湖南省涟源市2019-2020学年八年级下期末考试数学试题(有答案)
2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。
2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。
2019-2020学年八年级下数学第二学期期末试卷及答案

2019-2020学年八年级下数学第二学期期末试卷及答案一、选择题:(本大题共10个小题,,每小题3分,共30分.) 1.若二次根式x+3有意义,则x 的取值范围是 ( )A .3x ≥-B .3x >-C .3x ≤-D .3x <-2.下列计算正确的是 ( ) A. 527+= B. 55451-= C. 2462÷= D.233363⨯= 3.下列各组数中,不能构成直角三角形的是 ( ) A. 3, 4, 5 B. 3 , 5 , 8 C. 1,3 ,2 D. 7,24, 25 4.某校九年级(1)班全体学生2019年初中毕业体育考试成绩统计如下表: 成绩(分) 55 59 62 64 65 68 70 人数(人) 2566876根据上表中的信息判断,下列结论错误的是 ( ) A.该班一共有40名同学 B.该班学生这次考试成绩的众数是65分 C. 该班学生这次考试成绩的中位数是65分 D. 该班学生这次考试成绩的平均数是65分5.如图1,平行四边形ABCD 的周长为20cm,AE 平分∠BAD ,若CE=2cm ,则AB 的长度的是( )A. 10 cmB. 8cmC. 6cmD. 4cm6.如图2,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB=90°,若图2图1E DA图3AB=6,BC=10,则EF的长为().A.1 B.2 C.3 D.47.化简()()2-+的结果是 ( )3232A.-1 B.32--- C.32+ D.328. 如图3,在数轴上点A所表示的数为a,则a的值为() A.﹣1﹣ B.1﹣ C.﹣D.﹣1+9.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.10.如图4,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.22 D.108 C. 17二、填空题(本大题共5小题,每小题3分,共15分.)11.已知一个一次函数,函数值y随着x的增大而增大,请写出一个这样的函数解析式= .12.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+=0,则△ABC的形状是 _________13.如图5是甲、乙两射击运动员的10 次射击训练成绩的折线统计图.观察图形,甲、乙这10 次射击成绩的较稳定.14.如图6,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE ≌△ADF ;②CE=CF ;③∠AEB=75°;④BE+DF=EF ,其中正确的是 (只填写序号).15.如图7,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC=4.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E处.则点D 的坐标是 .三、解答题(本大题共8小题,共75分.) 16.计算:(8分)(1)48273623-÷+⨯()(2)已知:a=,b=,求代数式 a 2b ﹣ab 2的值.图4图6图7图517.甲乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等,比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分10分).依据统计数据绘制了如下尚不完整的统计表和统计图:甲校成绩统计表分数(分)7 8 9 10人数(人)11 0 8(1)在上面扇形统计图中“7分”所在扇形的圆心角的度数是 .(2)请你将条形统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪个学校的成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?18.如图,在一次实践活动中,小强从A 地出发,沿北偏东60°的方向行进3千米到达B 地,然后再行进3千米到达目的地C ,A 、C 两地之间的距离是6千米; 试确定目的地C 在点B 的什么方向?19.如图在平面直角坐标中,已知A (2,3),点B (-2,1)在X 轴上存在点P 到A,B 的距离之和最小 (1)求点P 的坐标. (2)求距离之和的最小值.20.(10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED 的面积.GF EDCB A东北21.(9分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.22.(14分)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t=_____________ 时,△DEF为直角三角形?23.(11分)如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=-x+10上在第一象限内的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)过点P作PE⊥x轴于点E,作PF⊥y轴于点F,连接EF,是否存在一点P使得EF的长最小,若存在,求出EF的最小值;若不存在,请说明理由.2019-2020学年八年级下数学第二学期期末试卷及答案一.