混凝土实验报告

合集下载

最新混凝土坍落度实验报告

最新混凝土坍落度实验报告

最新混凝土坍落度实验报告
混凝土坍落度实验是评估混凝土流动性和工作性的重要方法。

本报告基于最新的实验数据,对混凝土的坍落度进行了详细分析。

实验目的:
确定混凝土混合物的最佳坍落度值,以便在施工过程中实现最佳的易操作性和结构稳定性。

实验材料:
- 不同等级的水泥
- 细骨料(河砂)
- 粗骨料(碎石)
- 外加剂(减水剂、缓凝剂等)
- 水
实验方法:
1. 按照预定的配合比,准确称量各种材料。

2. 将粗骨料、细骨料和水泥混合均匀。

3. 逐渐加入外加剂和水,继续搅拌至混合物均匀。

4. 将混凝土样本倒入坍落度筒中,平整表面。

5. 拔起筒体,让混凝土自由坍塌,测量坍塌后的混凝土高度。

6. 记录数据,并进行三次重复实验以确保结果的准确性和可重复性。

实验结果:
实验数据显示,不同配合比和外加剂的类型对混凝土的坍落度有显著影响。

通过对比分析,我们发现最优的配合比能够使得混凝土达到理想的坍落度,即在保证混凝土流动性的同时,还能维持良好的塑性。

结论:
本实验报告提供了关于混凝土坍落度的详细数据和分析,为施工团队
在选择混凝土配合比时提供了科学依据。

通过优化配合比和合理使用
外加剂,可以有效提高混凝土的工作性,确保施工质量和结构安全。

未来的研究将进一步探讨环境因素和长期性能对混凝土坍落度的影响。

混泥土实验报告

混泥土实验报告

混泥土实验报告混凝土实验报告引言:混凝土作为建筑材料的重要组成部分,在现代建筑中扮演着至关重要的角色。

本文将对混凝土的实验进行详细的分析和报告,探讨其性能和应用。

1. 实验目的混凝土实验的目的是研究混凝土在不同配比下的强度、抗压性能和耐久性,以及对其材料特性进行评估。

2. 实验材料和方法2.1 材料本实验使用的混凝土配料包括水泥、砂子、骨料和水。

其中,水泥采用标准硅酸盐水泥,砂子和骨料采用常见的河沙和碎石。

2.2 方法2.2.1 配料比例根据实验需求,我们设计了不同配比的混凝土样品,包括不同水泥用量、砂子和骨料的比例以及水的用量。

2.2.2 搅拌将水泥、砂子和骨料按照配比放入混凝土搅拌机中,加入适量的水进行搅拌,直至混凝土均匀。

2.2.3 浇筑将搅拌好的混凝土倒入模具中,用振动器进行震实,确保混凝土中没有空隙。

2.2.4 养护将浇筑好的混凝土样品放置在恒温恒湿的环境中,进行养护。

在养护过程中,定期浇水以保持湿润。

3. 实验结果和分析3.1 强度测试在混凝土养护完全后,我们进行了强度测试。

通过压力机对混凝土样品进行加载,记录其抗压强度。

3.2 抗压性能评估根据实验结果,我们对混凝土的抗压性能进行评估。

通过比较不同配比下的抗压强度,我们可以得出混凝土的强度随着水泥用量的增加而增加的结论。

3.3 耐久性测试为了评估混凝土的耐久性,我们进行了耐久性测试。

将混凝土样品暴露在不同环境下,如潮湿、高温、低温等,观察其表面变化和强度损失情况。

4. 结论通过本次实验,我们得出以下结论:4.1 混凝土的强度随着水泥用量的增加而增加;4.2 混凝土的耐久性受环境因素的影响,需根据具体应用情况进行调整。

5. 应用前景混凝土作为一种常见的建筑材料,具有广泛的应用前景。

在建筑工程中,混凝土可用于制作基础、柱子、梁等结构件,以及地板、墙面等装饰材料。

结语:通过对混凝土的实验研究,我们对混凝土的性能和应用有了更深入的了解。

混凝土作为一种重要的建筑材料,其强度和耐久性的研究对于建筑工程的设计和施工具有重要意义。

混凝土成型实验报告

混凝土成型实验报告

混凝土成型实验报告
一、实验目的
本次实验旨在研究混凝土的成型过程,了解混凝土在成型过程中的物理性质和工艺要求。

通过实际操作,掌握混凝土成型的基本方法和注意事项。

二、实验原理
混凝土是一种由水泥、骨料、粗骨料、掺合料等按照一定比例配制而成的人工石料,其制作过程主要包括拌合、浇筑、振实、养护等步骤。

在混凝土实验中,成型是混凝土工艺的重要环节,直接影响混凝土的强度和密实性。

三、实验材料与仪器
•水泥
•砂
•碎石
•水
•搅拌机
•试模具
•振动台
四、实验步骤与方法
1.将水泥、砂、碎石按照设计配合比称量好。

2.将混合物放入搅拌机中进行拌合,保证混合均匀。

3.准备好试模具,将混凝土倒入模具中并用振动台进行振实处理。

4.等混凝土凝固后,取出样品进行养护。

五、实验注意事项
1.配合比的准确性对混凝土强度至关重要,应严格按照设计要求进行配比。

2.搅拌时间不宜过长,避免混凝土早期硬化。

3.振实时应控制振动时间和力度,以避免产生气孔。

4.混凝土养护过程中,应及时进行保湿,保证混凝土的正常养护。

六、实验结果与分析
经过实验操作,成功制作出符合要求的混凝土样品。

经检测,样品强度达到设计要求,密实性良好。

通过本次实验,加深了对混凝土成型工艺的理解,为今后的相关研究和工程实践提供了实用经验。

七、结论
本实验通过混凝土的成型过程,深入探讨了混凝土的物理性质和工艺要求,为后续混凝土工程提供了有益参考。

掌握了混凝土成型的基本方法和注意事项,为日后的工作积累了经验。

混凝土氯离子自测实验报告

混凝土氯离子自测实验报告

混凝土氯离子自测实验报告一、实验目的本实验旨在通过对混凝土中氯离子含量的测试,来了解混凝土的耐久性和抗氯离子侵蚀能力,为工程建设提供科学可靠的依据。

二、原理与方法混凝土中的氯离子浓度是评估混凝土耐久性的重要指标之一、本实验采用电化学方法进行氯离子的测试,利用氯离子穿透电流通过混凝土的量来判断氯离子浓度的多少。

