导数在解决实际问题中的应用
高中数学导数的应用

高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。
本文将从几个不同的角度来讨论导数的应用。
一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。
通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。
例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。
二、切线与法线导数还可以用来求解函数的切线和法线方程。
对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。
同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。
这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。
三、最值问题导数也可以用来解决函数的最值问题。
对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。
因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。
这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。
四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。
当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。
而导数在某一点上发生跃变时,可以判断该点为函数的拐点。
这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。
总结起来,导数的应用非常广泛。
无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。
因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。
只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。
导数在生活中的应用例子

导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。
试述导数在解决实际问题中的应用

试述导数在解决实际问题中的应用在实际生活中,我们经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。
这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决,下面通过具体实例谈谈导数在实际生活中的应用。
一、生活中的优化问题:例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。
例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。
而运用导数知识,求三次目标函数的最值就变得非常简单。
思路:设箱底边长为x cm,则箱高602xh-=cm,得箱子容积V是箱底边长x的函数:23260()(060)2x xr x x h x-==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?二、最大利润问题例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式1258p q =-。
求产量q 为何值时,利润L 最大。
分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。
解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ 利润()212510048L R C q q q ⎛⎫=-=--+ ⎪⎝⎭ ()212110002008q q q =-+-<< '1214L q =-+ 令'0L =,即12104q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。
导数与微分在实际问题中的应用

导数与微分在实际问题中的应用在实际问题中,导数与微分是数学中重要的概念,它们广泛应用于各种科学和工程领域。
导数和微分可以帮助我们研究函数的变化率、极值、曲线的切线以及解决实际问题中的优化、最大化和最小化等难题。
一、函数的变化率和极值导数可以表示函数在某一点的变化率。
对于一个函数f(x),我们可以通过求解f(x)关于x的导数f'(x),来得到函数在特定点的斜率。
这个斜率可以用于分析函数的增减性、拐点以及函数的极值。
以一个简单的例子来说明,假设有一个物体的位移函数S(t),我们需要知道物体在某一时刻的速度。
我们可以通过对位移函数求导得到速度函数V(t),即V(t) = S'(t)。
利用导数,我们可以得到物体在不同时刻的速度情况,进而进行分析和应用。
二、曲线的切线导数的另一个应用是求解曲线的切线。
对于给定的函数f(x),我们可以通过求解f'(x)得到函数在某一点x=a的斜率。
利用这个斜率,我们可以确定曲线在该点的切线方程。
例如,假设有一个曲线y=f(x),我们需要知道曲线在x=a处的切线方程。
首先,我们求解函数关于x的导数f'(x),然后计算该导数在x=a 处的值,得到切线的斜率。
接下来,我们利用切线斜率和曲线在点(x=a, f(a))的坐标,使用点斜式或者斜截式等方法,求解切线方程。
三、实际问题中的优化、最大化和最小化导数和微分在优化、最大化和最小化问题中也有广泛应用。
通过求解导数为零的点,我们可以找到函数的极值点(最大值或最小值)。
以一个实际问题为例说明,假设我们要设计一个开放式矩形围栏,然后找到一个围栏面积最大的设计。
围栏的宽度是已知的,但长度是未知的。
我们可以将围栏的长度表示为x,围栏的面积表示为S(x)。
我们的目标是找到一个x,使得S(x)取得最大值。
为了解决这个问题,我们可以首先根据开放式围栏的特点,建立围栏面积的函数S(x)。
然后,我们对S(x)求导,得到S'(x),当S'(x)等于零时,我们可以得到可能的极值点。
导数在实际生活中的应用

60
x
V ´=60x-3x² /2 令V ´=0,得x=40, x=0 (舍去) 得V (40)=16000
当x (0,40)时,V ( x) 0; 当x (40,60)时,V ( x) 0.
V (40)为极大值,且为最大值 。
答:当箱底边长为x=40时,箱子容积最大,最大值为16000cm3
解 3、设水箱的高为xdm,则它的底边长为 升 立方分米 a= 256 = 16 dm 水箱所用的材料的面积为 x x
a
x
s(x)=4ax+a 2 =64 x +
32x 2 -256 x 令s'(x)= =0,得x=4 x2 x
256 (x>0) x
因为s(x)只有一个极值,故高为4dm时最省料
C周=2 r
R 3 8 2 -3 3 2 6 令V'( )= =0,得= 2 2 2 24 3 4 -
因 过小或过大都会使V变小,故= 2 6 时,容器 的容积最大。 3
练习5、已知海岛A与海岸公路 BC的距离AB为50KM,B、C间 的距离为100KM,从A到C,先 乘船,船速为25KM/h,再乘车, 车速为50KM/h,登陆点选在何处 所用时间最少?
