施密特触发器的应用
中职电子线路教案:集成施密特触发器电路简介

江苏省XY中等专业学校2022-2023-1教案编号:
教学内容三、施密特触发器应用举例
1.波形的变换和整形
(1)将连续变化的波形→矩形波。
例:①正弦波→矩形波
②不规则波→矩形波
③对畸变波形整形:
教学内容(2)利用施密特触发器→相位变换。
v O与输入信号同相。
2.构成多谐振荡器
(1)电路:
教学
环节
教学活动内容及组织过程个案补充
教学内容
(2)工作原理:
①接通电源瞬间,v C = 0,到v I = 0到v O = 1
②通过R对C充电,v I↑到V TH时电路迅速翻转,v O = 0
③C经过R向输出端放电,v I↓到V TL,电路再次翻转
④周而复始,输出矩形波
(3)波形:
D、课堂练习:
分析书上的减法计数器
E、课堂小结:
1.TTL和CMOS集成施密特触发器
2.施密特触发器应用举例
F、布置作业:
习题十五15-6
板书设计15.3.2集成施密特触发器电路简介
一、TTL集成施密特触发器
二、CMOS集成施密特触发器
三、施密特触发器应用举例
教后札记。
施密特触发器原理

施密特触发器原理施密特触发器(Schmitt Trigger)是一种非线性电路,广泛应用于信号调节和数字电路中。
本文将介绍施密特触发器的原理和工作方式。
1. 施密特触发器的概述施密特触发器是一种具有双阈值的比较器电路,能够将输入信号从模拟域转换为数字域的电路。
它通过正反馈实现了滞回特性,可以抑制输入信号中的噪声和抖动,从而提供了可靠的输出信号。
2. 施密特触发器的工作原理施密特触发器由一个比较器和一个正反馈网络组成。
正反馈网络使得比较器的阈值有两个水平:一个是正向阈值(高电平阈值),另一个是负向阈值(低电平阈值)。
当输入信号超过正向阈值时,输出变为高电平;当输入信号低于负向阈值时,输出变为低电平。
施密特触发器的工作过程可以分为两个阶段:上升沿和下降沿。
•上升沿:当输入信号从低电平变为高电平时,触发器的输出保持低电平,直到输入信号超过正向阈值才将输出切换为高电平。
•下降沿:当输入信号从高电平变为低电平时,触发器的输出保持高电平,直到输入信号低于负向阈值才将输出切换为低电平。
在施密特触发器中,正反馈网络起到了关键作用。
当输出为低电平时,在正反馈网络中的电压分压导致比较器的阈值提高,使得输入信号必须超过一个值才能使输出切换为高电平。
同样地,当输出为高电平时,正反馈网络使比较器的阈值降低,输入信号必须低于另一个值才能使输出切换为低电平。
3. 施密特触发器的应用施密特触发器在数字电路和信号调节中有广泛的应用。
•输入信号消抖:施密特触发器能够抑制输入信号上的噪声和抖动,使输出信号更加稳定,可用于消抖电路的设计。
•信号波形整形:施密特触发器能够将输入信号波形整形为方波信号,便于后续的数字处理。
•触发器设计:施密特触发器本身可以作为一个触发器,用于时序电路的设计。
4. 施密特触发器的优缺点施密特触发器的主要优点在于它能够通过滞回特性抑制输入信号中的噪声和抖动,提供可靠的输出信号。
然而,施密特触发器也有一些缺点:•边沿速度较慢:由于滞回特性的存在,施密特触发器的边沿速度相对较慢,对于高频信号可能会出现失真。
单片机施密特触发器程序

