用正交实验法设计测试用例
正交实验法设计测试用例例子

正交实验法设计测试用例例子正交实验法(Orthogonal Experimental Design)是一种设计测试用例的方法,通过合理选择测试用例,可以有效减少测试工作量,提高测试效率。
正交实验法的核心思想是通过一定的设计原则,选择一组具有独立性和均匀性的测试用例,以覆盖系统的各个方面,从而发现系统中的问题。
以下是使用正交实验法设计测试用例的一些例子:1. 网页登录功能测试:通过正交实验法设计测试用例,测试网页登录功能的正确性和稳定性。
测试用例包括用户名和密码长度的不同组合、是否输入正确的用户名和密码、是否支持记住密码等等。
2. 购物车功能测试:通过正交实验法设计测试用例,测试购物车功能的正确性和稳定性。
测试用例包括添加商品到购物车的不同顺序、添加不同数量的商品、删除商品、修改商品数量等等。
3. 文件上传功能测试:通过正交实验法设计测试用例,测试文件上传功能的正确性和稳定性。
测试用例包括上传不同类型的文件、上传不同大小的文件、上传多个文件、上传文件的同时进行其他操作等等。
4. 数据库查询功能测试:通过正交实验法设计测试用例,测试数据库查询功能的正确性和性能。
测试用例包括查询不同条件的数据、查询不同数量的数据、查询数据的同时进行其他操作等等。
5. 网络连接功能测试:通过正交实验法设计测试用例,测试网络连接功能的正确性和稳定性。
测试用例包括连接不同类型的网络、连接不同网络的速度、在连接过程中进行其他操作等等。
6. 手机应用程序测试:通过正交实验法设计测试用例,测试手机应用程序的正确性和稳定性。
测试用例包括不同操作系统的手机、不同型号的手机、在不同网络环境下使用等等。
7. 网络游戏测试:通过正交实验法设计测试用例,测试网络游戏的正确性和稳定性。
测试用例包括不同操作系统的电脑、不同网络环境下使用、同时进行其他操作等等。
8. 电子邮件发送功能测试:通过正交实验法设计测试用例,测试电子邮件发送功能的正确性和稳定性。
用正交实验法设计测试用例

用正交实验法设计测试用例正交实验法是一种高效的测试用例设计方法,通过设计一组合理的测试用例,可以最大限度地发现软件系统的缺陷。
正交实验法的基本原理是将多个因素进行组合,并通过对每个因素进行两个或多个不同取值的变化,来设计测试用例。
下面将详细介绍正交实验法的应用和测试用例设计。
一、正交实验法的基本原理正交实验法是一种通过有限次数的测试用例来探索软件系统中各种参数之间相互作用的方法。
它通过将所有可能的参数值组合成测试用例,以便快速而有效地发现潜在的错误。
正交实验法的基本原理是将多个因素进行组合,并通过对每个因素进行两个或多个不同取值的变化,来设计测试用例。
这样就可以有效地测试出各个因素之间的相互影响,同时减少测试用例的数量。
二、正交实验法的应用正交实验法可以用于以下场景:1.系统参数设置:在软件系统中,有很多参数需要设置。
通过正交实验法,可以找出参数设置对系统性能的影响,从而找到最佳的参数组合。
2.软件功能测试:在软件开发的过程中,有很多不同的功能需要测试。
通过正交实验法,可以设计一组测试用例,快速发现各个功能之间的问题。
3.用户界面测试:用户界面是软件系统中重要的组成部分,需要进行充分的测试。
通过正交实验法,可以设计出一组合理的测试用例,覆盖用户界面的各个组件和功能。
4.性能测试:在进行性能测试时,往往需要测试多个因素对系统性能的影响。
通过正交实验法,可以有效地设计一组测试用例,从而全面地测试出系统的性能。
三、正交实验法的测试用例设计步骤正交实验法的测试用例设计步骤如下:1.确定待测试的因素:根据测试的目标和需求,确定待测试的因素。
例如,系统参数设置、软件功能等。
2.确定每个因素的不同取值:对于每个因素,确定该因素的不同取值。
例如,系统参数设置的因素可以是参数A、参数B等,每个参数可以有不同的取值。
3.根据正交实验法表格设计测试用例:根据正交实验法表格,将待测因素填入相应的列,填入所有的可能取值。
正交试验法(含案例)

正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
测试用例的8种方法

测试用例的8种方法一、等价类划分法。
这就像是把东西分类啦。
比如说,测试一个输入框能输入数字,那我们就可以把数字分成好多类,像正整数、负整数、零这些。
这样,我们从每个类里挑一个代表来测试,就不用把每个数字都试一遍啦,多省事呀。
就好像一群小动物,我们按种类挑几只看看情况就大概知道整个群体的情况了,是不是很机智呢?二、边界值分析法。
