人教版反比例函数_ppt课件3

合集下载

六年级数学下册《反比例》PPT课件人教版

六年级数学下册《反比例》PPT课件人教版

题目1
一个直角三角形,两 多少厘米?
题目2
题目3
一个长方形的周长是20厘米,长是a厘米, 宽是b厘米。求a和b的关系式,并求出当 a=5厘米时,b是多少厘米?
一个圆柱体和一个圆锥体的底面积相等、 体积也相等。已知圆锥的高是18厘米,求 圆柱的高是多少厘米。
疑问3
反比例在生活中有哪些应用?

反比例关系在现实生活中有着广泛的应用。例如,汽车行 驶时,如果速度一定,那么行驶的距离和所需的时间成反 比;一定体积的气体,如果压力一定,那么气体的温度和 体积成反比。
下节课预告
• 下节课我们将学习《圆柱与圆锥》,圆柱和圆锥是常见的几何 图形,它们在生活和数学中有着广泛的应用。通过学习圆柱和 圆锥的特性、面积和体积的计算方法,我们将更好地理解这两 种几何图形在现实世界中的作用。请大家做好预习工作。
杠杆原理
在杠杆两端挂上不同质量的物体,一端质量大,一端质量小,当杠杆平衡时,两端的距离相等,质量与距离成反 比关系。
数学问题中的反比例解析
面积固定时,长与宽的关系
当一个矩形的面积固定时,长与宽的乘积为定值,即长增大时,宽必须减小,反之亦然,这体现了反 比例关系。
速度固定时,距离与时间的关系
当一个物体的速度固定时,距离与时间的乘积为定值,即距离增大时,时间必须增大,反之亦然,这 体现了反比例关系。
02 反比例的图像表示
反比例图像的绘制
确定x和y的取值范围
在绘制反比例图像前,需要确定x和y的取值 范围,以便在坐标系中正确表示。
标出原点
在坐标系的中心位置标出原点。
绘制坐标轴
根据需要选择适当的坐标轴比例,并绘制坐 标轴线。
绘制双曲线
根据反比例函数的性质,在第一象限和第三 象限内绘制双曲线。

人教版数学《反比例函数》优秀课件

人教版数学《反比例函数》优秀课件

而减小,则 m 的取值范围是( A )
A.m>7
B.m<7
C.m=7
D.m≠7
人教版数学《反比例函数》优秀PPT
人教版数学《反比例函数》优秀PPT
6.下列关于函数 y=-130x的说法错误的是( C ) A.它是反比例函数 B.它的图象关于原点中心对称 C.它的图象经过点130,-1 D.当 x<0 时,y 随 x 的增大而增大
A.y1>y2
B.y1<y2
C.y1=y2
D.无法确定
人教版数学《反比例函数》优秀PPT
人教版数学《反比例函数》优秀PPT
5.当 k<0 时,正比例函数 y=-kx 和反比例函数 y=xk在同 一坐标系内的图象为( C )
人教版数学《反比例函数》优秀PPT
人教版数学《反比例函数》优秀PPT
3 6.在反比例函数 y=23x中,反比例常数 k 的值为 2 . 7.若函数 y=kxk-2 是反比例函数,则 k= 1 . 8.已知反比例函数 y=kx,当 x=4 时,y=5,则此函数的解 析式为 y=2x0 ;当 x=-2 时,y= -10 .
综合训练
1.下列函数中,y 是 x 的反比例函数的是( D )
A.y=4x
B.y=x+1 1
C.y=x1-1
D.y=3x-1
人教版数学《反比例函数》优秀PPT
人教版数学《反比例函数》优秀PPT
2.若函数 y=kx的图象过点(1,-2),则该函数的图象必在( B )
A.第二、三象限
B.第二、四象限
C.第一、三象限
人教版数学《反比例函数》优秀PPT
人教版数学《反比例函数》优秀PPT
解:(1)∵点 A 的横坐标是-2,B 点的横坐标是 4, ∴当 x=-2 时,y=-(-2)+2=4, 当 x=4 时,y=-4+2=-2, ∴A(-2,4),B(4,-2), ∵反比例函数 y=xk的图象经过 A,B 两点, ∴k=-2×4=-8, ∴反比例函数的解析式为 y=-x8.