2、实际应用问题的表现形式,常常不是 以纯数学模式反映出来。
首先,通过审题,认识问题的背景,抽象出问题的实质。
其次,建立相应的数学模型, 将应用问题转化为数学问题,再解。
3、求最大(最小)值应用题的一般方法
(1)分析实际问题中各量之间的关系,把实际问题化为 数学问题,建立函数关系式,这是关键一步。 (2)确定函数定义域,并求出极值点。 (3)比较各极值与定义域端点函数的大小, 结合实 际,确定最值或最值点。
【高中数学】习题课 导数的综合应用

习题课导数的综合应用题型一导数在解决实际问题中的应用【例1】某知名保健品企业新研发了一种健康饮品.已知每天生产该种饮品最多不超过40千瓶,最少1千瓶,经检测知生产过程中该饮品的正品率P与日产量x(x∈N*,单位:千瓶)间的关系为P=4 200-x24 500,每生产一瓶正品盈利4元,每生产一瓶次品亏损2元.(注:正品率=饮品的正品瓶数÷饮品总瓶数×100%)(1)将日利润y(元)表示成日产量x的函数;(2)求该种饮品的最大日利润.解(1)由题意,知每生产1千瓶正品盈利4 000元,每生产1千瓶次品亏损2 000元,故y=4 000×4 200-x24 500x-2 000⎝⎛⎭⎪⎫1-4 200-x24 500x=3 600x-43x3.所以日利润y=-43x3+3 600x(x∈N*,1≤x≤40).(2)令f(x)=-43x3+3 600x,x∈[1,40],则f′(x)=3 600-4x2.令f′(x)=0,解得x=30或x=-30(舍去).当1≤x<30时,f′(x)>0;当30<x≤40时,f′(x)<0,所以函数f(x)在[1,30)上单调递增,在(30,40]上单调递减,所以当x=30时,函数f(x)取得极大值,也是最大值,为f(30)=-43×303+3 600×30=72 000,也即y的最大值为72 000,所以该种饮品的最大日利润为72 000元.规律方法利用导数解决实际应用问题的步骤(1)函数建模:细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数关系式y =f (x ). (2)确定定义域:一定要从问题的实际意义去考虑,舍去没有实际意义的自变量的范围.(3)求最值:尽量使用导数法求出函数的最值. (4)下结论:根据问题的实际意义给出圆满的答案.【训练1】 如图,要设计一面矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两个栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏目之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌的面积最小?解 设广告牌的高和宽分别为x cm ,y cm , 则每个栏目的高和宽分别为(x -20)cm ,y -252 cm , 其中x >20,y >25.∵两个栏目的面积之和为2(x -20)·y -252=18 000,∴y =18 000x -20+25, ∴广告牌的面积S (x )=x ⎝ ⎛⎭⎪⎫18 000x -20+25=18 000xx -20+25x ,∴S ′(x )=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25.令S ′(x )>0,得x >140;令S ′(x )<0,得20<x <140.∴函数S (x )在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175,故当广告牌的高为140 cm ,宽为175 cm 时,可使广告牌的面积最小,最小面积为24 500 cm 2.题型二 与最值有关的恒成立问题【例2】设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(1)求f(x)的最小值h(t);(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.解(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去).当t变化时g′(t)、g(t)的变化情况如下表:∴对t∈(0,2),当maxh(t)<-2t-m对t∈(0,2)恒成立,也就是g(t)<0对t∈(0,2)恒成立,只需g(t)max=1-m<0,∴m>1.故实数m的取值范围是(1,+∞).规律方法(1)“恒成立”问题向最值问题转化是一种常见的题型,一般地,可采用分离参数法进行转化.λ≥f(x)恒成立⇔λ≥[f(x)]max;λ≤f(x)恒成立⇔λ≤[f(x)]min.对于不能分离参数的恒成立问题,直接求含参函数的最值即可.(2)此类问题特别要小心“最值能否取得到”和“不等式中是否含等号”的情况,以此来确定参数的范围能否取得“=”.【训练2】设函数f(x)=2x3-9x2+12x+8c,(1)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围;(2)若对任意的x∈(0,3),都有f(x)<c2成立,求c的取值范围.解(1)∵f′(x)=6x2-18x+12=6(x-1)(x-2).∴当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,2)时,f′(x)<0,f(x)单调递减;当x∈(2,3)时,f′(x)>0,f(x)单调递增.∴当x=1时,f(x)取极大值f(1)=5+8c.又f(3)=9+8c>f(1),∴x∈[0,3]时,f(x)的最大值为f(3)=9+8c. ∵对任意的x∈[0,3],有f(x)<c2恒成立,∴9+8c<c2,即c<-1或c>9.∴c的取值范围为(-∞,-1)∪(9,+∞).(2)由(1)知f(x)<f(3)=9+8c,∴9+8c≤c2,即c≤-1或c≥9,∴c的取值范围为(-∞,-1]∪[9,+∞). 题型三利用导数证明不等式【例3】已知函数f(x)=ln x-a(x-1)x(a∈R).