单片机施密特触发器程序==================一、初始化------在开始使用施密特触发器之前,需要进行必要的初始化。
初始化过程中,需要设定输入和输出端口,以及相关的参数。
此外,还需要配置计时器和中断处理方式等。
二、输入捕获-------输入捕获是施密特触发器的一项重要功能,它可以捕获输入信号的变化。
当输入信号超过阈值时,施密特触发器会输出一个特定的信号。
在单片机程序中,可以通过检测输入信号的变化,利用施密特触发器实现信号的捕获。
三、输出控制-------施密特触发器还可以用于输出控制。
通过配置不同的输出端口和参数,可以实现不同的控制效果。
例如,可以通过控制电机的转速和转向,实现自动化控制。
四、中断处理-------在单片机程序中,当施密特触发器捕获到特定的信号时,会产生一个中断信号。
程序会根据中断信号的类型和来源,执行相应的中断处理程序。
中断处理程序可以包括计时器的清零、输出信号的改变等操作。
五、计时器-----施密特触发器通常与计时器配合使用。
当输入信号发生变化时,施密特触发器会捕获该信号并输出一个特定的信号。
同时,计时器会记录捕获的时间并清零。
通过计时器和施密特触发器的配合使用,可以实现精确的时间测量和控制。
六、配置更新------在程序运行过程中,可能需要随时更新施密特触发器的配置参数。
例如,可以调整阈值、延迟时间等参数,以适应不同的输入信号和输出要求。
配置更新可以通过串口通信或者直接在程序中进行。
七、故障处理------在单片机程序中,当施密特触发器出现故障时,需要进行相应的处理。
例如,当输入信号异常或者输出信号异常时,可以采取相应的保护措施,如关闭设备或者发出警报等。
施密特触发器

逻辑 符号
电压 传输特性
施密特触发器具有两个不同的阈值电压。正向阈值电压UT+ 和负向阈 值电压UT-的差值称为滞后电压或回差电压UH,即
《数字电子技术》
利用生物群落组 成和结构的变化 及生态系统功能 的变化为指标监 测环境污染。
生物化学 成份分析法
通过测定生物体内污 染物的含量,来估测 环境污染程度。
生物群落法
生理生化方法
以污染物引起 机体病理
状态和死亡为 指标监测环境 污染状况
毒理学和遗传 毒理学方法
利用染色体畸变和基因
突变为指标监测环境污染 物的致突变作用
为UT-, 则
此后只要uI<UT-,就有uO = UOL。则
保持uO = UOL
单元1 施密特触发器
《数字电子技术》
1.2 用门电路组成的施密特触发器
CMOS反相器构成 的施密特触发器
电路的回差电压为
工作波形
结论:只要调整电阻R1、R2的比率,就可调整电路的回差电压,非常方 便。
单元1 施密特触发器
通过生物的 行为,生长、 发育以及生 理生化变化 为指标来监 测环境污染 状况。
单元1 施密特触发器
一、生物监测的主要方法
《数字电子技术》
1.生物群落法(生态学方法) 利用生物群落组成和结构的变化及生态 系统功能的变化为指标监测环境污染。解污染物对生物群落的影响
单元1 施密特触发器
《数字电子技术》
1.2 用门电路组成的施密特触发器
CMOS反相器构成 的施密特触发器
数字电路施密特触发器

)VTH
(1 0.5) 5V
I1
7.5V
vO1
VT
(1
R1 R2
)VTH
(1 0.5) 5V
2.5V
VT VT VT 5V
VOH VTH R2
I OH (max)
施密特触发器旳应用
1. 波形变换
1
vI
vO
vO1 VOH
VOL
o VT_
VT+
vvvTTI - +
vO
VOH
VOL
q t pH
86.2
0.439 43.9%
t pH t pL 86.2 110
VL0O
T1 T2
t t
8.3.2 分析RC环形多谐振荡电路,画出各点波形
C
5000pF
R
Rs
1
1
1
vo1
vo2 400Ω vR 100Ω
vo3
G1
G2
G3
1
vo
G4
8.3.3 石英晶体振荡器
1、石英晶体电路符号和选频特征
VT
VT+
(1
R1 R2
)VTH
(3) υI1 VTH电路,维持 υ O=VOH 不变
(4)当υI下降, υI1也下降 ,只要υI1 > VTH, 则保持 υo =VOH
当 υI1 =VTH,电路产生如下正反馈 :
R2
G1
G2
vI↓
vI1↓ vO1↑
vO↓ vI
R1
1
1
vO
vO= VOL
vI1
vO1
3. 振荡周期旳计算
T1 : vI(0+) 0;vC() VDD =RC, t = t2-t1
施密特触发器常见用途