人教版九年级初三数学下册《反比例函数的图像和性质》PPT课件

人教版九年级初三数学下册《反比例函数的图像和性质》PPT课件
4 3 2 -1
2-3
-4
-5
-6
3)图像位于二、四象限。
y=
−6

x • y = - 6
(-x ) • y =6
4)y随x的增大而增大。
5)函数图像与坐标轴无交点。
01
反比例函数图像小结
当k<0时,反比例函数y =


的图象:
(1)函数图象分别位于第二、第四象限;
(2)在每一个象限内,y随x的增大而增大.
01
反比例函数图像
观察反比例函数 y=
6

和y= -
6
的图象,你发现了什么?

y= −
6

y
y=
6
6

5
形状:图像都是由两条曲线组成,因此称反比例函数的图象为双曲线。
4
两个分支都无限趋近坐标轴,但不与坐标轴相交。
3
2
位置:
6
函数 y= (k>0)图像位于第一、三象限内.
6
函数y= -(k<0)图像位于第二、四象限内.
A.
B.
C.
D.
【详解】

解:当k>0时,函数y= 的图象在第一、三象限,函数y=kx+1在第一、二、三象限,故选项C错误,选项D正确,

当k<0时,函数y=的图象在第二、四象限,函数y=kx+1在第一、二、四象限,故选项A、B错误,故选:D.

02
练一练
3.(2018·福建省永春第一中学初二期末)在同一平面直角坐标系中,函数
01
反比例函数图像小结
当k>0时,反比例函数y =


的图象:

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

人教版九年级数学下册26.1.2反比例函数的图象和性质(第3课时) 课件

O
x
B
SAOB SOMB SOAM 2 4 6.
(2)解法二:
y x 2,当x 0时, y 2, N(0,2).
ON 2.
1
1
SONB

ON 2
x B

2 4 4, 2
y A
N
SONA

1 ON 2
xA

1 2 2 2. 2
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y y = —kx
y=-x
y=x
0
12
x
.如图,在y 1 (x 0)的图像上有三点A,B,C, x
经过三点分别向x轴引垂线,交x轴于A ,B ,C 三点, 111
边结OA,OB,OC,记OAA , OBB , OCC 的
(2)根据图象写出反比y例函数的值大于一次函数的值 的x的取值范围。
M(2,m)
-1 0 2
x
N(-1,-4)
(1)求反比例函数和一次函数的解析式;
解(1)∵点N(-1,-4)在反比例函数图象上
4
∴k=4,
∴y= x
y
又∵点M(2,m)在反比例函数图象上
∴m=2 ∴M(2,2)
∵点M、N都y=ax+b的图象上 M(2,m)
(1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标;
(3)利用图象直接写出当x在什 么范围内取何值时,y1>y2.
5、如图,已知反比例函数 y 12 的图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标

《反比例函数》PPT3

《反比例函数》PPT3

合作探究
知识点 1 反比例函数的定义
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位:km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
C.6,-2
D.-6,-4
用待定系数法确定反比例函数解析式的“四步骤”:
表现形式.①y=2x-1是一次函数;
C.
D.
表现形式.①y=2x-1是一次函数;
④y=

⑤y=

(3)当y = 6时,求x的值.
建立反比例函数的模型,首先要找出题目中的
析式,然后把满足反比例函数关系的一组对应值代入
变化;
A.y= x
1 已知y与x2成反比例,并且当x=3时,y=4.
(1)写出y关于x的函数解析式;
(2)当x = 1.5时,求y的值;
(3)当y = 6时,求x的值.
解:( 1 ) y
36 x2;
(2 )1 6 ;
(3) 6 .
2 【中考·沈阳】点A(-2,5)在反比例函数y= k x
(k≠0)的图象上,则k的值是( D )
因此 y 1 2 .
x (2)把x=4代入 y
12 x
,
得y
12 4
3
新知小结
确定反比例函数解析式的方法:在明确两个变量 为反比例函数关系的前提下,先设出反比例函数的解 析式,然后把满足反比例函数关系的一组对应值代入 设出的解析式中构造方程,解方程求出待定系数,从 而确定反比例函数的解析式.