实验所需材料与设备:混凝土样品,电解池,钢筋,电源,电流计,电解电池,搅拌器,称量器等。

实验步骤:1.准备混凝土样品:将混凝土样品切割成小块,大小适中,尽量避免破坏原有的结构。

2.准备电解池:将电解池清洗干净,并使用柠檬酸溶液擦拭电解池内壁,以保证电解池的洁净度。

3.浸泡混凝土样品:将混凝土样品浸泡在饱和Ca(OH)2溶液中,浸泡时间根据实际需要进行确定,以保证混凝土中的氯离子达到平衡状态。

4.电化学测试:将钢筋作为阳极,混凝土作为阴极,分别连接到电源和电流计上。

设定一定的电流密度,记录在一定时间内的电流值。

5.测试结果分析:根据记录的电流值,通过化学计算方法得到混凝土中的氯离子浓度。

三、实验结果与讨论根据实验数据统计,得到了不同混凝土样品中的氯离子浓度,进而得到了不同混凝土的耐久性情况。

通过对实验结果的分析讨论,可以得出以下结论:1.不同配比的混凝土样品对氯离子的抵抗能力存在差异。

通常情况下,添加矿物掺合材料、减少水胶比以及正确使用外加剂等可以提高混凝土的抗氯离子侵蚀能力。

2.混凝土中若氯离子浓度过高,容易引起钢筋锈蚀、混凝土龟裂等问题,降低混凝土的使用寿命。

3.对于具体的工程项目,应根据实际情况进行氯离子浓度测试,以评估混凝土的耐久性,并根据实验结果做出相应的工程设计与改进。

四、实验结论本次实验通过电化学方法测试了不同混凝土样品中的氯离子浓度,得出了混凝土的耐久性评估,并得出以下结论:1.不同配比的混凝土具有不同的抗氯离子侵蚀能力。

2.混凝土中若氯离子浓度过高,可能导致混凝土的钢筋锈蚀和龟裂问题。

混凝土实验报告

混凝土实验报告

篇一:混凝土实验报告l engineering混凝土试验报告试验名称试验课教师姓学名号混凝土试验黄庆华杜正磊 1150987 熊学玉 2013年12月25日理论课教师日期一.实验目的和内容1.1 实验目的本实验课程是笔者学习专业基础课《混凝土结构基本原理》,必须同时学习的必修课。

本课程教学目的是使学生通过实验,认识混凝土结构构件的受力全过程、加深对混凝土结构基本构件受力性能的理解和掌握,了解、掌握混凝土受弯和受压构件基本性能的试验方法。

实验课程要求参加并完成规定的实验项目内容,理解和掌握钢筋混凝土构件的实验方法,能对实验结果进行分析和判断,通过实践掌握试件设计、实验实施、实验结果整理和实验报告撰写。

1.2 实验内容本次实验课程有10 个不同的实验项目:适筋梁受弯破坏,少筋梁受弯破坏,超筋梁受弯破坏,梁受剪斜压破坏,梁受剪剪压破坏,梁受剪斜拉破坏,梁受扭超筋破坏,梁受扭适筋破坏,柱小偏心受压破坏,柱大偏心受压破坏。

要求每一个学生完成上述项目中两个实验项目,笔者完成了梁受剪剪压破坏和超筋梁受扭破坏实验。

二.试验方法2.1 梁受剪剪压破坏 2.1.1 试件设计受剪剪压梁qc 设计图纸及说明见图1。

图1 受剪剪压梁qc 设计抗剪承载力验算:混凝土轴心抗压强度=11.9??,轴心抗拉强度=1.27??,箍筋抗拉强度=456,纵筋抗拉强度=473.24??。

剪跨比:λ=最小配箍率ah0ρsv,min=0.24试件配箍率ρsv=由hb0=1.15<4得ft=6.68×10?4 yvnasv1=4.15×10?3>??sv,min ,=0.25???0=34.21抗剪承载力1.75asvftbh0+1.25fyvh0=34.84kn>??u,max?vu=34.21kn对应于抗剪承载力的荷载为=2=68.42跨中正截面抗弯承载力:试件?? ??=307.92,′=100.52,则fy′as2=as′=91.02mm2,as1=as?as2=216.9mm2y′=′′(?0′)=3.82′=58,取=0.55得0=48.95????试件为超筋梁,则vu=ξ=0.81+1c0fyas1(0.8?ξb)=0.596=?0=70.34 ξ?0.8σs1=fy=437.27mpabxmu1=σs1as1(h0?=7.86kn?m=1+′=11.69对应于抗弯承载力的荷载为=73.06对应于抗弯承载力的荷载应大于对应于抗剪承载力的荷载。