施密特触发器常见用途施密特触发器是一种重要的数字电路元件,常被用于电子设备中的信号处理和控制系统。
它的作用是将输入信号转化为稳定的输出信号,常用于比较电路、延时电路和振荡电路等。
在实际应用中,施密特触发器有着广泛的用途。
首先,施密特触发器常被用于比较电路中。
比较电路用于将两个输入信号进行比较,并输出相应的逻辑信号。
施密特触发器可以将输入信号的幅值与两个阈值进行比较,从而确定输出信号的状态。
在数字通信系统中,比较电路常被用于检测信号的幅值是否超过预定阈值,以实现信号的解调和判别。
在模拟电路中,比较电路也常被用于判别信号的正负极性,从而实现不同电路的切换和控制。
其次,施密特触发器在延时电路中有着重要的应用。
延时电路用于对输入信号进行延时处理,从而实现信号的同步和时序控制。
施密特触发器可以通过调整其自激振荡电路的参数,实现不同的延时效果。
在数字系统中,延时电路常被用于数据的同步和校验,以确保数据的正确性和稳定性。
在模拟电路中,延时电路可以用于产生稳定的时钟信号,用于同步各个模块的工作。
此外,施密特触发器还广泛应用于振荡电路中。
振荡电路用于产生稳定的周期信号,常被用于时钟发生器、频率合成器等电子设备中。
施密特触发器在振荡电路中可以通过调整自激振荡电路的参数,实现不同频率的振荡信号。
在数字系统中,振荡电路可用于产生时钟信号,以驱动各个模块的工作。
在模拟系统中,振荡电路可以用于产生音频信号、射频信号等。
此外,施密特触发器还被广泛应用于信号处理和控制系统中。
信号处理系统用于对输入信号进行滤波、放大、变换等处理,以获得所需的输出信号。
施密特触发器可以通过调整其自身的参数,实现不同的信号处理效果。
在控制系统中,施密特触发器可以用于产生稳定的控制信号,以控制电机、执行器等设备的运行。
总之,施密特触发器是一种重要的数字电路元件,广泛应用于电子设备中的信号处理和控制系统。
它的常见用途包括比较电路、延时电路、振荡电路以及信号处理和控制系统等。
施密特触发器原理及应用

施密特触发器原理及应用施密特触发器由两个比较器组成,一个用于正向比较,一个用于反向比较。
当输入信号高于一定的阈值时,正向比较器输出高电平,反向比较器输出低电平;当输入信号低于另一定的阈值时,正向比较器输出低电平,反向比较器输出高电平。
当输入信号在阈值之间变化时,输出状态保持不变,这就是滞回特性。
1.数字电路中的应用:施密特触发器可以用于数字系统中的时钟信号整形和去除抖动。
由于施密特触发器具有滞回特性,可以抵抗输入信号的噪声和干扰,从而保证输出信号的稳定性。
在时钟信号整形中,输入的时钟信号经过施密特触发器的滞回特性,可以消除输入信号的抖动,保证输出的时钟信号为稳定的高电平或低电平。
同时,施密特触发器还可以用于数字信号的处理和数字逻辑门的设计中。
2.模拟电路中的应用:施密特触发器可以用于模拟电路中的信号整形和电平修正。
在信号整形中,输入信号经过施密特触发器的滞回特性,可以将输入的非稳定信号转化为稳定的方波信号,从而便于后续的处理和分析。
在电平修正中,施密特触发器可以根据输入信号的幅度来调整输出信号的幅度,使其在一定范围内得到修正和调整。
此外,施密特触发器还可用于振荡器设计、电压比较器、数据恢复电路等领域。
在振荡器设计中,施密特触发器可以提供稳定的振荡频率和输出波形;在电压比较器中,施密特触发器可以通过调整阈值来实现不同电平的比较;在数据恢复电路中,施密特触发器可以通过滞回特性来恢复失真或扩展输入信号。
总之,施密特触发器是一种重要的非线性电子电路,其滞回特性能够保证输出信号的稳定性和准确性。
在数字电路和模拟电路中,施密特触发器具有广泛的应用,为信号处理和电路设计提供了可靠的工具和方法。
施密特触发器