(1)求函数f(x)的单调区间;(2)求证:对于任意x∈(1,2),不等式1ln x-1x-1<12恒成立.(1)解易知f(x)的定义域为(0,+∞),f′(x)=x-a x2.①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a>0,当x∈(0,a)时,f′(x)<0,f(x)在(0,a)上单调递减,当x∈(a,+∞)时,f′(x)>0,f(x)在(a,+∞)上单调递增.综上,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>0时,f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a). (2)证明∵1<x<2,∴1ln x-1x-1<12等价于(x+1)ln x-2(x-1)>0,令F(x)=(x+1)ln x-2(x-1),即F′(x)=ln x+x+1x-2=ln x+1x-1.由(1)知,当a=1时,f(x)=ln x-1+1x在[1,+∞)上单调递增,∴当x∈[1,2)时,f(x)≥f(1),即ln x +1x -1≥0,F ′(x )≥0, ∴F (x )在[1,2)上单调递增, ∴当x ∈(1,2)时,F (x )>F (1)=0, 即当1<x <2时,1ln x -1x -1<12恒成立.规律方法 (1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性. (2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数. 【训练3】 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x . (1)解 依题意,f (x )的定义域为(0,+∞). f ′(x )=1x -1,令f ′(x )=0,得x =1. ∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知f (x )在x =1处取得最大值,且最大值f (1)=0. 所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,x -1ln x >1, 又可将1x 代入ln x <x -1,得ln 1x <1x -1, 即-ln x <1x -1⇔ln x >1-1x ⇔ln x >x -1x ⇔x >x -1ln x , 故当x ∈(1,+∞)时恒有1<x -1ln x <x .题型四 利用导数解决函数的零点或方程的根问题 【例4】 已知函数f (x )=ln x +ax -1,(1)求f (x )的单调区间;(2)当a ≤1时,求函数f (x )在区间(0,e]上零点的个数. 解 (1)f ′(x )=1-ln x -a x2,令f ′(x )=0,得x =e 1-a. f ′(x )及f (x )随x 的变化情况如下表:所以f (x )(2)由(1)可知f (x )的最大值为f (e1-a)=1-e 1-a e1-a ,①当a =1时,f (x )在区间(0,1)上单调递增,在区间(1,e)上单调递减. 又f (1)=0,故f (x )在区间(0,e]上只有一个零点. ②当a <1时,1-a >0,e 1-a >1, 则f (e1-a)=1-e 1-ae1-a <0,所以f (x )在区间(0,e]上无零点.综上,当a =1时,f (x )在区间(0,e]上只有一个零点, 当a <1时,f (x )在区间(0,e]上无零点.规律方法 利用导数研究函数的零点或方程根的方法是借助于导数研究函数的单调性,极值(最值),通过极值或最值的正负、函数的单调性判断函数图象走势,从而判断零点个数或者通过零点的个数求参数范围.【训练4】 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )取得极值-43. (1)求函数f (x )的解析式;(2)若方程f (x )=k 有3个不同的实数根,求实数k 的取值范围. 解 (1)对f (x )求导得f ′(x )=3ax 2-b , 由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0,f (2)=8a -2b +4=-43,解得a =13,b =4(经检验满足题意).∴f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0,得x =2或x =-2.∴当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0.因此,当x =-2时,f (x )取得极大值283,当x =2时,f (x )取得极小值-43. ∴函数f (x )=13x 3-4x +4的大致图象如图所示. 由图可知,实数k 的取值范围是⎝ ⎛⎭⎪⎫-43,283.一、素养落地1.通过学习利用导数解决实际应用问题、培养学生数学建模素养,通过学习利用导数解决不等式问题及函数零点问题,提升数学运算素养.2.正确理解题意,建立数学模型,利用导数求解是解应用题的主要方法.另外需要特别注意:(1)合理选择变量,正确给出函数表达式; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.3.利用导数解决不等式问题与利用导数解决函数的零点问的一般方法都是转化为函数的极值或最值问题. 二、素养训练1.设底为等边三角形的直三棱柱的体积为V ,那么其表面积最小时底面边长为( )A.3V B.32VC.34VD.23V解析 设底面边长为x , 则表面积S =32x 2+43x V (x >0). ∴S ′=3x 2(x 3-4V ).令S ′=0,得x =34V . 答案 C2.