:;(3)发散数列:若极限不存在,则称为发散数列;(4)收敛⇔的任何子列都收敛.2.性质(1)唯一性收敛数列{an}只有一个极限.(2)有界性若{an}收敛,则∃正数M,对∀n∈N*有.(3)保号性若(或<0)则对或(),∃正数N,当n>N时有an>a′(或an<a′).(4)保不等式性收敛数列{an}与{bn}.若∃正数N0,当n>N0时有a n≤bn,则(5)夹逼性设{an},{bn}都收敛于a,{cn}满足:∃正数N0,当n>N0时有则{cn}收敛,且3.四则运算4.单调有界定理单调且有界的数列一定存在极限.5.柯西收敛准则{an}收敛⇔对∀ε>0,∃正整数N,当n,m>N时有二、函数1.函数三要素定义域值域对应法则2.性质(1)有界性若∃正数M,对∀x∈D有则称f在D上有界.(2)单调性①单调递增对∀x1,x2∈D.当x1<x2时,f(x1)<f(x2);②单调递减对∀x1,x2∈D.当x1<x2时,f(x1)>f(x2).(3)奇偶性D关于原点对称①奇函数f(-x)=-f(x),图像关于原点对称;②偶函数f(-x)=f(x),图像关于y轴对称.(4)周期性若∃T>0,对一切x∈D,x+T∈D,有f(x+T)=f(x),称T为函数f的周期,T的最小值称为最小正周期.3.分类(1)复合函数形如y=f(g(x)),u=g(x)的函数称为复合函数,对于每一个x,经过中间变量u,都得到唯一确定的y值,其中u=g(x)的值域不能超过y=f(u)的定义域.(2)反函数设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.注:互为反函数的两个函数的图像关于直线y=x对称.三、函数极限1.概念(1)函数f在点x0的极限f定义在U°(x0;δ')上,A为定数.对∀ε>0,若∃正数δ(<δ'),当0<|x -x0|<δ时有|f(x)-A|<ε,则称函数f在点x0的极限为A,记作(2)函数f在x趋于∞时的极限f定义在[a,+∞)上,A为定数.对∀ε>0,若∃正数N(≥a),使得当x>N 时有则称函数f在x趋于∞时的极限为A,记作(3)左极限f定义在[x0,x0+η)上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有则称A为f在点x0的左极限,记为(4)右极限f定义在(x0-η,x0]上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有就称A为f在点x0的右极限,记为(5).2.性质(1)唯一性;(2)有界性;(3)保号性;(4)保不等式性;(5)夹逼性.注:函数极限性质同数列极限性质类似.3.归结原则f定义在上,存在⇔对任何含于且以x0为极限的数列,都存在且相等.4.单调有界定理f为定义在上的单调有界函数,则右极限存在.5.柯西准则f定义在上,存在⇔∀ε>0,∃正数,使得对,有6.两个重要极限7.无穷小量与无穷大量(1)无穷小①时的无穷小,得;②时的无穷小,得.(2)无穷小的性质若f(x)为无穷小量,g(x)为有界量,则它们的积f(x)g(x)也为无穷小量.(3)无穷大f(x)定义在U0(x0)上.对∀给定的正数M,总∃正数(或正数X),只要(或|x|>X),总有|f(x)|>M,则称f为当或()时的无穷大.8.相关无穷小的定义(1)高、低阶无穷小若,则称x→x0时f为g的高阶无穷小量(或称g为f的低阶无穷小量),记作(2)同阶无穷小f和g定义U0(x0)上,若∃正数K和L,满足则称f与g为当x→x0时的同阶无穷小量.(3)等价无穷小若,则称f与g是当x→x0时的等价无穷小量,记作注:常用的等价无穷小9.渐近线设曲线y=f(x)(1)斜渐近线y=kx+b(2)垂直渐近线若(或者左、右极限趋于无穷),则垂直渐近线为.(3)水平渐近线若(或者),则水平渐近线为y=b.四、函数的连续性1.概念(1)连续的定义f(x)定义在U(x0)上,若则f在点x0连续.2.性质(1)有界性;(2)保号性;(3)四则运算.3.间断点(1)定义函数f(x)在点x0处不连续,则称点x0为函数f(x)的不连续点或间断点.如果x0是函数f(x)的间断点,但左极限及右极限都存在,则x0称为函数f(x)的第一类间断点.不是第一类间断点的任何间断点,称为第二类间断点.(2)类型①第一类间断点a.可去间断点在间断点处函数左右极限相等.b.跳跃间断点在间断点处函数左右极限不相等.②第二类间断点a.无穷间断点在间断点处函数极限为无穷大(无穷小).b.振荡间断点在间断点处函数值在一个区间变化.4.定理(1)最值定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有最大值与最小值.(2)有界性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有界.(3)介值性定理f为闭区间[a,b]上的连续函数,f(x)可以取介于最大值和最小值之间的任何值.(4)根的存在定理f为闭区间[a,b]上的连续函数,且f(a)·f(b)<0,则在(a,b)内至少有一点ξ,使得.5.一致连续(1)定义f定义在区间I上,如果对于∀给定的正数ε,总∃正数δ,使得对于区间I上的任意两点x1、x2,当时,有则称f在I上一致连续.(2)一致连续与连续的关系如果f(x)在区间I上一致连续,则f(x)在I上一定连续;当f(x)在区间I 上连续,f(x)在区间I上不一定一致连续.(3)一致连续性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上一致连续.。