混凝土加载实验报告

混凝土加载实验报告

一、实验目的本次实验旨在了解混凝土的抗压强度和变形性能,通过加载实验来评估混凝土的力学性能,为工程设计和施工提供理论依据。

二、实验原理混凝土抗压强度是指混凝土在受到垂直压力时抵抗破坏的能力。

实验采用压力机对混凝土试件进行加载,通过观察试件的破坏形态和测量加载过程中的应力和应变,可以计算出混凝土的抗压强度和变形性能。

三、实验材料与设备1. 实验材料:水泥、砂、石子、水、外加剂等。

2. 实验设备:混凝土搅拌机、试模、压力试验机、钢尺、量筒、天平等。

四、实验步骤1. 混凝土拌制:按照配合比要求,将水泥、砂、石子、水、外加剂等材料按照比例称量,放入混凝土搅拌机中搅拌均匀。

2. 模板制作:将搅拌均匀的混凝土倒入试模中,采用振动棒进行振捣,确保混凝土密实。

3. 养护:将试模放入养护室,按照养护要求进行养护。

4. 加载实验:将养护好的试件放入压力试验机,按照实验规程进行加载,直至试件破坏。

5. 数据记录:记录加载过程中的应力、应变和破坏形态等数据。

五、实验结果与分析1. 混凝土抗压强度根据实验数据,计算出混凝土的抗压强度,结果如下:试件编号 | 抗压强度(MPa)-------- | --------1 | 30.52 | 32.23 | 29.84 | 31.55 | 33.1平均抗压强度为31.4 MPa。

