虚拟现实系统的分类——沉浸式虚拟现实系统

虚拟现实系统的分类——沉浸式虚拟现实系统
虚拟现实系统的分类——沉浸式虚拟现实系统

虚拟现实系统的分类——沉浸式虚拟现实系统

利用头盔显示器把用户的视觉、听觉和其他感觉封闭起来,产生一种身在虚拟环境中的错觉。

主要特点:

(1)虚拟环境可以是任意虚构的、实际上不存在的世界。

(2)任何操作不对外界产生直接作用。

(3)一般用于娱乐或验证某一猜想假设、训练、模拟、预演、检验、体验等。

桌面虚拟现实系统和沉浸式虚拟现实系统比较:

(1)沉浸度差异

桌面虚拟现实系统采用CRT彩色显示器和三维立体眼镜增加身临其境感觉,而沉浸式虚拟现实系统则采用头盔显示器(HMD)增强身临其境感觉。

(2)交互装置差异

桌面虚拟现实系统采用的交互装置是六自由度鼠标器或三维操纵杆,而沉浸式虚拟现实系统采用的https://www.360docs.net/doc/0e9206302.html,是数据手套和头盔。

沉浸式虚拟现实系统举例--**学院模拟演练系统

系统概述

由多通道投影组合成的虚拟仿真系统广泛应用于训练、制造、娱乐等行业。通过将传统的播放方式改变为有沉浸感的交互方式,提供大规模具有沉浸虚拟和增强现实的手段,为复杂数据可视化的协同工作起到重要作用。

系统特点

(1)采用专门为仿真和虚拟现实行业设计和生产的设备

(2)拼接画面采用多通道优化技术,进行光学校正和电子融合,达到完美无缝拼接

(3)采用弧形投影幕或多维投影方式

(4)整体系统由中央控制器进行集中控制

设备清单

大屏显示设备:大型投影机正投拼接(如BARCO)

信号生成设备:图形发生器和应用软件

信号传输设备:矩阵等

音响灯光设备:音效处理设备、功放和音箱、灯光设备

系统控制设备:中央控制器(如AMX、CRESTRON)或控制软件

智慧课堂虚拟现实-zspace

第一章智慧课堂虚拟现实 1.1智慧课堂 1.1.1系统概述 在学校,课堂教学环节是学生接受系统教育最重要的一环,做好教学互动环节,是掌握好教学环节的质量,提高教学水平的关键。现行的教学过程中,传统的签到环节、疑问确认环节、提问互动环节、课堂小测试环节存在诸多问题。签到过程中,使用纸张签到,效率低且存在代签现象,结果不便于教师统计;提问互动环节和课堂小测试的环节中,教师给出简单选择后,学生举手或者口头回答,不能获得准确的统计数据,教师只能根据大体情况来判断是否进行教学,没有准确的数据,更不能考虑后期的数据挖掘和数据统计工作。传统的教学方式已经不适应现代化教学的需要,基于物联网技术集智慧教学、人员考勤、资产管理、环境智慧调节、视频监控及远程控制于一体的新型现代化智慧教室系统在逐步的推广运用。智慧教室作为一种新型的教育形式和现代化教学手段,给教育行业带来了新的机遇。 1.1.2智慧课堂功能 智慧教室系统打通教学流程的课前、课中、课后、课外各环节,使用专项定制的人人通学习机,可与学校现有的课程中心、网络教学平台、资源平台、电子书包进行灵活畅通对接互通。智慧教室课堂系统根据学校的现有信息技术架构,提供了数据中心版、私有云服务版、公有云服务版多种灵活的部署实施方式,为学校的教学模式创新与落地提供个性化、灵活逐级扩展、安全稳定的技术与服务水平。 智慧课堂系统的特色: ●颠覆传统教学,提高学生知识应用力、自主思考力、探究学习力 ●无线多屏互动技术,权限控制、跨平台多点交互 ●大数据挖掘分析,助力教师针对性制定教学方案