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的正数a ,b ,若a <b ,则必有( ) A.bf (b )≤af (a ) B.bf (a )≤af (b ) C.af (a )≤bf (b )D.af (b )≤bf (a )解析 设g (x )=xf (x ),x ∈(0,+∞), 则g ′(x )=xf ′(x )+f (x )≤0,∴g (x )在区间(0,+∞)上单调递减或g (x )为常函数. ∵a <b ,∴g (a )≥g (b ),即af (a )≥bf (b ),故选A. 答案 A3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A.13万件 B.11万件 C.9万件D.7万件 解析 因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0.所以,函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增. 所以x =9是函数的极大值点.又因为函数在(0,+∞)上只有一个极大值点, 所以函数在x =9处取得最大值. 答案 C4.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则a 的取值范围是________.解析f′(x)=3x2-3,令f′(x)=0,得x=1或x=-1.因为当x∈(-∞,-1)∪(1,+∞)时,f′(x)>0,当x∈(-1,1)时,f′(x)<0,所以f(x)极小值=f(1)=-2,f(x)极大值=f(-1)=2.函数y=x3-3x的大致图象如图所示,所以-2<a<2.答案(-2,2)三、审题答题示范(二)利用导数解决不等式问题【典型示例】(12分)已知函数f(x)=ax-e x(a∈R),g(x)=ln x x.(1)求函数f(x)的单调区间①;(2)∃x∈(0,+∞),使不等式f(x)≤g(x)-e x成立②,求a的取值范围.联想解题看到①想到解不等式f′(x)>0求f(x)的单调增区间,解不等式f′(x)<0求f(x)的单调减区间,但需注意讨论不等式中参数a的符号;看到②想到通过分离参数a构造新函数,把不等式问题转化为求函数的最值问题,需注意的是条件为“∃x”,而不是“∀x”,所以要弄清楚问题是求函数的最大值还是最小值.满分示范解(1)因为f′(x)=a-e x,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;2分当a>0时,令f′(x)=0,得x=ln a.由f′(x)>0,得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0,得f(x)的单调递减区间为(ln a,+∞).综上所述,当a≤0时,f(x)的单调递减区间为(-∞,+∞),无单调递增区间;当a>0时,f(x)的单调递增区间为(-∞,ln a),单调递减区间为(ln a,+∞).4分(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln xx 2.6分设h (x )=ln x x 2,则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max ,由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) +0 - h (x )极大值12e10分由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e . 故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12e .12分满分心得(1)涉及含参数的函数的单调区间,一般要分类讨论,要依据参数对不等式解集的影响进行分类讨论.(2)解决不等式“恒成立”或“能成立”问题首先要构造函数,利用导数求出最值、求出参数的取值范围,也可分离参数、构造函数,直接把问题转化为求函数的最值.基础达标一、选择题1.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A.0≤a ≤21 B.a =0或a =7 C.a <0或a >21D.a =0或a =21解析 f ′(x )=3x 2+2ax +7a , 当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数f (x )不存在极值点. 答案 A2.定义在R 上的函数f (x ),若(x -1)·f ′(x )<0,则下列各项正确的是( ) A.f (0)+f (2)>2f (1) B.f (0)+f (2)=2f (1) C.f (0)+f (2)<2f (1)D.f (0)+f (2)与2f (1)大小不定 解析 ∵(x -1)f ′(x )<0,∴当x >1时,f ′(x )<0;当x <1时,f ′(x )>0,则f (x )在(1,+∞)上单调递减,在(-∞,1)上单调递增, ∴f (0)<f (1),f (2)<f (1), 则f (0)+f (2)<2f (1). 答案 C3.已知函数f (x )=x -sin x ,则不等式f (x +1)+f (2-2x )>0的解集是( ) A.⎝ ⎛⎭⎪⎫-∞,-13 B.⎝ ⎛⎭⎪⎫-13,+∞ C.(-∞,3)D.(3,+∞)解析 因为f (x )=x -sin x ,所以f (-x )=-x +sin x =-f (x ),即函数f (x )为奇函数,函数的导数f ′(x )=1-cos x ≥0,则函数f (x )是增函数,则不等式f (x +1)+f (2-2x )>0等价为f (x +1)>-f (2-2x )=f (2x -2),即x +1>2x -2,解得x <3,故不等式的解集为(-∞,3). 答案 C4.方底无盖水箱的容积为256,则最省材料时,它的高为( ) A.4 B.6 C.4.5D.8解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x 2,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0,解得x =8,∴h =25682=4. 