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结

研究生数学分析基础知识点归纳总结数学分析是研究实数、函数、极限、导数、积分等数学概念和运算规则的基础学科。

作为研究生的基础课程之一,熟悉数学分析的基础知识点对于进一步深化数学研究和解决实际问题具有重要意义。

本文将对研究生数学分析的基础知识点进行归纳总结。

一、实数与数列实数是数学中最基本的概念之一,它包括有理数和无理数。

有理数可以表示为两个整数的比值,无理数则不能表示为有理数的比值。

数列是按照一定规律排列的数的集合。

常见的数列有等差数列和等比数列。

等差数列中,每个数与它的前一个数之差是一个常数,称为公差;等比数列中,每个数与它的前一个数之比是一个常数,称为公比。

二、函数与极限函数是描述两个变量之间关系的一种工具。

在数学分析中,我们常常研究的是实值函数,即定义域和值域都是实数集合。

极限是研究函数在某一点附近趋于无穷时的性质。

我们通常用函数在该点附近取值的情况来描述这种趋势。

常见的极限包括左极限、右极限和无穷极限。

三、导数与微分导数是描述函数变化率的重要概念。

它刻画了函数在某一点附近的局部性质。

导数的定义是函数在该点的极限,可以通过求导数来研究函数的变化情况。

微分是导数的一个应用,它描述了函数在某一点的线性逼近。

微分可以用来求解优化问题、近似计算等。

四、积分与函数的面积积分是对函数进行求和的过程,它可以用来求解曲线下面积、函数的平均值等。

积分的定义是将函数分成无穷小的小区间,然后对每个小区间的值进行求和并取极限。

函数的面积是积分的一个重要应用。

通过计算函数与坐标轴之间的面积,我们可以得到函数在一段区间上的积分值,进而研究函数的性质。

五、级数与收敛性级数是由无穷多个数相加而成的表达式。

级数的部分和是指级数的前n个数相加的结果。

级数的收敛性是研究级数求和是否存在有限结果的性质。

当级数的部分和趋于某个有限值时,我们称该级数收敛;当级数的部分和不趋于有限值时,我们称该级数发散。

六、泰勒展开与函数逼近泰勒展开是将函数表示为一系列无穷次多项式相加的形式。

有关考研数学的知识点总结

有关考研数学的知识点总结

有关考研数学的知识点总结一、数学分析数学分析是考研数学中非常重要的一部分,其中包括实数、极限、连续、导数与微分、不定积分、定积分、微分方程等内容。

1. 实数实数包括有理数和无理数,所有有理数都可以表示为分数形式,而无理数则不可以。

2. 极限极限是数学分析中非常重要的一个概念,它是函数逼近的概念,通常用符号lim表示。

极限有左极限、右极限和无穷极限等不同形式。

3. 连续连续是函数的一个非常重要的性质,连续函数在一定范围内有非常好的性质,例如连续函数的介值定理等。

4. 导数与微分导数是函数变化率的表示,微分则是函数在某点附近的线性近似。

导数和微分在数学分析中有非常重要的应用。