这个方法可有趣啦。
它就专门盯着边界的地方。
还是说输入数字的例子,如果规定只能输入1到100的数字,那1和100就是边界值呀。
往往这些边界的地方最容易出问题呢。
就像住在房子边缘的人可能会遇到一些独特的情况,比如靠近路边可能会吵一点。
在测试的时候,边界值可不能放过,它们就像调皮的小鬼,最容易捣乱啦。
三、决策表法。
这就像是做选择题的一个大表格。
有很多条件,每个条件又有不同的选项,组合起来就像一个超级大的菜单。
比如说,要测试一个购物系统,根据用户是否是会员、购买金额多少、是否是促销商品这些条件,来决定最后的折扣或者赠品。
我们就把这些条件和结果都列在决策表里,然后按照表格一个一个测试,就像按照菜单点菜一样,明明白白的。
四、因果图法。
这个有点像找因果关系呢。
比如说,输入某个值会导致某个结果,那我们就把这个因果关系画出来。
如果输入错误密码会导致登录失败,那错误密码就是因,登录失败就是果。
把这些因果关系都整理好,就像在整理一个故事的情节一样,这样能更好地发现问题,就像把故事里不合理的情节找出来一样好玩。
五、正交试验法。
这是一种很高效的方法哦。
就像是从很多因素里挑选出一些有代表性的组合来测试。
假如有好几个变量影响一个结果,像颜色、大小、材质影响一个产品的受欢迎程度。
我们不可能把所有组合都试一遍,那就用正交试验法,挑出一些关键的组合,就像从很多宝藏里挑出最有价值的那几颗宝石一样。
六、场景法。
想象一下一个完整的场景哦。
比如测试一个在线旅游系统,从用户开始搜索旅游目的地,到选择酒店、预订机票,再到最后的旅行体验。
测试用例设计之正交实验法

测试⽤例设计之正交实验法1.标准正交表: Ln(m k) : L: 表⽰正交表 n: 实验⾏数且 n = (m-1)*k + 1 k: 因素数 (输⼊或控件数量) m: ⽔平数 (输⼊的取值或者每个控件的下拉选项数量) 标准正交表的每个因素的⽔平数相同.混合正交表: Ln(m1k1m2k2m3k3.......) L: 表⽰正交表 n: 实验⾏数且 n = (m1-1)*k1 + (m2-1)*k2+(m3-1)*k3+.........+1 m1k1: k1个控件有m1个选项 m2k2: k2个控件有m2个选项 m3k3: k3个控件有m3个选项2.正交表法应⽤场景: 多条件组合⽤例设计,但是不适⽤依赖和联动(⽐如省市区那样的下拉框)。
常见于页⾯组合设置⽤例设计和兼容性组合⽤例设计。
⽤最少的实验覆盖最多的操作,测试⽤例设计很少,效率⾼。
正交性从全⾯试验中挑选出部分有代表性的点进⾏试验。
3.正交表设计步骤设计测试⽤例的步骤:1、确定因⼦(变量)2、确定⽔平(变量的取值)3、选择⼀个合适的正交表4、把变量的值映射到表中5、把每⼀⾏的各因素⽔平的组合作为⼀个测试⽤例6、加上你认为可疑且没有在表中出现的⽤例组合4.1、考虑因素(变量)的个数2、考虑因素⽔平(变量的取值)的个数3、考虑正交表的⾏数4、取⾏数最少的⼀个正交表查询地址5.设计⽤例时三种情况因⼦和⽔平相符,且⽔平数(变量的取值)相同、因素数(变量)刚好符合某⼀正交表,则直接套⽤正交表,得到⽤例。
例⼦:对某⼈进⾏查询,假设查询某个⼈时有三个查询条件:根据“姓名”进⾏查询根据“⾝份证号码”查询根据“⼿机号码”查询考虑查询条件要么不填写,要么填写,此时可⽤正交表进⾏设计①因素数和⽔平数有三个因素:姓名、⾝份证号、⼿机号码。
每个因素有两个⽔平:姓名:填、不填⾝份证号:填、不填⼿机号码:填、不填②选择正交表表中的因素数>=3表中⾄少有三个因素的⽔平数>=2⾏数取最少的⼀个结果:L4(2^3)③变量映射姓名:1→填写,2→不填写;⾝份证号:1→填写,2→不填写;⼿机号码:1→填写,2→不填写;④⽤L4(2^3)设计的测试⽤例测试⽤例如下:1:填写姓名、填写⾝份证号、填写⼿机号2:填写姓名、不填⾝份证号、不填⼿机号3:不填姓名、填写⾝份证号、不填⼿机号4:不填姓名、不填⾝份证号、填写⼿机号⑤增补测试⽤例5:不填姓名、不填⾝份证号、不填⼿机号测试⽤例减少数:8→5因素数不相同⽔平数(变量的取值)与某正交表相同,但因素数(变量)却不相同,则取因素数最接近但略⼤于实际值的正交表表,套⽤之后,最后⼀列因素去掉即可。
正交法设计测试用例.ppt

查阅正交表:L9(34)
试验号\列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1
3
2
8
3
2
1
3
9
3
3
2
1
计算理论