选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACBCDBDACD二.填空题,(每题3分,共15分) 题号 11 121314 15 答案y=2x+1直角三角形 乙①②③(0,2.5)16.(1)解:原式=()4333362-÷+=162+ (2)a 2b ﹣ab 2=ab(a-b) 当a=,b=时, 原式=()()[-()]=-1×(-4)=418.【解】由题意得:AB=3,BC=3AC=6∵(222333279366+=+==222AB BC AC +=∴△ABC 是直角三角形,∠ABC=90° ∵∠DAB=60°,∴∠BAE=90°-60°=30°∴∠ABG=60°,∴∠CBF=180°-∠ABG-∠ABC=30° 所以点C 在B 地的北偏西30°的方向上.19【解】(1)如图所示:作点B 关于x 轴的对称点B /,∵B (-2,1),∴B /(-2,-1)连接AB /交x 轴一点P ,此时点P 到A,B 的距离之和最小 设AB /的解析式为:y=kx+b 由题意得211231k b k k b b -+=-=⎧⎧⎨⎨+==⎩⎩ ∴AB /的解析式为y=x+1 令y=0,得x=-1,∴点P (-1,0)(2)如图,过点A 作x 轴的垂线,过B /作轴的垂线两垂线交于点C ,由题意可得AC=4,BC=4 AB /∴PA+PB 的最小值是20【答】四边形OCED 的形状是菱形. 理由:∵DE ∥AC ,CE ∥BD ∴四边形OCED 是平行四边形;B /P B /P∵O 为矩形ABCD 对角线的交点,∴OD=OC ∴四边形OCED 是菱形(2)∵四边形ABCD 是矩形,且AB=6,BC=8, ∴四边形ABCD 的面积是:6×8=48∵O 为矩形ABCD 对角线的交点,∴OA=OB=OC=OD ∴△COD 的面积为矩形ABCD 面积的14,为12∵四边形OCED 是菱形∴四边形OCED 的面积等于△COD 的面积的2倍,为24. ∴=212=24OCED S 菱形21【证明】∵菱形ABCD∴CN ∥AB ,∴∠NDA=∠DAB=60° ∵点E 时AD 边的中点,∴DE=AE ∠AEM=∠DEN∴△AEM ≌△DEN ,∴AM=DN又∵CN ∥AB ,即DN ∥AM ,∴四边形AMDN 是平行四边形 (2)①1 ②222.(1)【证明】由题意得点D 运动的路程是CD=2t ;点E 运动的路程是AE=t∵DF ⊥BC 于F ,∴∠DFC=90°,∵∠C=30° ∴DF=12CD=t ,∴AE=DF=t.(2)答:四边形AEFD 能够成为菱形;∵∠B=90°,∠DFC=90°,∴∠B=∠DFC=90°∴AB ∥DF ,又∵AE=DF ,∴四边形AEFD 是平行四边形. 在Rt △ABC 中,∠B=90°,BC=5,∠C=30° ∴AB=12AC ,由勾股定理得:222AC AB BC -=,∴(2221532AC AC ⎛⎫-= ⎪⎝⎭,AC=10∵CD=2t,∴AD=AC-CD=10-2t当AD=AE 即:10-2t=t t=103时,四边形AEFD 为菱形.∴四边形AEFD 为菱形时,t=103.(3)t=4或52时,△DEF 为直角三角形.23.【解】(1)由题意得:OA=8()11=81022OPA S OA y x •=⨯-+△=-4x+40 x 的取值范围是:0<x<10; (2)∵PE⊥x 轴于点E ,作PF⊥y 点F ,∴∠PFO=∠PEO=∠FOE=90°,∴四边形OEPF 是矩形,∴OP=EF ,当OP ⊥BC 时OP 最小,也就是EF 最小 ∵B,C 是直线y =-x +10与x 轴、y 轴的交点, 令x=0,得y=10,∴OC=10;令y=0得x=10, ∴OB=10在Rt △OBC 中由勾股定理得:由面积法得:OP=OB OC BC •== ∴EF 的最小值是。
2019~2020学年度第二学期期末测试题八年级数学试题含答案

2019~2020学年度名校第二学期期末测试题八年级数学第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 2.下列方程是关于x 的一元二次方程的是( ); A 、02=++c bx ax B 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 3.分式222b ab a a+-,22b a b -,2222b ab a b ++的最简公分母是( )A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²)B 、(a+b )2(a -b )2²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a - 4.把方程x 2-4x+1=0配方后所得到的方程是( ).A. (x -2)2+1=0B. (x -4)2+5=0C. (x -2)2-3=0D. (x -2)2+5= 0 5.下列命题中正确的是( ). A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线平分每一组对角的四边形是正方形6.如图,矩形ABCD ,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,∠AOB =45°,则∠BAE 的大小为( ).A. 15°B. 22.5°C. 30°D. 45°7.