5. 不定积分不定积分是求导的逆运算,通常用积分符号∫表示。

不定积分需要考生掌握一些积分的常见法则和方法。

6. 定积分定积分是区间上函数值的累积和,通常用积分符号∫表示。

定积分在数学分析和物理等领域有非常广泛的应用。

7. 微分方程微分方程描述了变化的规律,它在物理、工程、生物等领域有非常重要的应用。

微分方程是考研数学中比较难的一部分,考生需要掌握一些基本的解微分方程的方法。

二、高等代数高等代数是考研数学中另一个非常重要的一部分,其中包括线性代数和群论两个部分。

1. 线性代数线性代数是研究向量空间和线性变换的一门数学学科,其中包括向量、矩阵、行列式、特征值和特征向量、正交、对称矩阵等内容。

2. 群论群论是研究代数结构的一门数学学科,其中包括群的基本概念、子群、正规子群、同态映射、同构等内容。

三、概率论与数理统计概率论与数理统计是考研数学中的另一个非常重要的一部分,其中包括概率的基本概念、离散型随机变量、连续型随机变量、随机变量的函数的概率分布、大数定律和中心极限定理、参数估计和假设检验等内容。

总的来说,考研数学的知识点非常丰富,需要考生有扎实的数学基础才能顺利通过考试。

希望考生能够认真复习,掌握好这些知识点,顺利通过考研数学。

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结数学分析知识点总结导数与微分- 导数的定义:导数是一个函数在某一点的斜率,表示函数的增减速度。

- 常见函数的导数公式:- 幂函数:$(x^n)' = nx^{n-1}$- 指数函数:$(a^x)' = a^x\ln(a)$- 对数函数:$(\log_a(x))' = \frac{1}{x\ln(a)}$- 微分的定义:微分是切线在某一点处的线性近似,表示函数在该点的局部变化情况。

积分与不定积分- 不定积分的定义:不定积分是对函数的原函数的求解,表示函数从某一点到变量的积分结果。

- 常见函数的基本积分公式:- 幂函数:$\int x^n dx = \frac{1}{n+1}x^{n+1}+C$- 正弦函数:$\int \sin(x) dx = -\cos(x) + C$- 余弦函数:$\int \cos(x) dx = \sin(x) + C$一元函数极限- 极限的定义:函数在某一点处的极限是函数在这一点附近的取值逐渐趋于某个固定值的情况。

- 常见函数的极限计算方法:- 算术运算法则:常数的极限是常数本身;极限的和等于极限的和;极限的乘积等于极限的乘积。

- 复合函数法则:对于复合函数,可以先求内层函数的极限,再求外层函数的极限。

泰勒级数- 泰勒级数的定义:泰勒级数是一个函数在某一点附近的展开式,由函数在该点的导数决定。

- 常见函数的泰勒级数展开:- 幂函数:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \dots$以上是数学分析的一些基本知识点总结,希望对您有所帮助。