课件《反比例函数》精品PPT课件_人教版3

课件《反比例函数》精品PPT课件_人教版3

常数b=0时的 特殊情况
19
3
2.函数的表示方法:
解析法:用一个式子表示函数关系;
列表法:用列表的方法表示函数关系;
图象法:用图象的方法表示函数关系.
3.画函数图像: ①列表(在自变量的取值范围内取一些值) ②描点 ③连线(用一条平滑的曲线连接起来).
19
4
4.写出下列关系式
1)小明每天背10个单词,那么所掌握的词 汇总量y(个)与时间x(天)之间的关系式
-1 1的)度小数明. 每天背10个单词,那么所掌握的词
当2)R小越红来已越经大掌时握,了I 怎15样0个变单化词?,当以R后越每来天越背小8呢个?单词,那么她所掌握的词汇总量y(个)与时间x(天)之间的关系式为
;
③如连:线(用一条平滑的曲线连接起来). 2系)式小为红_已 __经 __掌 __握 __了 _. 150个单词,以后每天背8个单词,那么她所掌握的词汇总量y(个)与时间x(天)之间的关系式为 ;
2
系数不一定相同不能一律设为k. (3)变量I 是R的函数吗?为什么?
若 是反比例函数,则a= 。
此题的函数是由y1和y2两个函数组成的,要用待定系数
法来解答 ,先根据题意分别设y1﹑y2,关于x的函数关系
式,再代入数值,通过解方程求出比例系数的值.
19
15
三 建立简单的反比例函数模型
2.近视眼镜的度数y(度)与镜片焦距x
(4)在水龙头前放满一桶水,出水的速度为
x,放满一桶水的时间y.
19
18
课堂小结
反比例函数:定义/三种表达方式


例 函
用待定系数法求反比例函数解析式

建立反比例函数模型

人教版《反比例函数》_PPT

第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
新知1 比例函数的概念 一般地,函数y=kx(k为常数,k≠0)叫做反比 例函数.反比例函数的解析式也可以写成y=kx-1的形 式.自变量x的取值范围是一切非零实数,函数值的取 值范围也是一切非零实数.
例题
;⑤y=- x;⑥y= -3;⑦
y= ;⑧y=3x-1.其中,y是关于x的反比例函数
的是________(填序号).
【获奖课件ppt】人教版《反比例函数 》_ppt 1-课件 分析下 载
解析 根据反比例函数的定义,关键看上面各式 能否改写成y= (k为常数,k≠0)的形式,这里① ⑤是整式,④的分母不单独含x, ⑥改写后分子不是 常数,⑦分母中x的次数是2,而②③⑧能写成定义 y= (k为常数,k≠0)的形式,是反比例函数.
5m-3≠0. 函数时,
解得2n-=n=1,-1m, =-1. (3m)+当n函=数0,y=(5m-3)x2-n+(m+n)是反 比例 5m-3≠0,
函数时, 【获奖课件ppt】人教版《反比例函数》_ppt1-课件分析下载
【获奖课件ppt】人教版《反比例函数 》_ppt 1-课件 分析下 载
由题得
解得
【获奖课件ppt】人教版《反比例函数 》_ppt 1-课件 分析下 载
即y关于x的函数关系式为y= -2x.
【获奖课件ppt】人教版《反比例函数 》_ppt 1-课件 分析下 载
7. (6分)已知函数y=(5m-3)x2-n+ (n+m).
(1)当m,n为何值时是一次函数? (2)当m,n为何值时,为正比例函数? (3)当m,n为何值时,为反比例函数?
【获奖课件ppt】人教版《反比例函数 》_ppt 1-课件 分析下 载