若一个正多边形的每个内角等于120°,则这个多边形的边数是( ) A .8 B .7 C .6 D .5 8.若关于x 的一元二次方程ax 2-4x +1=0有实数根,则a 满足( ) A .a ≠0 B .4a ≤ C .40a a ≤≠且 D .40a a <≠且9.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90后,B 点的坐标为( ) A .(22)-, B .(41), C .(31), D .(40), 10.如下图左:∠A+∠B+∠C+∠D+∠E+∠F 等于( ) A 、180º B 、360º C 、540º D 、720º 11.如图,已知□ABCD 中,点M 是BC 的中点,且AM =6,BD =12,AD =45,则该平行四边形的面积为( ).A .245B .36C . 48D .72 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A .4个 B .3个 C .2个 D .1个ABC DEO第6题FEDCBAABCDM第11题(第12题图)BO二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 13.分解因式:a 3b+2a 2b 2+a b 3= 。
2019-2020学年湖南省名校八年级第二学期期末学业水平测试数学试题含解析

2019-2020学年湖南省名校八年级第二学期期末学业水平测试数学试题一、选择题(每题只有一个答案正确)1.下列各式中,正确的是( )A .2<15<3B .3<15<4C .4<15<5D .14<15<162.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家3.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm4.如图,点D 是等边△ABC 的边AC 上一点,以BD 为边作等边△BDE ,若BC =10,BD =8,则△ADE 的周长为( )A .14B .16C .18D .205.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-56.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A .3.5,3B .3,4C .3,3.5D .4,37.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 ( )A .矩形B .直角梯形C .菱形D .正方形8.要使二次根式3x -有意义,则x 的取值范围是( )A .x<3B .x≤3C .x>3D .x≥39.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:届 数23届 24届 25届 26届 27届 28届 金牌数 15 5 16 16 28 32则这组数据的众数与中位数分别是( )A .32、32B .32、16C .16、16D .16、3210.在平面直角坐标系中,点(–1,–2)在第( )象限.A .一B .二C .三D .四二、填空题11.在Rt △ABC 中,∠C =90°,若a=6,b=8,则c=________.12.在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =_____. 13.已知一组数据3,5,9,10,x ,12的众数是9,则这组数据的平均数是___________.14.一次函数53y x =-+的图象不经过第_______象限.15.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点123A A A 、、、…在直线l 上,点123C C C 、、、 …在y 轴正半轴上,则点n B 的横坐标是__________________。
2019-2020学年八年级第二学期数学期末试题及答案

2019-2020学年八年级第二学期数学期末试题及答案—学年八年级第二学期期末检测数学试题(满分:120分;考试时间:120分钟)一、选择题。
(本题共10小题,每小题3分,共30分) 1.若式子12x 在实数范围内有意义,则x 的取值范围是( ).A .x>1B .x<1C .x ≥1D .x ≤12.一组数据:0,1,2,3,3,5,5,10的中位数是( ). A .2.5B .3C .3.5D .53.在平面中,下列命题为真命题的是( ) A 、四个角相等的四边形是矩形。
B 、只有对角线互相平分且垂直的四边形是菱形。
C 、对角线互相平分且相等的四边形是矩形。
D 、四边相等的四边形是菱形。
4.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A. 365B. 1225C. 94D. 3345.某特警队为了选拔”神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21.则下列说法中,正确的是( ) A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定[教育&%出版C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定6.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ).A .50°B .60°C .70°D .80°7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )DCBAA .众数是90B .中位数是90C .平均数是90D .极差是158.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( ) A 、甲、乙两人的速度相同 B 、甲先到达终点 C 、乙用的时间短D 、乙比甲跑的路程多9.童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是( )10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。
