2020年天津高考文科数学(含答案)

合集下载

2020年普通高等学校招生全国统一考试数学文(天津卷,含答案)

2020年普通高等学校招生全国统一考试数学文(天津卷,含答案)

2020年普通高等学校招生全国统一考试数学文(天津卷,含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页。

第II 卷3至4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I 卷时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮檫干净后,在选涂其他答案标号。

3.答第II 卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。

必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:S 表示底面积,h 表示底面的高如果事件A 、B 互斥,那么 棱柱体积 V Sh = P(A+B)=P(A)+P (B) 棱锥体积 13V Sh = 第I 卷(选择题 共50分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,52ii=- A.12i + B. 12i -- C. 12i - D. 12i -+2.设变量x,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为A. 6B. 7C.8D.23 3.设,x R ∈则"1"x =是3""x x =的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D.既不充分也不必要条件4.设双曲线()22220x y a b a b-=>>的虚轴长为2,焦距为23,则双曲线的渐近线方程为A.2y x =±B. 2y x =±C. 22y x =±D. 12y x =± 5.设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则A. a b c <<B.a c b <<C. b c a <<D.b a c << 6.阅读右面的程序框图,则输出的S =A. 14B.20C.30D.55 7.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,将()y f x =的图像向左平移ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是A.2πB.38πC. 4πD.8π8.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f >的解集是A.()()3,13,-+∞UB. ()()3,12,-+∞UC. ()()1,13,-+∞UD. ()(),31,3-∞-U9.设,,1,1x y R a b ∈>>,若3,23x ya b a b ==+=,则11x y+的最大值为 A.2 B.32 C. 1 D.1210.设函数()f x 在R 上的导函数为()'f x ,且()()22'f x xf x x +>,下面的不等式在R 上恒成立的是A.()0f x >B.()0f x <C. ()f x x >D.()f x x <第二卷二.填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡的相应位置。

2020年天津卷数学高考试题及答案

2020年天津卷数学高考试题及答案

2020年普通高等学校招生全国统一考试(天津卷)数学注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共9小题,每小题5分,共45分. 参考公式:·如果事件A 与事件B 互斥,那么()()()P AB P A P B =+.·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. ·球的表面积公式24πS R =,其中R 表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UA B =∩A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---2.设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数241xy x =+的图象大致为A BC D4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .365.若棱长为23 A .12π B .24π C .36π D .144π6.设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 8.已知函数π()sin()3f x x =+.给出下列结论: ①()f x 的最小正周期为2π;②π()2f 是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移π3个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A .①B .①③C .②③D .①②③9.已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数8i2i-=+_________. 11.在522()x x+的展开式中,2x 的系数是_________.12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值. 17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 19.(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.20.(本小题满分16分)已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.2020年普通高等学校招生全国统一考试(天津卷)数学参考解答一.选择题:每小题5分,满分45分.1.C2.A3.A4.B5.C6.D7.D8.B9.D二.填空题:每小题5分,满分30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.32i - 11.1012.513.16;2314.4 15.16;132三.解答题 16.满分14分.(Ⅰ)解:在ABC △中,由余弦定理及22,5,13a b c ===,有2222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,22,134C a c ===,可得sin 213sin 13a C A c ==. (Ⅲ)解:由a c <及213sin 13A =,可得2313cos 1sin 13A A =-=,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=. 所以,πππ12252172sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA ⋅〈〉==n n n ,于是sin ,CA 〈〉=n . 所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,3||||AB AB AB ⋅==-n n n . 所以,直线AB 与平面1DB E 所成角的正弦值为3. 18.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221kx k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121kk k -⎛⎫⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.19.满分15分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得1d =,从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又0q ≠,可得2440q q -+=,解得2q =,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()22211(1)24n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<. (Ⅲ)解:当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++;当n 为偶数时,1112n n n n a n c b -+-==. 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和22311211352144444nnk knk k k n c ==--==++++∑∑. ① 由①得22311113232144444n k nn k n n c +=--=++++∑. ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑,从而得21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 20.满分16分.(Ⅰ)(i )解:当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-. (ii )解:依题意,323()36ln ,(0,)g x x x x x x =-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x xx x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+--⎪⎝⎭. ① 令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。