VT-
0
0
t
vO vO
VOH
VOH
VOL o VT+ VT-
VOL 0
vI
Hw: 8.2.2
2. 波形的整形
vI
1
vO
vI
VT+
VT–
0
t
vO
VOH
VOL
0
t
(a)
vI
1
vO
vI
VT+ VT–
0
t
vO
VOH
VOL
0
t
(b)
3.消除干扰信号
vI
vI
vo
1
VT
2
VT
1
O
t
vO
vO
VOH
O
t
vO
VOL
o VT+
VT-
合理选择回差电压,可消除干扰信号O 。
t
4. 幅度鉴别
1
vI VT+
υI
o
O
I1
VTH
R2 R1 R2
VT-
R1 R1 R2
VDD
VT-
(1
R1 R2
)VTH
VT
VT
VT-
2
R1 R2
VTH
R1 R2
VDD
vI 1
vo
vI
VT+ VT-
O vO VDD
O 工作波形
R2
G1
G2
R1 vI
1
1
vO
vI1
vO1
vO
VDD
t
t
O
VT-
VT+
vI
传特性曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施密特触发器的应用
一、引言
施密特触发器是一种常见的电子元件,广泛应用于数字电路中。
其主要作用是在输入信号的变化过程中,产生稳定的输出信号。
本文将介绍施密特触发器的原理和几个常见的应用场景。
二、施密特触发器的原理
施密特触发器由两个三极管组成,分别是PNP型和NPN型。
当输入信号的电压超过一定的阈值电压时,触发器将从一个状态切换到另一个状态。
具体来说,当输入信号的电压超过上阈值电压时,输出信号将从低电平切换到高电平;当输入信号的电压低于下阈值电压时,输出信号将从高电平切换到低电平。
这种切换特性使得施密特触发器在许多应用中发挥重要作用。
三、施密特触发器的应用
1. 稳定的开关
施密特触发器可以用作数字电路中的稳定开关。
当输入信号的电压超过上阈值电压时,输出信号将保持在高电平;当输入信号的电压低于下阈值电压时,输出信号将保持在低电平。
这种稳定开关的特性使得施密特触发器在计算机内存、逻辑门电路等领域得到广泛应用。
2. 信号整形
施密特触发器可以用来整形输入信号。
在一些噪声较大的信号传输中,输入信号可能会受到干扰而产生波动。
通过将输入信号连接到施密特触发器的输入端,可以使输出信号稳定在高电平或低电平,从而去除噪声和波动。
3. 电压比较器
施密特触发器还可以用作电压比较器。
在一些需要判断输入信号与参考电压之间关系的电路中,可以通过将输入信号和参考电压连接到施密特触发器的输入端,通过观察输出信号的状态来判断两者的关系。
比如在温度控制系统中,可以使用施密特触发器来判断当前温度是否超过设定温度。
4. 触发器延时
施密特触发器还可以用于触发器延时。
在一些需要在特定时刻触发某个事件的电路中,可以通过设置适当的延时电路和施密特触发器来实现。
比如在摄影中,可以使用施密特触发器来实现快门的触发延时,从而捕捉到特定的瞬间。
5. 脉冲发生器
施密特触发器还可以用作脉冲发生器。
通过合理设计输入信号的频率和幅值,可以使施密特触发器产生稳定的脉冲信号。
这种脉冲信号在许多应用中都有重要的作用,比如在通信系统中用于数据传输、在计时器中用于计时等。
四、总结
施密特触发器是一种常见的电子元件,在数字电路中具有广泛的应用。
通过合理利用施密特触发器的特性,可以实现稳定的开关、信号整形、电压比较器、触发器延时和脉冲发生器等功能。
在实际应用中,我们可以根据需求选择合适的施密特触发器,并结合其他电子元件进行设计和搭建。
施密特触发器的应用为电子技术的发展和数字电路的设计提供了重要支持。