答案 A5.若函数f (x )=x 2e x -a 恰有三个零点,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫4e 2,+∞ B.⎝ ⎛⎭⎪⎫0,4e 2 C.(0,4e 2)D.(0,+∞)解析 令g (x )=x 2e x , 则g ′(x )=2x e x +x 2e x =x e x (x +2). 令g ′(x )=0,得x =0或-2,∴g (x )在(-2,0)上单调递减,在(-∞,-2),(0,+∞)上单调递增. ∴g (x )极大值=g (-2)=4e 2,g (x )极小值=g (0)=0, 又f (x )=x 2e x -a 恰有三个零点,则0<a <4e 2. 答案 B 二、填空题6.某厂生产某种商品x 件的总成本c (x )=1 200+275x 3(单位:万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为________件时,总利润最大.解析 设产品的单价为p 万元,根据已知,可设p 2=k x , 其中k 为比例系数.因为当x =100时,p =50,所以k =250 000. 所以p 2=250 000x ,p =500x ,x >0.设总利润为y 万元,y =500x ·x -1 200-275x 3=500x -275x 3-1 200.则y ′=250x -225x 2. 令y ′=0,得x =25.故当0<x <25时,y ′>0,当x >25时,y ′<0,所以,当x =25时,函数y 取得极大值,也是最大值. 答案 257.已知函数f (x )=2x ln x ,g (x )=-x 2+ax -3对一切x ∈(0,+∞),f (x )≥g (x )恒成立,则a 的取值范围是________. 解析 由2x ln x ≥-x 2+ax -3, 得a ≤2ln x +x +3x . 设h (x )=2ln x +3x +x (x >0).则h ′(x )=2x -3x 2+1=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. ∴h (x )min =h (1)=4.又f (x )≥g (x )恒成立,∴a ≤4. 答案 (-∞,4]8.已知函数f (x )=x 2-2ln x ,若关于x 的不等式f (x )-m ≥0在[1,e]上有实数解,则实数m 的取值范围是________. 解析 由f (x )-m ≥0得f (x )≥m , 函数f (x )的定义域为(0,+∞), f ′(x )=2x -2x =2(x 2-1)x ,当x ∈[1,e]时,f ′(x )≥0,此时,函数f (x )单调递增,所以f (1)≤f (x )≤f (e). 即1≤f (x )≤e 2-2,要使f (x )-m ≥0在[1,e]上有实数解,则有m ≤e 2-2. 答案 (-∞,e 2-2] 三、解答题9.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e ,显然当a >2e 时,f (x )min >0,f (x )无零点, 当a =2e 时,f (x )min =0,f (x )有1个零点, 当a <2e 时,f (x )min <0,f (x )有2个零点.10.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元, 问轮船的速度是多少时,航行1海里所需的费用总和最小?解 设速度为v 海里的燃料费每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,于是有p =0.006v 3. 又设当船的速度为v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v 小时,所以,行1海里的总费用为:q =1v (0.006v 3+96)=0.006v 2+96v . q ′=0.012v -96v 2=0.012v 2(v 3-8 000), 令q ′=0,解得v =20.∴当v <20时,q ′<0; 当v >20时,q ′>0,∴当v =20时q 取得极小值,也是最小值,即速度为20海里/时时,航行1海里所需费用总和最小.能力提升11.已知函数f (x )=e x -ln(x +3),则下列有关描述正确的是( ) A.∀x ∈(-3,+∞),f (x )≥13B.∀x∈(-3,+∞),f(x)>-1 2C.∃x0∈(-3,+∞),f(x0)=-1D.f(x)min∈(0,1)解析因为f(x)=e x-ln(x+3),所以f′(x)=e x-1x+3,显然f′(x)在(-3,+∞)上是增函数,又f′(-1)=1e-12<0,f′(0)=23>0,所以f′(x)在(-3,+∞)上有唯一的零点,设为x0,且x0∈(-1,0),则x=x0为f(x)的极小值点,也是最小值点,且e x0=1x0+3,即x0=-ln(x0+3),故f(x)≥f(x0)=e x0-ln(x0+3)=1x0+3+x0>-12,故选B.答案 B12.已知函数f(x)=12x2-a ln x(a∈R),(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.(1)解f′(x)=x-ax,因为x=2是一个极值点,所以2-a2=0,则a=4.此时f′(x)=x-4x=(x+2)(x-2)x,因为f(x)的定义域是(0,+∞),所以当x∈(0,2)时,f′(x)<0;当x∈(2,+∞),f′(x)>0,所以当a=4时,x=2是一个极小值点,则a=4.(2)解因为f′(x)=x-ax=x2-ax,所以当a≤0时,f(x)的单调递增区间为(0,+∞).