2020年天津卷数学高考试题(含答案)

2020年天津卷数学高考试题(含答案)

绝密★启用前2020年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共9小题,每小题5分,共45分. 参考公式:·如果事件A 与事件B 互斥,那么()()()P AB P A P B =+.·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. ·球的表面积公式24πS R =,其中R 表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UA B =∩A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---2.设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数241xy x =+的图象大致为A BC D4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.365.若棱长为23A.12πB.24πC.36πD.144π6.设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 8.已知函数π()sin()3f x x =+.给出下列结论: ①()f x 的最小正周期为2π; ②π()2f 是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移π3个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A .①B .①③C .②③D .①②③9.已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数8i2i-=+_________. 11.在522()x x+的展开式中,2x 的系数是_________.12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值. 17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 19.(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.20.(本小题满分16分)已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.2020年普通高等学校招生全国统一考试(天津卷)数学参考解答一.选择题:每小题5分,满分45分.1.C2.A3.A4.B5.C6.D7.D8.B9.D二.填空题:每小题5分,满分30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.32i - 11.1012.513.16;2314.4 15.16;132三.解答题 16.满分14分.(Ⅰ)解:在ABC △中,由余弦定理及22,5,13a b c ===,有2222cos 2a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,22,134C a c ===,可得sin 213sin a C A c ==. (Ⅲ)解:由a c <及213sin 13A =,可得2313cos 1sin 13A A =-=,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=. 所以,πππ12252172sin(2)sin 2cos cos 2sin 4441313A A A +=+=⨯+⨯=.17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA ⋅〈〉==n n n ,于是sin ,CA 〈〉=n . 所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,3||||AB AB AB ⋅==-n n n . 所以,直线AB 与平面1DB E 所成角的正弦值为3. 18.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221kx k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121kk k -⎛⎫⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.19.满分15分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得1d =,从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又0q ≠,可得2440q q -+=,解得2q =,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()22211(1)24n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<. (Ⅲ)解:当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++;当n 为偶数时,1112n n n n a n c b -+-==. 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和22311211352144444nnk knk k k n c ==--==++++∑∑. ① 由①得22311113232144444n k nn k n n c +=--=++++∑. ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑,从而得21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑.所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 20.满分16分.(Ⅰ)(i )解:当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-. (ii )解:依题意,323()36ln ,(0,)g x x x x x x =-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x xx x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+--⎪⎝⎭. ① 令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。

2020年天津高考数学试卷-(含答案)

2020年天津高考数学试卷-(含答案)