数学分析知识点总结

数学分析知识点总结

估值不等式、积分第一、第二中值定理。
5、定积分与不定积分旳联络
(1)变上限积分旳导数公式;
d
x
f (t )dt f ( x),
dx a
d
b( x)
f (t)dt
f b( x)b( x)
f a( x)a( x)
dx a( x)
(2)牛-莱公式。
(3)可积函数不一定有原函数,有原函 数旳函数不一定可积。
n 但其极限是无理数 e.
即数列旳单调有界定理在有理数域不成立。
3. 区间套定理
若{[ an,bn ]}是一种区间套,则在实数系中存在唯一旳点
,使 [an ,bn ],n 1,2,
反例:取单调递增有理数列{an },使an 2, 取单调递减有理数列{bn },使bn 2,
则 有理数域内构成闭区间 套 [an ,bn ]Q, 其在实数系内唯一的公 共点为 2 Q.
1)恒等变形(加一项减一项、乘一项除一项、 三角恒等变形);
2)线性运算;
3)换元法: 第一类(凑分法)——不需要变换式可逆; 第二类——变换式必须可逆;
4)分部积分法——常可用于两个不同类型函数乘积 旳积分; “对反幂三指,前者设为u”
5)三种特殊类型函数 “程序化”旳积分法。
注:检验积分成果正确是否旳基本措施。
(6) cos xdx sin x C
(12) e xdx e x C
(13)
a xdx
ax C ln a
(20)
a2
1
x 2 dx
1 a
arctan
x a
C
(21)
x2
1
a 2 dx
1 2a
ln

研究生数学复试知识点总结

研究生数学复试知识点总结

研究生数学复试知识点总结一、高等数学1. 极限与连续极限的定义、性质、极限存在与否、无穷大与无穷小、洛必达法则、泰勒公式、连续的定义、连续函数的性质2. 导数与微分导数与微分的定义、性质、求导法则、高阶导数、函数的微分、导数与微分的应用3. 积分学不定积分、定积分、积分性质、积分方法、定积分的应用、广义积分、变上限积分4. 多元函数微积分偏导数、全微分、多元函数的极值与最优化、隐函数与参数方程求导、重积分5. 线性代数行列式、矩阵与行列式、向量与矩阵、向量空间及其性质、线性变换二、概率论与数理统计1. 随机事件与概率概率的基本概念、古典概型与几何概型、事件的运算、条件概率、独立事件、重复独立实验、伯努利概型与二项分布2. 随机变量及其分布随机变量的定义、分布函数、密度函数、常见离散型、连续型随机变量及其分布、随机变量的函数的分布3. 多维随机变量及其分布二维随机变量的联合分布、边缘分布、条件分布、独立性、随机变量的函数的分布4. 数理统计样本与统计量、参数估计、区间估计、假设检验、方差分析、相关性与回归分析三、数学分析1. 数列的极限数列的概念、极限的定义、数列极限的性质、收敛子列、无穷小量、无穷大量2. 函数的极限函数极限的概念、极限存在性与运算法则、函数极限的性质、无穷小量、无穷大量3. 函数的连续性连续函数的概念、连续函数的性质、连续函数的运算、间断点与间断函数4. 导数与微分函数的导数与微分的定义、性质、求导法则、高阶导数、微分中值定理5. 积分学不定积分、定积分、积分性质、积分方法、变上限积分、定积分的应用、广义积分6. 一元函数积分学变限积分、牛顿-莱布尼茨公式、定积分的性质、反常积分、积分中值定理7. 函数级数函数项级数的概念、级数收敛性的判别法、幂级数及其收敛区间四、常微分方程1. 一阶微分方程一阶微分方程的基本概念、可分离变量方程、一阶线性微分方程、常系数齐次线性微分方程2. 高阶线性微分方程高阶线性微分方程的概念、线性齐次微分方程、非齐次微分方程、常系数齐次线性微分方程3. 变参数线性微分方程非齐次线性微分方程的特解、常数变易法、欧拉方程五、离散数学与组合数学1. 逻辑与命题命题的概念、命题的逻辑联结词、充分必要条件、充要条件、充分条件、等价命题2. 集合论集合及其运算、集合的基本关系、集合的基数3. 代数结构代数系统及其性质、子群、剩余类4. 图论图、连通性、欧拉图、哈密顿图、树、生成树5. 抽象代数群、环、域的概念、子群、同态映射、同态定理六、数学建模1. 数学建模基础数学建模的基本概念、建模方法2. 数学建模案例分析典型数学建模案例、建模过程与方法、模型的评价与改进七、其他1. 离散数学图论、逻辑、集合论、代数系统2. 函数分析度量空间、赋范空间、拓扑空间3. 实分析Lebesgue积分、实变函数、泛函分析4. 复分析复变函数、解析函数总结:以上是研究生数学复试的知识点总结,希望大家能够认真学习,掌握好这些知识点,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。