2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)学校名称姓名准考证号考生须知1.本试卷共6页,共三道大题,29道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个1. 实数a,b,c,d在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是A. aB. bC. cD. d【答案】C【解析】根据数轴上某个数与原点的距离的大小求得结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的是c.故选C.“点睛”本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2. 下列交通标志中是中心对称图形的是A. B.C. D.【答案】D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,即可判断出.解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.“点睛“此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.考点:中心对称图形.3. 下列图形中,内角和与外角和相等的是A. B.C. D.【答案】B【解析】根据多边形内角和公式(n-2)×180°与多边形的外角和定理列式进行计算即可得解.设多边形的边数为n,根据题意得(n-2)序号180°=360°,解得n=4.故选B.“点睛”本题考查了多边形内角和公式与外角和定理,熟记公式与定理是解题的关键.4. 在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是( )A. (1,-1)B. (-1,1)C. (3,1)D. (1,2)【答案】A【解析】将坐标xOy中的x轴向上平移2个单位,y轴不变,根据左加右减,上加下减的规律求解即可. 解:∵点P平面直角坐标系xOy中的坐标为(1,1),将坐标系xOy中的x轴向上平移2个单位,y轴不变,∴在新坐标系x/O/y/中,点P的坐标为(1,-1).故选A.“点睛”本题考查了坐标与图形变化-平移,熟记左加右减,上加下减的规律是解题的关键.5. 如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A. 2B. 3C. 4D. 5【答案】B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.6. 某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A. 6,12,0.30B. 6,10,0.25C. 8,12,0.30D. 6,12,0.24【答案】A【解析】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a、b的值.解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.7. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为A. 20 cmB. 30 cmC. 0 cmD. cm【答案】D【解析】图2中根据勾股定理即可求得正方形的边长,图1根据有一个角是60°的等腰三角形是等边三角形即可求得.解:如图2,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2.∴AB=BC=20,如图1,∠B=60°,连接AC,∴△A BC为等腰三角形,∴AB=AC=20,故选D.“点睛”本题考查了正方形的性质,勾股定理以及等边三角形的判定与性质,利用勾股定理得出正方形的边长是关键.8. 对二次三项式变形正确的是()A. B. C. D.【答案】C【解析】先把常数项移到方程右边,再在方程两边同时加上一次项系数一半的平方,再把左边配成一个完全平方式.解:x2-4x-1= x2-4x +22-22-1=(x-2)2-5.“点睛”解题时二次项系数不是1的应把二次项系数化为1,要注意出现只在二次三项式一边加上一次项系数一半的平方这种错误的情况.9. 已知点(-2,a),(3,b)都在直线上,对于a,b的大小关系叙述正确的是()A. B. C. D.【解析】先根据一次函数的解析式判断出一次函数的增减性,再根据-4<-2即可得出结论.解:∵一次函数y=2x+m(m为常数)中,k=2>0,∴y随x的增大而增大,∵-2<3,∴a<b.故选B.“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10. 教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A. ①②B. ①③C. ②④D. ①④【答案】D【解析】根据函数图象可得乙组用时少,乙组教师获胜;由图象求出返回时甲组教师与乙组教师的速度比是2:3,所以选①④.