行数为mn型的正交表中
整齐可比性 在同一张正交表中,每个因素的每个水平出现的次
数是完全相同的。由于在试验中每个因素的每个水 平与其它因素的每个水平参与试验的机率是完全相 同的,这就保证在各个水平中最大程度的排除了其 它因素水平的干扰。因而,能最有效地进行比较和 作出展望,容易找到好的试验条件。
均衡分散性 在同一张正交表中,任意两列(两个因素)的水平
用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个 字母均不相同,则称这种方阵为n*n拉丁方或n 阶拉丁方。每个字母在任一行、任一列中只出现 一次。
什么是正交拉丁方?
设有两个n阶的拉丁方,如果将它们叠合在一起 ,恰好出现n2个不同的有序数对,则称为这两个 拉丁方为互相正交的拉丁方,简称正交拉丁方。
正交实验法设计测试用例
张亶 2019/4/26
一、正交表的由来
拉丁方名称的由来
正交表法设计测试用例

正交表法设计测试用例一、概述正交表法是一种测试用例设计方法,它可以帮助测试人员在尽可能少的测试用例数量下覆盖尽可能多的场景。
正交表法通过对测试场景进行组合和排列,生成一组最小化的测试用例集合。
本文将介绍正交表法的原理、应用场景以及如何使用正交表法设计测试用例。
二、原理1. 正交表正交表是一个矩阵,其中每个单元格代表一个因素和一个水平。
例如,如果我们要测试一个登录页面,可能有以下因素:用户名、密码、记住我选项和登录按钮。
每个因素有多个水平,例如用户名可以是数字或字母,密码可以是强或弱等等。
我们可以创建一个4列的矩阵,每列分别代表这些因素和水平。
然后,在每行中选择一个水平来创建一组测试用例。
2. 覆盖率通过使用正交表法生成的测试用例集合,可以实现较高的覆盖率。
例如,在上面的示例中,如果我们有10个用户名选项、5个密码选项、2个记住我选项和1个登录按钮,则总共有100种组合方式(10 x 5 x 2 x 1)。
但是,通过使用正交表法只需要选择4种组合方式即可实现较高的覆盖率。
三、应用场景正交表法适用于以下场景:1. 复杂系统当测试人员需要测试复杂系统时,使用正交表法可以帮助他们快速生成最小化的测试用例集合。
2. 多个因素当测试人员需要测试多个因素和每个因素有多个水平时,使用正交表法可以帮助他们减少测试用例的数量。
3. 时间和资源受限当测试时间和资源受限时,使用正交表法可以帮助测试人员在较短时间内生成足够的测试用例集合。
四、使用方法1. 确定因素和水平首先,需要确定要测试的因素和每个因素的水平。
例如,在一个电商网站上进行购物车功能的测试,可能有以下因素:商品类别、商品价格、商品数量和优惠券。
每个因素都有多个水平,例如商品类别可以是服装、鞋子或配件等等。
2. 创建正交表然后,需要创建一个正交表。
通常情况下,可以在网上找到免费的正交表生成器。
输入因素和每个因素的水平后,即可生成一个正交表。
3. 选择组合方式根据实际情况,在每行中选择一个水平来创建一组测试用例。
测试用例设计方案技巧正交试验法详解

测试用例设计方法--正交实验法详解正交实验法介绍正交实验法是研究多因素、多水平的一种实验法,它是利用正交表来对实验进行设计,通过少数的实验替代全面试验,根据正交表的正交性从全面实验中挑选适量的、有代表性的点进行实验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表实验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与实验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较实验结果并找出最优的实验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了实验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交实验法的原因对于单因素或两因素实验,因其因素少,实验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的实验因素,若进行全面实验,实验的规模很大,由于时间和成本的限制我们不可能进行全面实验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交实验法来设计测试用例。
正交实验法就是安排多因素实验、寻求最优水平组合的一种高效率的实验设计方法。