定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。

基本初等函数Dirichlet 函数,任何有理数都是其周期。

定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。

定理2.1.2非空有界数集的上(下)确界是唯一的。

2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。

(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。

定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。

定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。

定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。

由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。

实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。

确界存在定理⇒单调有界数列收敛定理⇒闭区间套定理⇒Bolzano-Weierstrass 定理⇒Cauchy收敛原理这五个定理是等价的,这五个定理每个都是实数系的基本定理。

第三章函数极限与连续函数1.函数极限的定义函数极限的性质:(1)唯一性(2)局部保序性(3)夹逼性2.连续函数第一类不连续点(跳跃点):左右极限都存在但不相等。

第二类不连续点:左右极限至少有一个不存在。

第三类不连续点(可去点):左右极限都存在但是0()f x 与他们不相等或在0x 处无定义Eg:Riemann 函数()R x 在任意点的极限存在,且为0.。

换而言之,一切无理点是()R x 的连续点,一切有理点是()R x 的第三类不连续点。

区间(a,b )上的单调函数的不连续点必为第一类不连续点。

定理3.2.4 一切初等函数在其定义区间上连续。

3.无穷小量与无穷大量000()lim 0()()()()()()lim 1()()lim 0()x x x x x x u x v x u x a A v x u x v x u x v x v x u x →→→⎧=⎪⎪⎪≤≤⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎪⎪=⎪⎩高阶无穷小:同阶无穷小:邻域内关于是同阶无穷小:低阶无穷小:000()lim ()()()()()()lim 1()()lim ()x x x x x x u x v x u x A v x u x v x u x v x v x u x →→→⎧=∞⎪⎪⎪≤⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎪⎪=∞⎪⎩高阶无穷大:同阶无穷大:邻域内关于是同阶无穷大:低阶无穷大: 一些等价量1tan ~()22x x xππ-→-2ln(1)~1~ (0)(1)~1cos ~2x x xe x x x x x x α+-→+-计算中无穷小量出现加减的时候不能贸然使用等价量进行替换。

5. 闭区间上的连续函数定理3.4.1(有界性定理) 若函数()f x 在闭区间[,]a b 上连续则它在[,]a b 上有界。

用闭区间套定理证明。

开区间上的连续函数不一定是有界的。

定理3.4.2(最值定理)若函数()f x 在闭区间[,]a b 上连续则它在[,]a b 上必能取到最大值与最小值。

用3.4.1+Bolzano-Weirrstrass 定理证明定理3.4.3(零点存在定理)若函数()f x 在闭区间[,]a b 上连续,且()()0f a f b <,则一定存在(,)a b ξ∈,使得()0f ξ=定理3.4.4(中间值定理)若函数()f x 在闭区间[,]a b 上连续,则它一定能取到最大值何最小值之间的任何一个值。

直接用零点存在定理证明。

一致连续概念定理3.4.6(Cantor 定理)若函数()f x 在闭区间[,]a b 上连续,则它在[,]a b 上一致连续。

用Bolzano-Weierstrass 定理证明定理3.4.7 函数()f x 在有限开区间(,)a b 连续,则()f x 在(,)a b 上一致连续的充要条件是()f a +与()f b -存在。

第四章 微分 1.微分和导数可微一定连续定理4.1.1 可微充要条件是可导。

2.导数的意义和性质 导数的四则运算[例]函数组合导函数11'111()'()'()'()()n ni i i i i i nn ni i j i i i i i i j c f x c f x c f x f x c f x =====≠⎡⎤=⎢⎥⎣⎦⎧⎫⎡⎤⎪⎪=⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭∑∑∑∏∏对数求导法()()()()'()''()'()ln ()()()v x v x y f x u x u x y z y u x v x u x v x u x ==⎡⎤==+⎢⎥⎣⎦隐函数求导 倒数:21'(),'()()g x y y g x g x ==- 参数方程:'()'()dy y t dx x t = 5.高阶导数和高阶微分[例] ()()sin sin()2cos cos()2n n n x x n x x ππ=+=+复合函数二阶导:()()y f uu g x=⎧⎨=⎩2222222+d y d y du dy d udx dx dx du dx⎛⎫= ⎪⎝⎭对于含参数的函数:22''()''() d y t dx tϕφ≠第五章微分中值定理及其应用1.微分中值定理grange中值定理2.L‘Hospital法则注意:0*,0∞才能只用洛必达法则,只用之前必须验证;洛必达法则失效时极限不一定不存在。