当a>0时,f′(x)=x-ax=x2-ax=(x+a)(x-a)x,当0<x<a时,f′(x)<0,当x>a时,f′(x)>0,所以函数f(x)的单调递增区间(a,+∞);递减区间为(0,a).(3)证明 设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x =(x -1)(2x 2+x +1)x>0,又x >1,所以g (x )在x ∈(1,+∞)上为增函数,所以当x >1时,所以g (x )>g (1)=16>0,所以当x >1时,12x 2+ln x <23x 3.创新猜想13.(多选题)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( ) A.0<x 0<1e B.x 0>1e C.f (x 0)+2x 0<0D.f (x 0)+2x 0>0解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x , 易知f ′(x )=ln x +1+2x 在(0,+∞)上单调递增, ∵x 0是函数f (x )的极值点,∴f ′(x 0)=0, 即ln x 0+1+2x 0=0,而f ′⎝ ⎛⎭⎪⎫1e =2e >0,当x →0,f ′(x )→-∞,∴0<x 0<1e ,即A 选项正确,B 选项不正确;f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=-x 0(x 0-1)>0,即D 正确,C 不正确.故答案为AD. 答案 AD14.(多选题)已知函数f (x )=sin x +x 3-ax ,则下列结论正确的是( ) A.f (x )是奇函数B.若f (x )是增函数,则a ≤1C.当a =-3时,函数f (x )恰有两个零点D.当a =3时,函数f (x )恰有两个极值点解析 对A ,f (x )=sin x +x 3-ax 的定义域为R ,且f (-x )=sin(-x )+(-x )3+ax =-(sin x +x 3-ax )=-f (x ).故A 正确.对B ,f ′(x )=cos x +3x 2-a ,因为f (x )是增函数, 故cos x +3x 2-a ≥0恒成立.即a ≤cos x +3x 2恒成立.令g (x )=cos x +3x 2,则g ′(x )=6x -sin x ,设h(x)=6x-sin x,h′(x)=6-cos x>0,故g′(x)=6x-sin x单调递增,又g′(0)=0,故当x<0时g′(x)<0,当x>0时g′(x)>0.故g(x)=cos x+3x2最小值为g(0)=1.故a≤1.故B正确.对C,当a=-3时由B选项知,f(x)是增函数,故不可能有两个零点,故C错误. 对D,当a=3时f(x)=sin x+x3-3x,f′(x)=cos x+3x2-3,令cos x+3x2-3=0则有cos x=3-3x2.在同一坐标系中作出y=cos x,y=3-3x2的图象易得有两个交点,且交点左右的函数值大小不同.故函数f(x)恰有两个极值点.故D正确.故选ABD.答案ABD高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
导数在实际生活中的应用举例

导数在实际生活中的应用举例
1. 工程设计中:当设计一个桥梁时,需要考虑桥梁的结构,桥梁的载重量,以及桥梁的弯曲变形,而对于桥梁的弯曲变形,需要使用导数求解,以此来确定桥梁的设计参数。
2. 地质勘探中:当地质勘探时,需要知道地质结构的变化,以及地质变化的趋势,而这些变化的趋势,都可以使用导数来求解。
3. 气象预报中:当气象预报时,需要知道气象要素的变化趋势,以及气象要素的变化速度,这些变化的速度,都可以使用导数来求解。
导数在实际生活中的应用

导数在实际生活中的应用(1)学习目标1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性.课前预学:问题1:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.只要利用导数求出函数y=f(x)的所有,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值.问题2:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.问题3:利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的,解方程f'(x)=0;(3)比较函数在区间端点和点的函数值的大小,最大(小)者为最大(小)值.问题4:解决生活中的优化问题应当注意的问题确定函数关系式中自变量的区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.课堂探究:一.利润最大问题某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售量价格x的值,使商场每日销售该商品所获得的利润最大.二.容积最大问题请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.三.成本最低问题:如图,某工厂拟建一座平面图为矩形,且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米.如果池四周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,无盖.(1)写出总造价y(元)与污水处理池的长x(米)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.课堂检测:1.把长度为l的铁丝围成一个长方形,则长方形的最大面积为.2.设底为正三角形的直棱柱的体积为V,则其表面积最小时底面边长为.3.做一个无盖圆柱水桶,其体积是27π m3,若用料最省,则圆柱的底面半径为m.4.