“点睛”读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够根据函数的图象准确的把握住关键信息是解答此题的关键,然后根据实际情况采用排除法求解.二、填空题(本题共18分,每小题3分)11. 因式分解:=____________.【答案】【解析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.解:原式=3(m2﹣1),=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).“点睛”分解因式的一般步骤:若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a2-b2=(a +b)(a-b),完全平方公式:a2±2ab+b2=(a±b)2)或其它方法分解;直到每个因式都不能再分解为止. 12. 如图,平行四边形ABCD中,DE平分∠ADC,交BC边于点E,已知AD=6,BE=2,则平行四边形ABCD的周长为____________.【答案】20;【解析】试题分析:根据平行四边形的性质得出AB=CD,AD=BC=6,AD∥BC,根据平行线性质求出∠ADE=∠DEC,根据角平分线定义求出∠ADE=∠CDE,推出∠CDE=∠DEC,推出CE=DC,求出CD、即可求出答案.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CE=DC,∵BC=6,BE=2,∴CD=CE=6-2=4,∴AB=CD=4,∴平行四边形ABCD的周长为AD+CD+BC+A B=6+4+6+4=20.【点睛】本题考查了平行四边形的性质,角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,解此题的关键是求出CD的长,注意:平行四边形的对边平行且相等,难度适中.13. 已知y是x的一次函数,下表列出了部分y与x的对应值.则m的值为____________.【答案】-1;【解析】当x=1时,y=1;x=3时,y=5.用待定系数法可求出函数关系式,然后把x=0代入,得到m的值.解:当x=1时,y=1;x=3时,y=5,据此列出方程组,求得,一次函数的解析式y=2x-1,然后把x=0代入,得到m= -1.故答案为-1.“点睛”本题考查待定系数法求函数解析式的知识,难度不大,要注意利用一次函数的特点,列出方程组,求出未知数.14. 关于x的一元二次方程有两个不相等的实数根,写出一个满足条件的实数c的值:c=____________.【答案】0(答案不唯一);【解析】因为方程x2+2x+c=0有两个不相等的实数根,所以△=b2-4ac>0,建立关于c的不等式,求出c的取值范围,在这个范围内即可.解:∵方程有两个不相等的实数根,∴△=b2-4ac=22-4c>0,解得: c<1,故答案为:0.(答案不唯一)“点睛”本题属于开放题,注意答案的不唯一性,同时本题还考查了一元二次方程根的判别式的应用.15. 小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是:__________________________,理由是:_____________________________________________________________.【答案】(1). 小东(2). 在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定;【解析】观察折线图,从图中找出每人每次射击的环数,然后根据平均数、众数、方差的定义解答.解:求出小林平均数、众数、中位数、方差与小东的进行比较,选择的运动员是小东;在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定.“点睛”此题结合图表,考查了对众数、中位数、的理解,并有一定的开放性,也对同学们提出比较高要求.16. 如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE=40°,则∠DFC的度数为_____.【答案】.【解析】利用ABCD是正方形得出角之间相等的关系,由已知条件得出∠DFC.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠CBF,∴△BAF≌△CBF,∴∠AFB=∠CFB,∵∠AFB=∠CFB=70°,∴∠CFB=180°-70°-70°=40°∵∠EDC=∠EFC,∴C、E、D、F四点共圆,∴∠CFE=∠CDE=40°,∴∠DEC=70°,∴∠DFC=110°.故答案为:110°.三、解答题(本题共62分,第17-19题,每小题4分,第20-29题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17. 解不等式组:【答案】【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:解不等式①得,解不等式②得,∴原不等式组的解为.“点睛”本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18. 用适当的方法解方程:.【答案】或【解析】:将型代数式加上一次项系数一半的平方,就可以配成完全平方式,配方时,在方程两边都要加一次项系数一半的平方,方程的解不变,此题可以利用等式的基本性质使方程一边是完全平方式,另一边是常数.