我们用测试实例来进行说明使用正交实验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表实验法得出4个测试用例如下:根据实际需要可以在用正交实验法设计用例的基础上补充一些测试用例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用正交实验法设计测试用例
正交实验法的由来
一、正交表的由来
拉丁方名称的由来
古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。
数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。
什么是n阶拉丁方?
用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个字母均不相同,则称这种方阵为n*n拉丁方或n阶拉丁方。
每个字母在任一行、任一列中只出现一次。
什么是正交拉丁方?
设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方。
例如:3阶拉丁方
用数字替代拉丁字母:
二、正交实验法
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(33) 正交表按排实验,只需作9次,按L18(37) 正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求
规格说明中得到。
往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。
正交实验设计方法:依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的、有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法。
类似的方法有:聚类分析方法、因子方法方法等。
三、利用正交实验设计测试用例的步骤:
(1)提取功能说明,构造因子--状态表
把影响实验指标的条件称为因子,而影响实验因子的条件叫因子的状态。
利用正交实验设计方法来设计测试用例时,首先要根据被测试软件的规格说明书找出影响其功能实现的操作对象和外部因素,把他们当作因子;而把各个因子的取值当作状态。
对软件需求规格说明中的功能要求进行划分,把整体的、概要性的功能要求进行层层分解与展开,分解成具体的有相对独立性的、基本的功能要求。
这样就可以把被测试软件中所有的因子都确定下来,并为确定每个因子的权值提供参考的依据。
确定因子与状态是设计测试用例的关键。
因此要求尽可能全面的、正确的确定取值,以确保测试用例的设计作到完整与有效。
(2)加权筛选,生成因素分析表
对因子与状态的选择可按其重要程度分别加权。
可根据各个因子及状态的作用大小、出现频率的大小以及测试的需要,确定权值的大小。
(3)利用正交表构造测试数据集
利用正交实验设计方法设计测试用例,比使用等价类划分、边界值分析、因果图等方法有以下优点:节省测试工作工时;可控制生成的测试用例数量;测试用例具有一定的覆盖率。
在使用正交实验法时,要考虑到被测系统中要准备测试的功能点,而这些功能点就是要获取的因子或因素,但每个功能点要输入的数据按等价类划分有多个,也就是每个因素的输入条件,即状态或水平值。
四、正交表的构成
行数(Runs):正交表中的行的个数,即试验的次数,也是我们通过正交实验法设计的测试用例的个数。
因素数(Factors) :正交表中列的个数,即我们要测试的功能点。
水平数(Levels):任何单个因素能够取得的值的最大个数。
正交表中的包含的值为从0到数“水平数-1”
或从1到“水平数” 。
即要测试功能点的输入条件。
正交表的形式:
L行数(水平数因素数)
如:L8(27)
五、正交表的正交性
整齐可比性
在同一张正交表中,每个因素的每个水平出现的次数是完全相同的。
由于在试验中每个因素的每个水平与其它因素的每个水平参与试验的机率是完全相同的,这就保证在各个水平中最大程度的排除了其它因素水平的干扰。
因而,能最有效地进行比较和作出展望,容易找到好的试验条件。
均衡分散性
在同一张正交表中,任意两列(两个因素)的水平搭配(横向形成的数字对)是完全相同的。
这样就保证了试验条件均衡地分散在因素水平的完全组合之中,,因而具有很强的代表性,容易得到好的试验条件。
用正交实验法设计测试用例
以上介绍了正交实验法的由来。
怎么用正交实验法进行用例的设计呢?