2020年天津高考数学试卷第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共9小题,每小题5分,共45分. 参考公式:·如果事件A 与事件B 互斥,那么()()()P A B P A P B =+. ·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. ·球的表面积公式24πS R =,其中R 表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---2.设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.函数241xy x =+的图象大致为A BC D4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .365.若棱长为3 A .12πB .24πC .36πD .144π6.设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -= B .2214y x -= C .2214x y -= D .221x y -= 8.已知函数π()sin()3f x x =+.给出下列结论:①()f x 的最小正周期为2π;②π()2f 是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移π3个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A .①B .①③C .②③D .①②③9.已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞ 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分. 10.i 是虚数单位,复数8i2i-=+_________. 11.在522()x x+的展开式中,2x 的系数是_________.12.已知直线80x -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求πsin(2)4A +的值.17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 19.(本小题满分15分)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ; (Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+-⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.20.(本小题满分16分)已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.2020年天津高考数学试卷答案1.C2.A3.A4.B5.C6.D7.D8.B9.D10.32i -11.1012.513.16;2314.415.16;13216.(Ⅰ)解:在ABC △中,由余弦定理及22,5,13a b c ===,有2222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =. (Ⅱ)解:在ABC △中,由正弦定理及π,22,134C a c ===,可得sin 213sin 13a C A c ==. (Ⅲ)解:由a c <及213sin 13A =,可得2313cos 1sin 13A A =-=,进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,πππ12252172sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.17.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,|A CA C CA⋅〈〉==n n n ,于是sin ,6CA〈〉=n . 所以,二面角1B B E D --. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,||||AB AB AB ⋅==n n n . 所以,直线AB 与平面1DB E . 18.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221kx k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k kk --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =.所以,直线AB 的方程为132y x =-,或3y x =-.19.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得1d =,从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又0q ≠,可得2440q q -+=,解得2q =,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=,故21(1)(2)(3)4n n S S n n n n +=+++,()22211(1)24n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<. (Ⅲ)解:当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++;当n 为偶数时,1112n n n n a n c b -+-==. 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和22311211352144444nnk knk k k n c ==--==++++∑∑. ① 由①得22311113232144444n k n n k n n c +=--=++++∑. ② 由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑,从而得21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 20.(Ⅰ)(i )解:当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-.(ii )解:依题意,323()36ln ,(0,)g x x x x x x =-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x-+'=.令()0g x '=,解得1x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3kf x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+--⎪⎝⎭. ① 令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0t t t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t t t ⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>,故23336ln 10t t t t-++->. ③由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.。