2. 混凝土变形性能根据实验数据,绘制应力-应变曲线,分析混凝土的变形性能。

从应力-应变曲线可以看出,混凝土在加载初期,应力与应变呈线性关系,表明混凝土具有较好的弹性性能。

随着加载的进行,应力与应变逐渐偏离线性关系,表明混凝土开始进入塑性变形阶段。

当应力达到峰值时,应变迅速增加,表明混凝土进入破坏阶段。

3. 混凝土破坏形态根据实验观察,混凝土的破坏形态主要有以下几种:(1)裂缝发展:在加载过程中,混凝土内部产生裂缝,裂缝逐渐扩展,最终导致试件破坏。

(2)剪切破坏:混凝土在加载过程中,由于剪切应力过大,导致试件发生剪切破坏。

混凝土温度分析实验报告

混凝土温度分析实验报告

混凝土温度分析实验报告一、引言混凝土作为一种常见的建筑材料,在建筑工程中得到广泛应用。

然而,在混凝土的硬化过程中会产生热量,这会导致混凝土温度的升高,从而可能引发一系列问题,如温度应力、裂缝等。

因此,混凝土温度的分析与控制变得非常重要。

本实验旨在通过对混凝土的温度进行分析,了解混凝土的温度变化规律,为混凝土的设计与施工提供理论依据。

二、实验目的1. 分析混凝土在不同环境条件下的温度变化规律;2. 研究混凝土温度变化对其强度和耐久性的影响。

三、实验原理混凝土的温度分析主要基于热学原理。

在混凝土硬化过程中,水泥的水合反应和物理变化会释放出一定的热量,导致混凝土温度的升高。

同时,混凝土受到环境温度和湿度等因素的影响,温度变化也会受到外部环境的影响。

四、实验装置和方法1. 实验装置:温度传感器、数据采集系统、混凝土试件。

2. 实验方法:- 制备混凝土试件:根据设计要求,按照一定配比制备不同混凝土试件。

- 安装温度传感器:将温度传感器放置于混凝土试件中,保证与混凝土的紧密接触。

- 数据采集系统设置:通过数据采集系统设置温度采集频率,并确保数据采集系统正常工作。

- 进行实验:将混凝土试件放置于控制温度条件下,启动数据采集系统进行数据记录。

- 数据分析与处理:对得到的数据进行分析与处理,得出混凝土温度变化的规律。

五、实验结果与分析1. 不同环境条件下的混凝土温度变化规律通过对不同环境条件下的混凝土试件进行实验,我们得到了混凝土温度随时间的变化曲线。

在恒温条件下,混凝土的温度呈现出稳定的变化趋势,随着时间的推移,温度逐渐升高,最终趋于稳定。

而在变温条件下,混凝土的温度变化更加复杂,会受到环境温度的影响,呈现出明显的波动性。

2. 温度变化对混凝土性能的影响通过对不同温度条件下的混凝土试件进行强度测试和观察,我们发现混凝土的温度变化确实对其性能有一定的影响。

在低温条件下,混凝土的强度会有所降低,当温度过低时,混凝土甚至可能出现开裂现象。

最新混凝土实验报告

最新混凝土实验报告

最新混凝土实验报告
根据最新的混凝土实验报告,我们对混凝土的性能进行了全面的测试和分析。

本次实验采用了多种混凝土配比,以评估不同水泥类型、骨料和添加剂对混凝土性能的影响。