解:或或“点睛”配方法是一种很重要的数学方法,但使用起来较复杂,故没有特别说明,一般不使用.但当二次项系数为1,一次项系数为偶数时,用配方法较简单.19. 如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,且△OAB为等边三角形.求证:四边形ABCD为矩形.【答案】见解析【解析】考查矩形的判定问题,平行四边形ABCD,再加上对角线相等进而证明是矩形.证明:∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∵△OAB为等边三角形,∴ OA=OB,∴ AC=BD.∴四边形ABCD为矩形.20. 关于x的一元二次方程的一个根是0,求n的值.【答案】学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...解:∵关于x的一元二次方程的一个根是0,求n的值.∴,∴,∵,∴.21. 已知△ABC,请按要求完成画图、说明画图过程及画图依据.(1)以A,B,C为顶点画一个平行四边形;(2)简要说明画图过程;(3)所画四边形为平行四边形的依据是____________________________________【答案】(1)见解析;(2)见解析;(3)对角线相等的四边形是平行四边形.【解析】(1)由平行四边形的性质利用基本作图即可;(2)根据每步作图写出相应过程;(3)由平行四边形的判定得出结论.解:(1)如图所示,(2)画图过程:1.取AC中点D,2.连接BD并延长,使DE=BD,3.连接AE,CE.四边形ABCD是所求平行四边形.(3)依据:对角线相等的四边形是平行四边形.22. 随地球自转,一天中太阳东升西落,太阳经过某地天空的最高点时为此地的“地方时间”12点,因此,不同经线上具有不同的“地方时间”.两个地区“地方时间”之间的差称为这两个地区的时差.右图表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)下表是同一时刻的北京和首尔的时间,请填写完整.北京时间7:30首尔时间12:15(2)设北京时间为x(时),首尔时间为y(时),0≤x≤12时,求y关于x的函数表达式.【答案】(1)8:30,11:15;(2),.解:(1)根据如图表示同一时刻的北京时间得到首尔时间,首尔与北京时间的关系得,首尔时间为8:30,北京时间为11:15.(2)从图看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.“点睛”本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.23. 已知关于x的一元二次方程.(1)求证:此方程总有两个不相等的实数根;(2)若此方程的两个根都为整数,求整数a的值.【答案】(1) 方程有两个不相等的实数根;(2) .【解析】(1)先计算判别式的值达到△=4,然后根据判别式的意义即可得到方程总有两个不相等的实数根;(2)利用求根公式解方程,然后利用有理数的整除性确定a的值.证明:(1)∵m>0,△=[-2(m-1)]2-4m(m-2)=4m2-8m+4-4m2+8m=4>0,∴此方程总有两个不等实根;(2),,.∵ 方程的根均为整数,∴ .“点睛”本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程由两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24. 如图,四边形ABCD是平行四边形,E,F分别为BC,AD的中点,(1)求证:AE=CF;(2)延长CF交BA的延长线于点M,求证:AM=AB.【答案】见解析.【解析】(1)利用平行四边形的性质和线段的中点定义即可得出AE=CF;(2)同(1)证明方法可得AM=AB.(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵E,F分别为BC,AD的中点,∴AF=AD,CE=BC,∴AF=CE,∴四边形AECF是平行四边形,.∴AE=CF.(2)∵四边形AECF是平行四边形,∴AE∥CF,又∵E为BC的中点,∴A为BM的中点.即AM=AB.25. 绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.已知某地区从xx年1月到5月的共享单车投放量如右图所示.(1)求1月至2月共享单车投放量的增长率;(2)求2月至4月共享单车投放量的月平均增长率.【答案】(1)28%;(2)【解析】(1)由直方统计图得(2月投放量-1月投放量)÷1月投放量即得1月至2月共享单车投放量的增长率,(2)增长率问题,一般用增长后的量=增长前的量×(1+增长率),解:(1).(2)“点睛”求平均增长率的方法.若设变化前的量为a,变化后的量为b,平均增长率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. 如图,在平面直角坐标系xOy中,过点A(4,0)的直线与直线相交于点B(-4,m).(1)求直线的表达式;(2)若直线与y轴交于点C,过动点P(0,n)且平行于的直线与线段AC有交点,求n的取值范围.【答案】(1) ;(2) .【解析】(1)先求出B点坐标,再用待定系数法即可解决问题;(2)由图象可知直线l1在直线l2上方即可,由此即可写出m的范围.解:(1)∵点B(-4,m)在直线上,∴.∵点A(4,0)和B(-4,8)在直线上,设,∴ 解得∴直线的表达式为.(2)点C坐标为(0,4),平行于的直线过点C时表达式为,平行于的直线过点D时表达式为,∴n的取值范围是.