()lim()ln()lim()g x g x f xf x e=3.Taylor公式和插值多项式4.函数的Taylor公式及其应用f x在0()f x的Maclaurin公式x 处的Taylor公式又称为()渐近线5.Taylpr公式的应用第六章不定积分3.有理函数的不定积分及其应用(1)多项式分母分解(2)根号分解(3)三角函数第七章 定积分1.定积分的概念和可积条件Dirichlet 函数是黎曼不可积的引理7.1.1 若在原有划分中加入分店形成新的划分,则大和不增,小和不减。

Daboux 大和、小和11()=()=ni ii ni ii S P M x S P m x ==∆∆∑∑推论1 闭区间上的连续函数必定可积 推论2 闭区间上的单调函数必定可积推论3 闭区间上只有有限个不连续点的有界函数必定可积 2.定积分的基本性质 (1)线性性质(2)乘积可积性 设()f x 和()g x 都在[,]a b 上可积,则()()f x g x 在(3)保序性 设()f x 和()g x 都在[,]a b 上可积,且在[,]a b 上恒有()()f x g x ≥,则成立()()bbaaf x dxg x dx ≥⎰⎰(4)绝对可积性 设()f x 在[,]a b 上可积,则|()|f x 在[,]a b 上也可积,且成立()|()|bbaaf x dx f x dx ≤⎰⎰反之该性质是不成立的(5)区间可加性 设()f x 在[,]a b 上可积,则对任意点[,]c a b ∈,()f x 在[,]a c 和[,]c b 上都可积;反过来,若()f x 在[,]a c 和[,]c b 上都可积,则()f x 在[,]a b 上可积。

()()+()bcbaacf x dx f x dx f x dx =⎰⎰⎰(6)积分第一中值定理3.微积分基本定理-Newton-Leibniz公式定理7.3.5 设()f x 在对称区间[,]a a -上可积 (1) 偶函数:0()2()aaaf x dx f x dx -=⎰⎰(2) 奇函数()0aaf x dx -=⎰定理7.3.6 设()f x 是以T 为周期的可积函数,则对任意a()()a TTaf x dx f x dx +=⎰⎰sin()cos()0mx nx dx ππ-=⎰0,0sin()sin(),0m n m n mx nx dx m n πππ-≠==⎧=⎨=≠⎩⎰或0,cos()cos(),02,0m n mx nx dx m n m n ππππ-≠⎧⎪==≠⎨⎪==⎩⎰ 4.定积分在几何计算中的应用连续函数之间的求面积公式:||ba S f g dx =-⎰极坐标的求面积公式:21()2b aS r d θθ=⎰求曲线的弧长弧长的微分:dl =普通形式:al =⎰极坐标:al =⎰三维空间上:l =➢ 计算特殊几何体的体积普通几何体:()ba V A x dx =⎰旋转体:2[()]baV f x dx π=⎰曲面面积:22112(2()T T T T S y t y t dl ππ==⎰⎰➢ 曲率曲率:0lims d K s dsϕϕ∆→∆==∆,3222''''''('')x y x y K x y -=+如果曲线由()y f x =表示,322''(1')y K y =+第八章 反常积分1.反常积分的概念和计算反常积分()af x dx +∞⎰的敛散性等价于原函数极限的敛散性(1)11,111,1pp p dx x p +∞⎧>⎪-=⎨⎪+∞≤⎩⎰,10,111,11pp dx p x p +∞≥⎧⎪=⎨<⎪-⎩⎰ (2)1,0,0ax a e dx aa +∞-⎧>⎪=⎨⎪+∞≤⎩⎰无穷区间上的反常函数与无界函数的反常积分是可以互相转换的。

相关文档
最新文档