2020年天津市高考数学试卷-含详细解析

2020年天津市高考数学试卷-含详细解析

2020年天津市高考数学试卷副标题题号一二三总分得分一、选择题(本大题共9小题,共45.0分)1.设全集U={−3,−2,−1,0,1,2,3},集合A={−1,0,1,2},B={−3,0,2,3},则A∩(∁U B)=()A. {−3,3}B. {0,2}C. {−1,1}D. {−3,−2,−1,1,3}2.设a∈R,则“a>1”是“a2>a”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.函数y=4x的图象大致为()x2+1A. B.C. D.4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A. 10B. 18C. 20D. 365.若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A. 12πB. 24πC. 36πD. 144π6. 设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b7. 设双曲线C 的方程为x 2a2−y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b)的直线为l.若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A.x 24−y 24=1B. x 2−y 24=1C.x 24−y 2=1 D. x 2−y 2=18. 已知函数f(x)=sin(x +π3).给出下列结论:①f(x)的最小正周期为2π; ②f(π2)是f(x)的最大值;③把函数y =sinx 的图象上的所有点向左平移π3个单位长度,可得到函数y =f(x)的图象.其中所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③9. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( )A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)二、填空题(本大题共6小题,共30.0分) 10. i 是虚数单位,复数8−i2+i =______.11. 在(x +2x 2)5的展开式中,x 2的系数是______.12. 已知直线x −√3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB|=6,则r 的值为______. 13. 已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为______;甲、乙两球至少有一个落入盒子的概率为______.14. 已知a >0,b >0,且ab =1,则12a +12b +8a+b 的最小值为______. 15. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM⃗⃗⃗⃗⃗⃗⃗ ⋅DN⃗⃗⃗⃗⃗⃗ 的最小值为______. 三、解答题(本大题共5小题,共75.0分)16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =2√2,b =5,c =√13.(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin(2A +π4)的值.17. 如图,在三棱柱ABC −A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点. (Ⅰ)求证:C 1M ⊥B 1D ;(Ⅱ)求二面角B −B 1E −D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.18. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的一个顶点为A(0,−3),右焦点为F ,且|OA|=|OF|,其中O 为原点.(Ⅰ)求椭圆的方程; (Ⅱ)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.19. 已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3).(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.20.已知函数f(x)=x3+klnx(k∈R),f′(x)为f(x)的导函数.(Ⅰ)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅰ)求函数g(x)=f(x)−f′(x)+9的单调区间和极值;x> (Ⅱ)当k≥−3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2f(x1)−f(x2).x1−x2答案和解析1.【答案】C【解析】【分析】本题主要考查列举法的定义,以及补集、并集的运算,属于基础题. 进行补集、交集的运算即可. 【解答】解:全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2},B ={−3,0,2,3}, 则∁U B ={−2,−1,1}, ∴A ∩(∁U B)={−1,1}, 故选:C . 2.【答案】A【解析】【分析】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.解得a 的范围,即可判断出结论. 【解答】解:由a 2>a ,解得a <0或a >1,故a >1”是“a 2>a ”的充分不必要条件, 故选:A . 3.【答案】A【解析】【分析】本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断. 【解答】解:函数y =f(x)=4xx 2+1,则f(−x)=−4xx 2+1=−f(x),则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A . 4.【答案】B【解析】【分析】本题考查了频率分布直方图,属于基础题.根据频率分布直方图求出径径落在区间[5.43,5.47)的频率,再乘以样本的个数即可. 【解答】解:直径径落在区间[5.43,5.47)的频率为(6.25+5)×0.02=0.225,则被抽取的零件中,直径落在区间[5.43,5.47)内的个数为0.225×80=18个, 故选:B . 5.【答案】C【解析】【分析】本题考查球的表面积,考查学生空间想象能力,球的内接体问题,是基础题. 正方体的对角线就是球的直径,求出半径后,即可求出球的表面积. 