“点睛”本题考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.27. 有这样一个问题:探究函数的图象与性质.小东根据学习一次函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)在函数中,自变量x可以是任意实数;下表是y与x的几组对应值.4 3 2 1求m的值;在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;(3)结合函数图象,写出该函数的一条性质:__________.【答案】(1)①m=4;②见解析;(2) 时y随x的变大而变小,时y随x的变大而变大.【解析】(1)把x=4代入函数解析式,求出y的值即可;在坐标系内描出各点,再顺次连接即可;(2)根据函数图象即可得出结论.解:(1)①时,②(2)时y随x的变大而变小,时y随x的变大而变大.28. 已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.(1)求证:CE=CF;(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.【答案】见解析.【解析】(1)根据图形折叠前后图形不发生大小变化,证明两角相等推出CE=CF;(2)运用平行四边形的判定和勾股定理列方程求解,再用平行四边形面积公式计算出四边形AFCE的面积.(1)证明:∵矩形纸片ABCD折叠,顶点A与C重合,折痕为EF,∴∠1=∠2,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CE=CF.(2)思路:连接AF① 由矩形纸片ABCD折叠,易证四边形AFCE为平行四边形;② Rt△CED中,设DE为x,则CE为16-x,CD=8,根据勾股定理列方程可求得DE,CE的长;③由CF=CE,可得CF的长;运用平行四边形面积公式计算CF×CD可得四边形AFCE的面积.29. 在平面直角坐标系xOy中,点P的坐标为,点Q的坐标为,且,,若P,Q为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P,Q互为“正方形点”(即点P是点Q的“正方形点”,点Q也是点P的“正方形点”).下图是点P,Q互为“正方形点”的示意图.已知点A的坐标是(2,3),下列坐标中,与点A互为“正方形点”的坐标是____________.(填序号)①(1,2);②(-1,5);③(3,2).(2)若点B(1,2)的“正方形点”C在y轴上,求直线BC的表达式;(3)点D的坐标为(-1,0),点M的坐标为(2,m),点N是线段OD上一动点(含端点),若点M,N互为“正方形点”,求m的取值范围.【答案】(1) ①③;(2) 或 ;(3) 或.【解析】(1)根据点A互为“正方形点”的坐标定义即可求出所求的坐标;(2)由已知条件先求出点C的坐标,利用待定系数法求得直线BC的表达式;(3)由点N是线段OD上一动点(含端点),求出点D、O的正方形点坐标,结合图象写出m的取值范围.解:(1)①③(2)∵点B(1,2)的“正方形点”C在y轴上,∴点C的坐标为(0,1),(0,3),∴直线BC的表达式为,.(3)过点OD分别作与x轴夹角为的直线,∵点M的坐标为(2,m),点N是线段OD上一动点(含端点),点M,N互为“正方形点”,∴点D的正方形点坐标是(2,3),(2,-3),点O的正方形点坐标是(2,2),(2,-2),∴或.-----如有帮助请下载使用,万分感谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涟源市2017-2020学年下学期期末考试八年级试题数学时量:120分钟满分:120分题次一二三四五六总分得分一、选择题(本大题共12小题,每小题3分,满分36分)1.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是(C)2.如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于(B)A. 9 cmB. 8 cmC. 7cmD. 6cm3.一个多边形的内角和为1800°,则这个多边形的边数为(A)A.12B.11C.10D.94.一次函数y=kx+b,当k<0,b<0时,它的图象大致为(B)5.矩形、菱形、正方形都一定具有的性质是(D)A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分6.已知点P(a,3+a)在第二象限,则a的取值范围是(A)A.-3<a<0< span=""></a<0<>B.a>-3C.a<0D.a<-37.已知菱形的两条对角线的长分别是6和8,则菱形的周长是(D)A.36B.30C.24D.208.如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若CD=6,则点D到AB的距离是(D)A.9B.8C.7D.69.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=(B)A.40°B.50°C.60°D.75°10.下列各曲线表示的y与x的关系中,y不是x的函数的是(C)11.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有(C)A.6人B.8个C.14个D.23个12.