●满足各种需求的定制服务 ●个人学习空间满足进阶式教学 多种教学互动场景与功能推动探究式教学模式、启发式教学模式、讨论式教学模式等创新型教学理念的研究与实现,并同时支持多种教学终端(电子白板、人人通学习机、PC、笔记本等等)。 智慧课堂允许学生和教师在开课前掌握预习情况,并在课堂上导入课前作业进行讲评,老师主持与指导学生进行探究式小组教学活动,系统自动采集课堂信息生成质量报告。 1.1.3智慧课堂布局 智慧教室系统由交互式电视、书写电子白板、微课笔、智慧课堂系统、学生学习终端、短焦投影机等主要功能模块组成,教师教学登录到智慧课堂平台,,实现无尘教学,保护师生的健康,老师可在电子白板上进行书写、绘制讲解分析。老师使用的智能终端受学校管理员通过智能中控设备统一管理,在云平台中心存放大量丰富的教学资源,学生及老师可以在线查阅或者下载到本地,与此同时,老师也可以将备课资料存放到云平台,当上课需要时,直接调出来使用即可。 在学生平板电脑上安装智慧课堂电子书包系统,平板电脑无线网络连接到班级AP上,学生可以自行分组讨论教学问题,也可以与教师进行教学互动,灵活的教学方式使整个教学更加生动,学生更易及时掌握课堂知识。

VR系统的组成与交互技术汇总

VR系统的组成与交互技术汇总 今天给大家介绍一下VR系统的组成与当前一些VR交互技术,希望大家对VR 有更深的理解。 一个典型的虚拟现实系统主要由计算机、输入输出设备、虚拟现实设计/浏览软件等组成。用户以计算机为核心,通过输入输出设备与应用软件的虚拟世界进行交互。 计算机 在虚拟现实系统中,计算机是系统的心脏,主要用于接收、处理、控制显示各种信息及相互间的作用和状态,负责虚拟世界的生成、人与虚拟世界的自然交互等功能的实现。 输入输出设备 在虚拟现实系统中,用户与虚拟世界之间要实现自然的交互,必须采用特殊的输入输出设备,用以识别用户的各种信息输入,并实时生成逼真的反馈信息。 VR输入设备如动作捕捉、手势识别、声音感知等体感类设备,通过感知用户输入信息,与虚拟世界进行交互,输入设备是实现消费者交互、沉浸感的重要技术。 下面是一些在VR虚拟现实场景中运用到的交互技术:

动作捕捉 用户想要获得完全的沉浸感,真正“进入”虚拟世界,动作捕捉系统是必须的。目前专门针对VR的动捕系统,目前市面上可参考的有Perception Neuron。但是这样的动作捕捉设备只会在特定的超重度的场景中使用,因为其有固有的易用性门槛,需要用户花费比较长的时间穿戴和校准才能够使用。相比之下,Kinect 这样的光学设备在某些对于精度要求不高的场景可能也会被应用。 全身动捕在很多场合并不是必须的,它的另一个问题,在于没有反馈,用户很难感觉到自己的操作是有效的,这也是交互设计的一大痛点。 触觉反馈 这里主要是按钮和震动反馈,这就是下面要提到的一大类,虚拟现实手柄。目前三大VR头显厂商Oculus、索尼、HTC Vive都不约而同的采用了虚拟现实手柄作为标准的交互模式:两手分立的、6个自由度空间跟踪的(3个转动自由度3个平移自由度),带按钮和震动反馈的手柄。这样的设备显然是用来进行一些高

虚拟现实技术简介

虚拟现实简介及行业发展前景 一、虚拟现实简介 虚拟现实(Virtual Reality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物 百科内容: VR是一项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术

模拟系统。 概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。 虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。 二、虚拟现实分类 行业概况: 北京傲唯刃道科技有限公司甘健先生认为:供求关系是一个行业能否快速发展的前提。目前来看,市场需求是很大的,而供应方面却略显不足,尤其是拥有核心知识产权,专利产品及服务质量过硬的企业并不多,行业整体缺乏品牌效应。在需求旺盛的阶段,行业需求巨大,