【解答】解:由题意,正方体的对角线就是球的直径,所以2R=√3×2√3=6,所以R=3,S=4πR2=36π.故选:C.6.【答案】D【解析】【分析】本题考查了指数函数和对数函数的性质,属于基础题.根据指数函数和对数函数的性质即可求出.【解答】解:a=30.7,b=(13)−0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.7.【答案】D【解析】【分析】本题考查了双曲线的渐近线方程,抛物线的焦点坐标,直线的平行和垂直,属于中档题.先求出直线l的方程和双曲线的渐近线方程,根据直线平行和垂直即可求出a,b的值,可得双曲线的方程.【解答】解:抛物线y2=4x的焦点坐标为(1,0),则直线l的方程为y=−b(x−1),∵双曲线C的方程为x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±b ax,∵C的一条渐近线与l平行,另一条渐近线与l垂直,∴−ba =−b,ba⋅(−b)=−1,∴a=1,b=1,∴双曲线C的方程为x2−y2=1,故选:D.8.【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.9.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,(x2<x1)当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k图象如图所示,两图象有4个交点,符合题意,当k>0时,(x2>x1)y=|kx2−2x|与x轴交于两点x1=0,x2=2k)内两函数图象有两个交点,所以若有四个交点,在[0,2k只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.10.【答案】3−2i【解析】【分析】本题考查了复数的运算,属于基础题.根据复数的运算法则即可求出.【解答】解:i是虚数单位,复数8−i2+i =(8−i)(2−i)(2+i)(2−i)=15−10i5=3−2i,故答案为:3−2i11.【答案】10【解析】【分析】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.在(x+2x2)5的展开式的通项公式中,令x的幂指数等于2,求出r的值,即可得到展开式中x2的系数.【解答】解:∵(x+2x2)5的展开式的通项公式为T r+1=C5r x5−r2r x−2r=2r C5r x5−3r,令5−3r =2,得r =1,∴x 2的系数是2×C 51=10, 故答案为10. 12.【答案】5【解析】【分析】本题考查直线与圆相交的性质,涉及弦长的计算,属于基础题. 根据题意,分析圆的圆心,由点到直线的距离公式可得圆心到直线x −√3y +8=0的距离,结合直线与圆相交的性质可得r 2=d 2+(|AB|2)2,计算可得答案. 【解答】解:根据题意,圆x 2+y 2=r 2的圆心为(0,0),半径为r ; 则圆心到直线x −√3y +8=0的距离d =√1+3=4, 若|AB|=6,则有r 2=d 2+(|AB|2)2=16+9=25,故r =5; 故答案为:513.【答案】16 23【解析】【分析】本题考查了互斥事件的概率公式,考查了运算求解能力,属于基础题. 根据互斥事件的概率公式计算即可. 【解答】解:因为甲、乙两球落入盒子的概率分别为12和13, 则甲、乙两球都落入盒子的概率12×13=16,甲、乙两球至少有一个落入盒子的概率为1−(1−12)(1−13)=1−13=23, 故答案为:16,23.14.【答案】4【解析】【分析】本题考查了基本不等式的应用,考查了运算求解能力,属于中档题. 由12a +12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ,利用基本不等式即可求出.【解答】解:a >0,b >0,且ab =1, 则12a+12b +8a+b =a+b 2ab+8a+b =a+b 2+8a+b ≥2√a+b 2⋅8a+b =4,当且仅当a+b 2=8a+b ,即a =2+√3,b =2−√3或a =2−√3,b =2+√3 取等号,故答案为:415.【答案】16 132【解析】【分析】本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值. 【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系, ∵∠B =60°,AB =3, ∴A(32,3√32), ∵BC =6,∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5, ∴DM⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.16.【答案】解:(Ⅰ)由余弦定理以及a =2√2,b =5,c =√13,则cosC =a 2+b 2−c 22ab=8+25−132×2√2×5=√22, ∵C ∈(0,π), ∴C =π4;(Ⅱ)由正弦定理,以及C =π4,a =2√2,c =√13,可得sinA = asinC c =2√2×√22√13=2√1313;(Ⅲ)由a <c ,及sinA =2√1313,可得cosA =√1−sin 2A =3√1313, 则sin2A =2sinAcosA =2×2√1313×3√1313=1213,∴cos2A =2cos 2A −1=513,∴sin(2A +π4)=√22(sin2A +cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(Ⅰ)根据余弦定理即可求出C 的大小; (Ⅱ)根据正弦定理即可求出sin A 的值;(Ⅲ)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.17.