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为(A)A.4cm2B.6cm2C.8cm2D.9cm2二、填空题(本大题共6小题,每小题3分,满分18分)13.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC= 4.14.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE= 35度.15.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为y=3x-1.16.若点P(m,-2)与点Q(3,n)关于原点对称,则(m+n)20181.17.如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0),C(2,2),则△ABC的面积是5.18.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A= 50或90°.三、解答题(本大题共2小题,每小题6分,满分12分)19.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=(1/2)×5×4=10.20.已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.解:(1)根据题意:设y=k(x+3),把x=1,y=8代入得:8=k(1+3),解得:k=2.则y与x函数关系式为y=2(x+3)=2x+6;(2)把点(a,6)代入y=2x+6得:6=2a+6,解得a=0.四、解答题(本大题共2小题,每小题8分,满分16分)21.八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了多少名学生?(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;(3)请将条形统计图补充完整.解:(1)调查的总人数是:224÷40%=560(人),答:在这次评价中,一共抽查了560名学生;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×(84/560) =54°;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).22.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,{∠B=∠C,∠BED=∠CFD,DB=DC}∴△DBE≌DCF(AAS),∴DE=DF.五、解答题(本大题共2小题,每小题9分,满分18分)23.把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),求y与x的关系式;(2)每本字典的厚度为多少?解:(1)设y与x 确定的一次函数的关系式为y=kx+b则,{4k+b=105,7k+b=120}解得:k=5,b=85∴关系式为y=5x+85,(2)每本字典的厚度=(105-85)/4=5(cm)24.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE ∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.(2)∵四边形ABCD为菱形,∴AO=OC=(1/2)AC=3,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,∴四边形CODE的周长=2×(3+4)=14六、解答题(本大题共2小题,每小题10分,满分20分)25.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵{∠1=∠2,AO=AO, ∠AOE=∠AOF},∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵四边形AEDF是菱形,EF=10,∴∠DOE=90°,OE=(1/2)EF =5,AD=2OD,在Rt△DOE中,∵DE=13,∴OD=开平方(DE2-OE2)= 开平方(132-52)=12,∴AD=2OD=24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形)26.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的解析式.(2)求△OAC的面积.(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角角形?如果存在,求出点M的坐标;如果不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:{4k+b=2,6k+b=0},解得:{k=-1,b=6} ,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,∴C(0,6),∴OC=6,∴S△OAC=(1/2)×6×4=12;(3)①若∠BAM=90°,过点A作AM⊥AB交y轴于M1,过点A作AD⊥y轴于D,则D(0,2).∵OC=OB=6,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴△CAM1也是等腰直角三角形,∴DM1=CD=6-2=4,∴OM=2,∴M1(0,-2)②若∠ABM=90°,过点B作BM2⊥AB交y轴与M2,同样求得M2(0,-6),综上所述,满足条件的点M的坐标为(0,-2)或(0,-6)。