人教版 反比例函数 PPT课件(上课用)3


、 京沪高速全长为,汽车沿京沪高速公路 从上海驶往北京,汽车行完全程所需要的时间() 与行驶的平均速度()之间有怎样的关系?变量 是的函数吗?为什么?
解:变量与之间的关系可以表示成
当给定一个的值时,相应的就确定 了一个值,因此是的函数
揭示概念
反比例函数:一般地,如果两个变量 之间的关系可以表示成或(为常数≠)的 形式,那么称是的反比例函数.
何值时() 是反比例函数.
解:∵由 K+2≠0 得 K≠-2
K2-5=1 ∴k=2
K=+2
∴当k=2时y=(k+2) xK2-5是反比 例函数.
k x
本节可我们学习了反比例函数的定义,并归纳
总结出反比例函数的表达式为成y= k x
或y=k x1

(k
为常数,k≠0)自变量x不为0还能根据定义和表达式

7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己!

8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。
反比例函数
、什么是函数?大家能举出实例吗?
在某变化过程中有两个变量若给定其中 一个变量的值都有唯一确定的值和它对应, 则称是的函数。
、一次函数的表达式为 为常数且≠
其中
、正比例函数的表达式为 不为的常数
其中为
、从地到地的路程为,某人开车要从地到地,汽 车的速度()和时间()之间的关系式为则中和之 间的关系式是正比例函数和一次函数,的关系 式吗?它们之间的关系究竟是什么关系呢?

人教版《反比例函数》PPT实用课件3


-5
-6
函数图象画法
描点法 列表
描点
连线
画出反比例函数
y
3 x
与y 3
x
的图象
y
观察下图函数的图象,归纳出反比例函数的形状
反比例函数图象是 由两支曲线组成的.
称为双曲线;
y
[注意哟]: 图象不会与x轴、y轴相 交
比较:观察下图函数的图象,归纳出反比例函数的性质
函数图象分别位
于哪几个象限?由
y
=
6 x

-1
-2 -3 -6 6 3 2
1…
y=
6 x

1
2 3 6 -6 -3 -2
-1 …
y
y
6
6
5
4 3
y
=
6 x
5
y =-
6 x
4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
-3 注意哦:由于x≠0,
1.反比例函数的图象是双曲线;
2.图象性质见下表:
y= k
K>0
K<0
x


当k>0时,函数图象

的两个分支分别在第

一、三象限,在每个
象限内,y随x的增大
而减小.
当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
◆观察在同一直角坐标系内K的绝对值不等图象位置有 什么 区别?
o
x D.

新人教版《反比例函数》PPT教学课件


本题源自《教材帮》
重点解析
2 (2,0)
本题源自《教材帮》
重点解析
C
4
y
2 y= x
y=
x
DA
B
4
O
Cx
本题源自《教材帮》
重点解析
反比例函数图象中,往往涉及三角形或四边形的 面积,当图形的顶点坐标不易直接求出时,通常利 用反比例函数的比例系数 k 的几何意义求解,有 时还需借助图形面积的等量关系.
(2)反比例函数的性质
图象 y
k>0
o
yk
x
所在象限 性质
x
一、三象 限(x,y 同号)
在每个象 限内,y 随 x 的增 大而减小
(k≠0) k<0
y
二、四象 在每个象
o
限(x,y 限内,y x 异号) 随 x 的增
大而增大
知识梳理
(3)比例系数 k 的几何意义 k 的几何意义:反比例函数图象上的点 (x,y) 具有两坐标之 积 (xy=k) 为常数这一特点,即过双曲线上任意一点,向两坐标 轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数 |k|.
解:当 x > 2时,y 与 x 成反比例函数关系, 设y k.
x
由于点 (2,4) 在反比例函数的图象上, 所以 4 k ,
2
解得 k =8.
即 y 8.
x
y/毫克 4
O2
x/小时
重点解析
(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有效,则
服药一次,治疗疾病的有效时间是多长?
解:当 0≤x≤2 时,含药量不低于 2 毫克,即 2x≥2,
(1) 求当 0 ≤ x ≤2 时,y 与 x 的函数解析式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
义务教育教科书(人教版)九年级数学下册 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3
不要等待机会,而要创造机会。
人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
人教版反比例函数_ppt课件3 人教版反比例函数_ppt课件3
相关文档
最新文档