【答案】解:以C 为原点,CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,CC 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C(0,0,0),A(2,0,0),B(0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D(2,0,1),E(0,0,2),M(1,1,3),(Ⅰ)证明:依题意,C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0),B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,−2,−2),∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =2−2+0=0,∴C 1M ⊥B 1D ;(Ⅱ)依题意,CA⃗⃗⃗⃗⃗ =(2,0,0)是平面BB 1E 的一个法向量, EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1),ED ⃗⃗⃗⃗⃗ =(2,0,−1), 设n⃗ =(x,y ,z)为平面DB 1E 的法向量, 则{n ⃗ ⋅EB 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅ED ⃗⃗⃗⃗⃗ =0,即{2y +z =02x −z =0,不妨设x =1,则n ⃗ =(1,−1,2), ∴cos <CA ⃗⃗⃗⃗⃗ ,n ⃗ >=CN ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CN ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=√66, ∴sin <CA⃗⃗⃗⃗⃗ ,n ⃗ >=√1−16=√306, ∴二面角B −B 1E −D 的正弦值√306;(Ⅲ)依题意,AB ⃗⃗⃗⃗⃗ =(−2,2,0),由(Ⅱ)知,n⃗ =(1,−1,2)为平面DB 1E 的一个法向量, ∴cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗|AB ⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=−√33,∴直线AB 与平面DB 1E 所成角的正弦值为√33.【解析】(Ⅰ)建立空间坐标系,根据向量的数量积等于0,即可证明; (Ⅱ)先平面DB 1E 的法向量n ⃗ ,再根据向量的夹角公式,求出二面角B −B 1E −D 的正弦值;(Ⅱ)求出cos <AB ⃗⃗⃗⃗⃗ ,n⃗ >值,即可求出直线AB 与平面DB 1E 所成角的正弦值. 本题考查了空间向量在几何中的应用,线线平行和二面角和线面角的求法,考查了运算求解能力,转化与化归能力,逻辑推理能力,属于中档题.18.【答案】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF|=|OA|可得c =b =3,由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为 x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2−12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,−3), ∴点P 的坐标为(6 k 2k 2+1,−32k 2+1),由3OC⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,可得点C 的坐标为(1,0), 故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k ⋅32k 2−6k+1=−1, 整理可得2k 2−3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x −3或y =x −3.【解析】(Ⅰ)根据可得c =b =3,由a 2=b 2+c 2,可得a 2=18,即可求出椭圆方程; (Ⅱ)根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx −3,联立方程组,求出点B 的坐标,再根据中点坐标公式可得点P 的坐标,根据向量的知识求出点C 的坐标,即可求出CP 的斜率,根据直线垂直即可求出k 的值,可得直线AB 的方程.本题中考查了椭圆与圆的标准方程及其性质、直线与圆相切问题、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2),解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4n−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49.【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.20.【答案】解:(I)(i)当k =6时,f(x)=x 3+6lnx , 故f′(x)=3x 2+6x ,∴f′(1)=9, ∵f(1)=1,∴曲线y =f(x)在点(1,f(1))处的切线方程为y −1=9(x −1),即9x −y −8=0. (ii)g(x)=f(x)−f′(x)+9x =x 3+6lnx −3x 2+3x ,x >0, ∴g′(x)=3x 2−6x +6x −3x 2=3(x−1)3(x+1)x 2,令g′(x)=0,解得x =1, 当0<x <1,g′(x)<0, 当x >1,g′(x)>0,∴函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,x=1是极小值点,极小值为g(1)=1,无极大值证明:(Ⅱ)由f(x)=x3+klnx,则f′(x)=3x2+kx,对任意的x1,x2∈[1,+∞),且x1>x2,令x1x2=t,t>1,则(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]=(x1−x2)(3x12+kx1+3x22+kx2)−2(x13−x23+kln x1x2),=x13−x23−3x12x2+3x1x22+k(x1x2−x2x1)−2kln x1x2,=x23(t3−3t2+3t−1)+k(t−1t−2lnt),①令ℎ(x)=x−1x−2lnx,x>1,当x>1时,ℎ′(x)=1+1x2−2x=(1−1x)2>0,∴ℎ(x)在(1,+∞)单调递增,∴当t>1,ℎ(t)>ℎ(1)=0,即t−1t−2lnt>0,∵x2≥1,t3−3t2+3t−1=(t−1)3>0,k≥−3,∴x23(t3−3t2+3t−1)+k(t−1t −2lnt)>t3−3t2+3t−1−3(t−1t−2lnt)=t3−3t2+6lnt+3t−1,②,由(Ⅰ)(ii)可知当t≥1时,g(t)>g(1)即t3−3t2+6lnt+3t>1,③,由①②③可得(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,∴当k≥−3时,对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.【解析】(Ⅰ)(i)根据导数的几何意义即可求出切线方程;(ii)根据导数和函数单调性极值的关系,即可求出;(Ⅱ)要证不等式成立,只要证明(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,根据导数和函数最值的关系,以及放缩法即可证明.本题是利用导数研究函数的单调性、求函数的极值的基本题型,不等式的证明,属于难题.。