一、用正交表设计测试用例的步骤
(1) 有哪些因素(变量)
(2) 每个因素有哪几个水平(变量的取值)
(3) 选择一个合适的正交表
(4) 把变量的值映射到表中
(5) 把每一行的各因素水平的组合做为一个测试用例
(6) 加上你认为可疑且没有在表中出现的组合
二、如何选择正交表
∙考虑因素(变量)的个数
∙考虑因素水平(变量的取值)的个数
∙考虑正交表的行数
∙取行数最少的一个
三、设计测试用例时的三种情况
(1)因素数(变量)、水平数(变量值)相符(2)因素数不相同
(3)水平数不相同
四、我们来看看第一种情况:
(1)因素数与水平数刚好符合正交表
我们举个例子:
这是个人信息查询系统中的一个窗口。
我们可以看到要测试的控件有3个:姓名、身份证号码、手机号码,也就是要考虑的因素有三个;而每个因素里的状态有两个:填与不填。
选择正交表时分析一下:
1、表中的因素数>=3;
2、表中至少有3个因素数的水平数>=2;
3、行数取最少的一个。
从正交表公式中开始查找,结果为:
L4(23)
变量映射:
测试用例如下:
1:填写姓名、填写身份证号、填写手机号
2:填写姓名、不填身份证号、不填手机号
3:不填姓名、填写身份证号、不填手机号
4:不填姓名、不填身份证号、填写手机号
增补测试用例
5:不填姓名、不填身份证号、不填手机号
从测试用例可以看出:如果按每个因素两个水平数来考虑的话,需要8个测试用例,而通过正交实验法进行的测试用例只有5个,大大减少了测试用例数。
用最小的测试用例集合去获取最大的测试覆盖率。
(2)因素数不相同
如果因素数不同的话,可以采用包含的方法,在正交表公式中找到包含该情况的公式,如果有N个符合条件的公式,那么选取行数最少的公式。
(3)水平数不相同
采用包含和组合的方法选取合适的正交表公式。
正交实验法的又一个例子
上面就正交实验法进行了讲解,现在再拿PowerPoint软件打印功能作为例子,希望能为大家更好地理解给方法的具体应用
假设功能描述如下:
∙打印范围分:全部、当前幻灯片、给定范围共三种情况;
∙打印内容分:幻灯片、讲义、备注页、大纲视图共四种方式;
∙打印颜色/灰度分: 颜色、灰度、黑白共三种设置;
∙打印效果分:幻灯片加框和幻灯片不加框两种方式。
因素状态表:
我们先将中文字转换成字母,便于设计。
得到:
因素状态表:
我们分析一下:
被测项目中一共有四个被测对象,每个被测对象的状态都不一样。
选择正交表:
1、表中的因素数>=4
2、表中至少有4个因素的水平数>=2
3、行数取最少的一个
最后选中正交表公式:
L16(45)
正交矩阵为:
用字母替代正交矩阵:
我们看到:
第一列水平值为3、第三列水平值为3、第四列水平值3、2都需要由各自的字母替代。
第五列去掉没有意义。
通过分析,由于四个因素里有三个的水平值小于3,所以从第13行到16行的测试用例可以忽略。
那么这样的话,就可以有12个测试用例了:
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、。