实验结果显示,使用粉煤灰作为部分水泥替代材料可以有效提高混凝土的工作性和耐久性。

在28天的抗压强度测试中,含有粉煤灰的混凝土样品表现出了与普通硅酸盐水泥混凝土相似的强度发展,但在抗渗性能方面有显著提升。

此外,我们还对轻骨料混凝土进行了研究,发现轻骨料的使用可以显著降低混凝土的密度,同时保持其结构强度。

这对于需要减轻结构自重的建筑项目来说是一个重要的发现。

在添加剂方面,我们测试了多种减水剂和缓凝剂。

结果表明,适当的添加剂可以有效改善混凝土的流动性和凝固时间,从而提高施工效率和混凝土质量。

最后,通过对不同养护条件下混凝土样品的测试,我们发现充分的湿养护对于保证混凝土强度的充分发展至关重要。

建议在施工过程中采取适当的养护措施,以确保混凝土结构的长期性能。

综上所述,本次实验为混凝土材料的选择和施工提供了有价值的参考数据和建议,有助于进一步提升混凝土结构的性能和耐久性。

未来的研究将继续探索更环保、更经济的混凝土材料和施工技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土试验报告一.实验目的和内容1.1 实验目的 本实验课程是笔者学习专业基础课《混凝土结构基本原理》,必须同时学习的必修课。

本课程教学目的是使学生通过实验,认识混凝土结构构件的受力全过程、加深对混凝土结构基本构件受力性能的理解和掌握,了解、掌握混凝土受弯和受压构件基本性能的试验方法。

实验课程要求参加并完成规定的实验项目内容,理解和掌握钢筋混凝土构件的实验方法,能对实验结果进行分析和判断,通过实践掌握试件设计、实验实施、实验结果整理和实验报告撰写。

1.2 实验内容本次实验课程有10 个不同的实验项目:适筋梁受弯破坏,少筋梁受弯破坏,超筋梁受弯破坏,梁受剪斜压破坏,梁受剪剪压破坏,梁受剪斜拉破坏,梁受扭超筋破坏,梁受扭适筋破坏,柱小偏心受压破坏,柱大偏心受压破坏。

要求每一个学生完成上述项目中两个实验项目,笔者完成了梁受剪剪压破坏和超筋梁受扭破坏实验。

二.试验方法2.1 梁受剪剪压破坏 2.1.1 试件设计受剪剪压梁QC 设计图纸及说明见图1。

图1 受剪剪压梁QC 设计抗剪承载力验算:混凝土轴心抗压强度 =11.9 ,轴心抗拉强度 =1.27 ,箍筋抗拉强度 =456 ,纵筋抗拉强度 =473.24 。

剪跨比:最小配箍率试件配箍率试验名称混凝土试验试验课教师 黄庆华姓名 杜正磊 学号 1150987 理论课教师 熊学玉 日期 2013年12月25日由得,=0.25 ℎ0=34.21抗剪承载力对应于抗剪承载力的荷载为=2=68.42跨中正截面抗弯承载力:试件=307.92, ′=100.52,则′′′= ′ ′(ℎ0 ′)=3.8 ∙2 ′=58,取=0.55得ℎ0=48.95试件为超筋梁,则(= ℎ0=70.34( ∙=1+ ′=11.69 ∙对应于抗弯承载力的荷载为=73.06对应于抗弯承载力的荷载应大于对应于抗剪承载力的荷载。