2020年天津卷数学高考试题及其答案

2020年天津卷数学高考试题及其答案

初高中数学学习资料的店
初高中数学学习资料的店 第 1 页 共 11 页 2020年普通高等学校招生全国统一考试(天津卷)
数学
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共9小题,每小题5分,共45分.
参考公式:
·如果事件A 与事件B 互斥,那么()()()P A B P A P B =+.
·如果事件A 与事件B 相互独立,那么()()()P AB P A P B =.
·球的表面积公式24πS R =,其中R 表示球的半径.
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩
A .{3,3}-
B .{0,2}
C .{1,1}-
D .{3,2,1,1,3}--- 2.设a ∈R ,则“1a >”是“2a a >”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 3
.若棱长为
A .12π
B .24π
C .36π
D .144π 4.设0.70.80.713,()
,log 0.83a b c -===,则,,a b c 的大小关系为 A .a b c <<
B .b a c <<
C .b c a <<
D .c a b <<。

2020年新高考天津卷数学试题(含解析)

2020年新高考天津卷数学试题(含解析)

所以,直线
AB
与平面
DB E 1
所成角的正弦值为
3
.
3
18.已知椭圆 x2 a2
y2 b2
1(a b 0) 的一个顶点为 A(0, 3) ,右焦点为F
,且 | OA || OF
|,其中O为原点.
(1)求椭圆 方程;
(2)已知点 C 满足3OC OF ,点 B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于
f ( x) |x|
恒有 3 个不同交点,满足题意;
当 k 0时,如图 3,当 y kx 2 与 y x2相切时,联立方程得 x2 kx 2 0 ,
令 0得 k2 8 0,解得 k 2 2 (负值舍去),所以k 2 2 .
综上, k 的取值范围为 (,0) (2 2, ) .
二、填空题
2 2 6
6 6,
sin CA, n 1 cos2 CA, n
30

6
所以,二面角 B B E D 的正弦值为 1
30 ; 6
(3)依题意, AB 2,2,0 .
由(2)知 n 1,1,2为平面 DB1E 的一个法向量,于是cos AB, n
AABBnn 2
4 2
6
3 3.
x2 y2 A. 4 4 1
y2 B. x2 4 1
x2 C. 4 y2 1
D. x2 y2 1
答案:D
a b
解答:由题可知
b
(
b) a
1
a
b
1,所以双曲线 C
的方程为 x2 y2
1.
8.已知函数
f
( x)
sin x
3
.给出下列结论:

2020年天津卷数学高考试题(含答案)

2020年天津卷数学高考试题(含答案)

2020年天津卷数学高考试题(含答案)2020年普通高等学校招生全国统一考试(天津卷)数学试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

在答卷前,考生需填写姓名、考生号、考场号和座位号,并在规定位置粘贴考试用条形码。

答卷时,考生需将答案涂写在答题卡上,不得在试卷上作答。

考试结束后,将试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共9小题,每小题5分,共45分。

参考公式:如果事件A与事件B互斥,那么P(AB)=P(A)+P(B)。

如果事件A与事件B相互独立,那么P(AB)=P(A)P(B)。

球的表面积公式S=4πR,其中R表示球的半径。

1.设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩B={0,2}。

2.设a∈R,则“a>1”是“a>a的充分不必要条件”。

3.函数y=4x/(2x+1)的图象大致为下图中的CD线段。

4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),[5.35,5.37),[5.37,5.39),[5.39,5.41),[5.41,5.4 3),[5.43,5.45),[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为20个。