已知一个扇形的周长为l,扇形的半径和中心角分别为多大时,扇形的面积最大?导数在实际生活中的应用(2)学习目标:1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性. 课前预学:1.把长度为16的线段分成两段,各围成一个正方形,这两个正方形面积的最小值为 .2.要做一个圆锥形漏斗,其母线长20 cm,要使其体积最大,则其高是 .3.周长为20的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值是 .4.一边长为48 cm 的正方形铁皮,铁皮四角截去四个边长都为x cm 的小正方形,做成一个无盖方盒.求x 多大时,方盒容积最大? 课堂探究:1.如图,等腰梯形ABCD 的三边AB,BC,CD 分别与函数y=-x 2+2,x∈[-2,2]的图象切于点P,Q,R.求梯形ABCD 面积的最小值.2.已知某公司生产的品牌服装的年固定成本为10万元,每生产1千件,需要另投入1.9万元,设R(x)(单位:万元)为销售收入,根据市场调查得知R(x)=其中x 是年产量(单位:千件).(1)写出年利润W 关于年产量x 的函数解析式;(2)年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?3.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x 3-x+8(0<x≤120),已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?课堂检测:某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数在解决实际问题中的应用导数知识是学习高等数学的基础, 它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的, 同时, 又促进了生产技术和自然科学的发展, 它不仅在天文、物理、工程领域有着广泛的应用, 而且在日常生活及经济领域也是逐渐显示出重要的作用.导数是探讨数学乃至自然科学的重要的、有效的工具之一, 它也给出了我们生活中很多问题的答案.诸如生活中的有关环境问题、工程造价最省、容积最大、边际效益等, 本文将介绍如何将生活中的有关数学问题转化为相关的导数问题来求解, 以此说明如何应用所学数学知识灵活地应用于生活.类型一:环境问题例1 烟囱向其周围地区散落烟尘造成环境污染, 已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比, 而与该烟囱喷出的烟尘量成正比.现有A 、B 两座烟囱相距20km, 其中B 座烟囱喷出的烟尘量是A 的8 倍, 试求出两座烟囱连线上的点C, 使该点的烟尘浓度最低.分析由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱, 与其距离密切相关, 因此可考虑先设出与某个烟囱的距离, 从而表示出相应的烟尘浓度, 再确定其最小值即可.解:不妨设A 烟囱喷出的烟尘量是1, 而B 烟囱喷出的烟尘量为8, 设AC=x ( 其中0<x <20) , 所以BC=20- x , 依题意得点C 处的烟尘浓度22y 8(20)kx k x =+-( 其中k 是比例系数, 且k>0) , '6(350)y k x =-令y ′=0 503x =.因为当50(0,)3x ∈)时, y ′<0; 当50(,20)3x ∈时, y ′>0, 故当50=3x 时, y 取得最小值, 即当C 位于距点A 为503km 时, 使该点的烟尘浓度最低. 评注:在经济高速发展的同时, 人们也越来越关心我们赖以生存的环境质量, 这提示我们不能仅一味地追求经济效益, 同时应当注意保护环境.类型二:工程造价问题例2 如图所示, 某地为了开发旅游资源, 欲修建一条连接风景点P 和居民区O 的公路, 点P 所在的山坡面与山脚所在水平面α所成的二面角为θ( 0°<θ<90°) , 且sin θ= 25, 点P 到平面α的距离PH=0.4( km) .沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km, 原有公路改建费用为2a 万元/km.当山坡上公路长度为l km( 1≤l ≤2) 时, 其造价为( l2+1) a 万元.已知OA ⊥AB, PB ⊥AB, AB=1.5( km) , OA=3 km.( 1) 在AB 上求一点D, 使沿折线PDAO 修建公路的总造价最小;( 2) 对于( 1) 中得到的点D, 在DA 上求一点E,使沿折线PDEO 修建公路的总造价最小;( 3) 在AB 上是否存在两个不同的点D ′、E ′, 使沿折线PD ′E ′O 修建公路的总造价小于( 2) 中得到的最小总造价, 证明你的结论.分析由题意知要求修建公路的总造价最小值, 可以先建立相应的总造价函数关系式, 再确定其最小值即可.解( 1) 如图, PH ⊥α, HB"α, PB ⊥AB,由三垂线定理逆定理知, AB ⊥HB,所以∠PBH 是山坡与α所成二面角的平面角, 则∠PBH=θ, sin PH PB θ==1.设BD=x, 0≤x ≤1.5. 则 PD=2221[1,2]x PB x +=+∈记总造价为()1f x 万元, 据题设有()21112f x PD AD AO a ⎛⎫=+++ ⎪⎝⎭. 当x= 14, 即BD=14(km) 时, 总造价()1f x 最小; (2) 设AE=y,405y ≤≤, 总造价为()2f y 万元, 根据题设有()22213113224f y PD y y a ⎡⎤⎛⎫=++++- ⎪⎢⎥⎝⎭⎣⎦243=3216y y a a ⎛⎫+-+ ⎪⎝⎭ .则()'22123y f y a y ⎛⎫ ⎪=- ⎪+⎝⎭ 由 ()'2=0f y , 得y=1; 当y ∈( 0, 1) 时, ()'2fy <0,()'2f y 在( 0, 1) 内是减函数; 当y ∈514⎛⎫ ⎪⎝⎭,时, ()'2f y >0,()'2f y 在514⎛⎫ ⎪⎝⎭,内是增函数. 