2.1.2 加载方法受剪剪压破坏加载方式见图2。

加载所用的设备包括,加载千斤顶、分配梁、铰支座和反力架、台座等。

用荷载传感器测量所作用在试件(分配梁)上荷载P的大小。

图2 受剪剪压破坏加载图示2.1.3 测试内容和方法受剪剪压破坏的测量内容为,跨中挠度,纵向受拉钢筋应变,受剪箍筋应变,裂缝。

应变片布置见下图:1)跨中挠度梁的跨中挠度是试件的整体反应。

荷载与挠度的关系(曲线)可以反应试件的受力状态和特点,挠度值的大小可以代表某个状态的指标,如屈服、破坏等。

本次实验,用三个位移计测量一个跨中和两个支座的位移,由这些位移测量结果计算挠度,计算方法见图3。

图3 梁跨中挠度计算2)纵向受拉钢筋应变通过测量纵向受拉钢筋的应变(局部反应),可以由此得到纵向受拉钢筋的应力,了解该钢筋是否达到屈服等。

本次实验,在纵向受拉钢筋的跨中位置,粘贴应变片,以测量跨中截面处钢筋的应变。

3)裂缝裂缝(局部反应)的产生表示该部位的应变超过材料的极限应变、或者受拉应力超过材料的抗拉强度。

第一条规定受力裂缝的发生,标志着试件的开裂,对应的荷载即为开裂荷载。

试件的裂缝发展,即已有裂缝的长度增长、宽度加大,伴随着试件内力的增加、变形的增加及破坏的发生和发展,标志着试件的受力状态。

裂缝的测量包括,裂缝的发生、位置和走向,测量裂缝宽度,记录裂缝发展过程。

实验前,将梁外表面刷白,并绘制50mm ×50mm 的网格。

实验时,借助放大镜用肉眼查找裂缝。

构件开裂后立即对裂缝的发展情况进行详细观察,用裂缝观测仪、读数放大镜及钢直尺等工具量测各级荷载作用下的裂缝宽度、长度,并绘制裂缝开展图。

对应于正常使用极限状态的最大裂缝宽度,可在梁侧面相应于纵向受拉钢筋中心的高度处测量。

4)受剪箍筋应变通过测量受剪箍筋的应变,可以由此得到箍筋的应力。

本次实验,在剪切区域的箍筋上,粘贴应变片。

2.2 超筋梁受扭破坏超配筋受扭梁钢筋上应变测点布置及对应编号如下:倾角仪(度):承载力理论计算 混凝土抗压强度MPa f c22.20= MPa f f cu t 14.2395.055.0==18724418342-3 42-442-5 42-6 42-7 42-8 (33-5)(33-6(33-7)(33-8)(33-9)(33-10)受扭箍筋直径为10mm 间距为50mmmms s mm A MPaf st y 5054.78410336max 221v ===⨯==π受扭纵筋 MPa fy 382= 22275.61541424142mm A stl =⨯⨯+⨯⨯=ππ截面受扭塑性抵抗矩 362t 10125.16)3(mm b h b W ⨯=-=保护层厚度为 mm c 15= mm b cor120=则 mm h cor 120=抗扭承载力为受扭破坏梁(适筋构件、超筋构件)的加载图式采用在梁的两端各施加一个方向相反的力矩,其加载示意图和相应的扭矩图见下图。

所用的设备包括,加载千斤顶、刚臂和固定支座、铰支座等。

用荷载传感器测量所作用在刚臂端部的荷载P 的大小。

梁受扭加载装置三维示意图 2.2.3 测试内容和方法受扭破坏梁(适筋构件,超筋构件)的测量内容为,扭转角,纵向受拉钢筋应变,受扭箍筋应变,裂缝。

其中,纵向受拉钢筋应变、受剪箍筋应变和裂缝的意义和测量与受剪破坏梁相同。

应变片布置见附件二。

1)扭转角梁的扭转角是试件的整体反应。

扭矩与扭转角的关系(曲线)可以反应试件的受力状态和特点,扭转角的大小和扭矩与扭转角的关系可以代表某个状态的指标,如屈服、破坏等。

本次实验,用位移计测量指定截面的转角位移,由这些转角位移测量结果计算扭转角。

三.准备工作3.1 试件制作试件制作包括:1)材料准备,钢筋下料、制作,其它材料;2)应变测点布置,应变片粘贴、保护等;3)钢筋绑扎,支模板,浇捣混凝土;4)养护。