5.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为36π。

6.设a=3,b=0.7^(1/3),c=log0.7(0.8),则a>b>c。

7.已知二次函数f(x)=ax^2+bx+c的图象过点(1,1),且在x=2处有极值,则a<0.8.已知等差数列{an}的前n项和为Sn,若a1=1,a3=7,则S10=55.9.已知函数f(x)=x^2-2x+3,g(x)=2x-1,则f(g(x))=4x^2-8x+5.1.双曲线C的方程为x^2/4-y^2/b^2=1,其中b>0.2.正确结论为D.①②③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =(A ){1,1}-(B ){0,1}(C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >” 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >>(C )c b a >>(D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ-上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -=(B )22193x y -= (C )221412x y -=(D )221124x y -= (8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为 (A )15- (B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,复数67i12i++=__________. (10)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. (11)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.(12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. (13)已知a ,b ∈R ,且a –3b +6=0,则2a +18b 的最小值为__________. (14)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. (16)(本小题满分13分)在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –π6). (Ⅰ)求教B 的大小;(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值. (17)(本小题满分13分)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.(18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. (19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值. (20)(本小题满分14分)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线 12()y x t =---有三个互异的公共点,求d 的取值范围. 参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分. (1)C (2)C (3)A (4)B (5)D(6)A(7)A(8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分. (9)4–i(10)e (11)13(12)2220x y x +-= (13)14(14)[18,2]三、解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.学@科网 所以,事件M 发生的概率为P (M )=521. (16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (Ⅰ)解:在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B .又因为(0π)B ∈,,可得B =π3. (Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cos Asin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-= (17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面AB D .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD=4. 在Rt △CMD中,sin CM CDM CD ∠==. 所以,直线CD 与平面ABD. (18)本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(I )解:设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d += 从而11,1a d ==,故n a n =,所以(1)2n n n S +=. (II )解:由(I ),知13112(222)2 2.n n n T T T n n ++++=+++-=--由12()4n n n n S T T T a b ++++=+可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --= 解得1n =-(舍),或4n =.所以n 的值为4.学&科网(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(I)解:设椭圆的焦距为2c,由已知得2259ca=,又由222a b c=+,可得23.a b=由||AB==,从而3,2a b==.所以,椭圆的方程为22194x y+=.(II)解:设点P的坐标为11(,)x y,点M的坐标为22(,)x y,由题意,21x x>>,点Q的坐标为11(,).x y--由BPM△的面积是BPQ△面积的2倍,可得||=2||PM PQ,从而21112[()]x x x x-=--,即215x x=.易知直线AB的方程为236x y+=,由方程组236,,x yy kx+=⎧⎨=⎩消去y,可得2632xk=+.由方程组221,94,x yy kx⎧+⎪=⎨⎪=⎩消去y,可得1x=.由215x x=,5(32)k=+,两边平方,整理得2182580k k++=,解得89k=-,或12k=-.当89k=-时,290x=-<,不合题意,舍去;当12k=-时,212x=,1125x=,符合题意.所以,k的值为12-.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分. (Ⅰ)解:由已知,可得f(x)=x(x−1)(x+1)=x3−x,故f‵(x)=3x−1,因此f(0)=0,(0)f'=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(0)f'(x−0),故所求切线方程为x+y=0.(Ⅱ)解:由已知可得f(x)=(x−t2+3)( x−t2) (x−t2−3)=( x−t2)3−9 ( x−t2)=x3−3t2x2+(3t22−9)x−t22+9t2.故()f x'= 3x3−6t2x+3t22−9.令()f x'=0,解得x= t2,或x= t2.当x变化时,f‵(x),f(x)的变化如下表:所以函数f (x )的极大值为f (t 23−9×(;函数小值为f (t 23−9×−(III )解:曲线y =f (x )与直线y =−(x −t 2)−有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2) (x −t 2−d )+ (x −t 2=0有三个互异的实数解,令u = x −t 2,可得u 3+(1−d 2)u设函数g (x )= x 3+(1−d 2)x y =f (x )与直线y =−(x −t 2)−价于函数y =g (x )有三个零点.()g'x =3 x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g'x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=,x 2.易得,g (x )在(−∞,x 1)上单调递增,在[x 1, x 2]上单调递减,在(x 2, +∞)上单调递增,g (x )的极大值g (x 1)= g (+g (x )的极小值g (x 2)= g)=+若g (x 2) ≥0,由g (x )的单调性可知函数y =f (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||d >此时2||d x >,(||)||0,g d d =+>且312||,(2||)6||2||0d x g d d d -<-=--+<-<,从而由()g x 的单调性,可知函数()y g x = 在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.学科……网所以d 的取值范围是(,(10,).-∞+∞。

相关文档
最新文档