故当y=1, 即AE=1 时总造价()2f y 最小, 且最且最小总造价为6716a 万元;( 3) 不存在这样的点D ′、E ′事实上, 在AB 上任取不同的两点D ′、E ′.为使总造价最小, E 显然不能位于D ′与B 之间.故可设E ′位于D ′与A 之间,且'1BD x =, 11AE y =, 11302x y ≤+≤, 总造价为S 万元, 则221111113224x y S x y a ⎛⎫=-++-+ ⎪⎝⎭.类似于(1) 、(2)讨论知, 2111216x x -≥-, 2113322y y +-≥,当且仅当111,14x y == 同时成立时, 上述两个不等式等号同时成立, 此时BD ′= 14, AE=1, S 取得最小6716a , 点D ′、E ′分别与点D 、E 重合, 所以不存在这样的点D ′、E ′,使沿折线PD ′E ′O 修建公路的总造价小于( 2) 中得到的最小总造价.评注:在经济建设的过程中, 常常涉及成本问题, 人们总是想利用最少的钱、办最多的事, 这就常常要求我们善于将相关的问题恰当地转化为数学问题, 从而利用所学知识解决.类型三:最省钱车速问题例3 统计表明, 某种型号的汽车在匀速行驶中每小时的耗油量y( 升) 关于行驶速度x( 千米/小时) 的函数解析式可以表示为:()3138012012800080y x x x =-+<≤ .已知甲、乙两地相距100 千米. ( 1) 当汽车以40 千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?( 2) 当汽车以多大的速度匀速行驶时, 从甲地到乙地耗油最少? 最少为多少升?分析:要求确定从甲地到乙地要耗油量, 这就涉及行驶时间与车速, 因此根据题意先写出耗油量 与车速间的关系, 再利用导数知识确定其最小值.解( 1) 当x=40 时, 汽车从甲地到乙地行驶了100=2.540小时, 要耗油31340408 2.5=17.512800080⎛⎫⨯-⨯+⨯ ⎪⎝⎭( 升) .所以当汽车以40千米/小时的速度匀速行驶时, 从甲地到乙地耗油17.5 升;( 2) 当速度为x 千米/小时时, 汽车从甲地到乙地行驶了100x小时, 设耗油量为()h x 升,依题意得()()3213100180015=801201280008012804h x x x x x x x ⎛⎫-+∙=--<≤ ⎪⎝⎭ ()()33'22800800120640640x x h x x x x -=-=<≤. 令()'h x =0 得x=80. 当x ∈( 0, 80) 时, ()'h x <0, ()h x 是减函数; 当x ∈( 80, 120) 时()'h x >0, ()h x 是增函数. 当x=80 时, ()h x 取到极小值()80h =11.25.因为()h x 在( 0, 120] 上只有一个极值,所以它是最小值.所以当汽车以80 千米/小时的速度匀速行驶时, 从甲地到乙地耗油最少, 最少为11.25 升.评注:随着经济的迅猛发展, 轿车逐渐进入人们的家庭, 因此有关车辆的数学问题也就成为我们所熟悉的背景问题, 常常就涉及到如何使用更省钱的问题, 这个例子给了我们很好的启示.类型四:边际效益问题例四:日常生活中的饮用水通常是经过净化的。
随着水纯净度的提高,所需净化费用不断增加。
已知将1吨水净化到纯净度为x %时所需费用(单位:元)为()5284100c x x =-(80<x <100)。
求净化到下列纯净度时,所需费用的瞬时变化率:(1)90%; (2)98% 。
解:净化费用的瞬时变化率就是净化费用函数的导数。
()()252845284100100c x x x '⎛⎫'=== ⎪-⎝⎭-。
(1)因为()()252849052.8410090c '==-,所以,纯净度为90%时,净化费用的瞬时变化率是52.84元/吨; (2)因为()()2528498132110098c '==-,所以,纯净度为98%时,净化费用的瞬时变化率是1321元/吨。
函数()f x 在某点处的导数的大小表示函数值在此点附近的变化的快慢。
由上述计算可知,()()982590c c ''=。
它表示纯净度为98%左右时净化费用的变化率,大约是纯净度为90%左右时净化费用的25倍。
这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快。
瞬时变化率就是平均变化率的极限,又叫导数,它表示的是函数值在某点附近变化的快慢程度。
它其实不是一个多么抽象的概念,而是一个具体也很有实际价值的概念。
例如运动物体的路程在某时刻的瞬时变化率就是瞬时速度,曲线在某点的瞬时变化率就是曲线在该点的切线的斜率,等等。
结合上例我们还可以知道,瞬时变化率还可以表示生产中的边际成本。
所谓边际成本,就是在生产数量或者质量达到一定程度(接近极限)以后,在生产条件(如厂房、设备等)不变的情况下,增加单位产量(或者提高质量)而带来的那部分成本。
有的产品的边际成本很低,相应的边际利润就很高,例如微软生产的软件。
比尔盖茨为什么那么发财?因为他生产的是软件,在增加产量的时候,仅仅需要在塑料盘上批量拷贝他自己开发的软件,边际成本极小(每套1~2元),而边际利润很大(每套卖几百美金)。
而有些产品的边际成本比较大,边际利润就很小,例如例题中饮用水的纯净度。
所以鲜见做高纯净度的饮用水发大财的人,宗庆后做“娃哈哈”饮用水居然一度成为中国首富,但是他用的水根本就不是什么深井水,而是自来水,过滤装瓶消毒贴标签而已,纯净度并不高,边际成本很小,边际利润很大。
在经济社会中,飞机票打折是很常见的事情了。
对于航空公司而言,与其空着座位,不如打折以吸引更多的人买票乘坐,因为在乘客数量不足的情况下,每增加一个乘员,他的边际成本都很低(只要稍微多烧一点油而已),边际利润大,当然他打折也还有其它考虑,例如燃油附加费没有打折,飞机外的相关服务业利润没有打折,而养成人们坐飞机的习惯可以带来远期收益,等等。