3.2 试件安装试件安装包括:1)对试件作详细检查,检查截面实际尺寸和初始变形、原始裂缝等缺陷,做出书面记录;2)将试件表面刷白,并分格画线;3)试件划线放样,确定加载、支座、测点等的位置;4)试件就位;5)安全措施。

3.3 仪器设备准备仪器设备准备包括:1)仪器选择和标定,单件标定和系统标定;2)测点仪器的连线;3)仪器设备系统调试。

3.4 试件材料力学性能试验钢筋强度实测结果:混凝土强度实测结果四.试验过程4.1梁受剪剪压破坏实验时间:2013年11月22日。

实验过程描述:在弯剪区段截面的下边缘,主拉应力处于水平方向,首先出现较短的垂直裂缝,在梁的腹部,主拉应力的方向是倾斜的,垂直裂缝就会延伸成斜裂缝。

随着荷载的增大,剪压区的混凝土在压应力和剪应力的共同作用下,达到了复合受力时的极限强度,造成梁剪压破坏。

试件破坏照片见图5:图5受剪剪压试件破坏图4.2超筋梁受扭破坏实验时间:2013年12月20日。

实验过程描述:在加载初期,由于荷载值较小,构件整体还处于弹性状态,构件表面无裂缝出现。

随着外加荷载的进一步增加,在构件表面中心线处开始出现微小裂缝。

之后,构件表面出现裂缝现象明显,主要表现为存在一条主裂缝和许多额外裂缝,同时主裂缝相互贯通,在构件表面形成一条螺旋线型裂缝,局部混凝土发生脱落现象,构件扭转明显,各个表面发生不同程度地翘曲现象。

最终梁构件受扭破坏,整体延性较差。

试件破坏照片见图6:图6 超筋梁受扭试件破坏图五.试验结果5.1 受剪剪压破坏 5.2 超筋梁受扭破坏在总体试验数据中,先剔除其中的异常数据记录:荷载(扭矩)与箍筋应变 荷载与转角关系图六.分析比较6.1 梁受剪剪压破坏剪压破坏试验最终的破坏荷载大于计算出的抗剪承载力,达到了抗剪承载力的要求。

试件最终破坏形态为剪压破坏,最终出现一条宽长的主裂缝。

从实验曲线中看出,试件的纵筋没有屈服,试件其中一个箍筋达到屈服。

6.2 超筋梁受扭破坏理论极限荷载 m kN sA A f W f T corst yv t t ⋅=+=63.92.135.01u ζ理论开裂荷载 m kN f W T t t ⋅=⨯⨯⨯==69.111.21083.57.07.05cr实验极限荷载 7.94试验值与理论值相对误差为较大,用理论值计算出来的数值要明显大于试验值。

试验值偏小的原因可能是因为试验构件在制作过程中产生差异。

设计要求构件发生超筋破坏,然而用实测数据计算,构件应发生适筋破坏,通过试验曲线,构件也是发生了适筋破坏。

七.结论本次实验进行了两个项目:梁受剪减压破坏和超筋梁受扭扭转破坏。

通过实验数据分别计算了试件的承载力,得到了荷载-纵筋应变关系曲线、荷载-箍筋应变关系曲线、荷载-挠度曲线和荷载-扭转角关系曲线等。

通过实验认识了两种破坏的特性,达到了实验目的。

m kN ⋅。

相关文档
最新文档