虚拟现实VR系统开发软件使用说明书V1.0

第一章系统概述 1.1 系统介绍 “虚拟现实VR系统开发软件”是基于客户/服务器模式,其中服务器提供VR文件及支持资源客户通过网络下载希望访问的文件,并通过本地平台上的VR 浏览器交互式访问该文件描述的虚拟境界。因为浏览器是本地平台提供的,从而实现了和硬件平台的无关性。VR象HTML一样,是一种ASCII码描述语言,它是一套告诉浏览器如何创建一个三维世界并在其中航行的指令,这些指令由再现器解释执行,再现器是一个内置于浏览器中或外部的程序。由于VR是一个三维造型和渲染的图形描述性语言,复杂的3D术语转换为动态虚拟世界是高速的硬件和浏览器,又由于其交互性强和跨平台性,使虚拟现实在Internet上有着广泛的应用,例如远程教育、商业宣传等等。 为此本公司研发出“基于VR的虚拟模型软件”,从用户的角度来说,基本上是HTML加上第三维,但从开发者角度来说, VR环境的产生提供了一套完全的新标准,新过程以及新的Web 技术。交叉平台和浏览器的兼容性是首先要解决的问题。设计之前,必须明确指定目标平台(PC、 Mac、SGI的新O2等等), CPU 速度、可以运行的带宽以及最适合使用的VR浏览器。 1.2系统功能概述 1.建模 “虚拟现实VR系统开发软件”的建造概念和其他工程建模概念相似,必须解决交流的问题,画出草图并研究材质的处理,生成模型、空间、化身,但必须考虑一些技术的限制,如,考虑到目标平台,决定在VR文件中放入多少多边图形;预先考虑到虚拟现实VR系统开发软件执行的动作,把相应的目标归类,用于设定三维物体之间的相互联系,建模与动画相互配合,如果归类正确合适,就会缩小生成动画效果之后文件的体积。虚拟现实的设计中必须考虑加入重力和碰撞的效果,以使虚拟现实的场景和生活中的相似。

虚拟现实系统简介

《虚拟现实》 教学目的和要求: 1、了解虚拟现实的概念; 2、了解虚拟现实的组成及国内 和同外虚拟现实研究的现状。 教学重点: 1、虚拟现实定义; 2、虚拟现实的组成; 3、虚拟现实的应用研究现状; 4、虚拟现实的应用前景。 1.前言 人类有许多梦想,一些梦想已经变为现实,而有一些梦想也许永远都 不可能实现。然而,有一种技术却能使一切梦想全部在感知中实现,这就 是虚拟现实技术 虚拟现实技术(Virtual Reality,简称VR)。 虚拟现实是在计算机图形学、计算机仿真技术、人机接口技术、多媒 体技术以及传感技术的基础上发展起来的交叉学科,由于它生成的视觉环 境是立体的、音效是立体的,人机交互是和谐友好的,因此虚拟现实技术 将一改人与计算机之间枯燥、生硬和被动的现状,即计算机创造的环境将 人们陶醉在流连忘返的工作环境之中。 虚拟现实(VR)技术是20世纪90年代以来兴起的一种新型信息技术, 它集多媒体、网络技术、传感技术等多种先进技术为一体, 是当今前景最好的计算机技术之一。 虚拟现实 虚拟环境 虚拟房间 虚拟汽车 虚拟人 虚拟现实技术的发展 1965年,Sutherland在篇名为《终极的显示》(The Ultimate Display)的 论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟 现实系统的基本思想,从此,人们正式开始了对虚拟现 实系统的研究探索历程。 1970年,出现了第一个功能较齐全的HMD系统。基于从60年代以来所 取得的一系列成就,美国的Jaron Lanier 在80年代初正式提出了“Virtual Reality”一词。 80年代,美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实 技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技 术的广泛关注。1984年,NASA Ames研究中心虚拟行星探测实验室组织开 发了用于火星探测的虚拟环境视觉显示器,将火星探测器发回的数据输入计 算机,为地面研究人员构造了火星表面的三维虚拟环境。 虚拟现实技术的发展 90年代,迅速发展的计算机硬件技术与不断改进的计算机 软件系统相匹配,使得基于大型数据集合的声音和图象的实时 动画制作成为可能;人机交互系统的设计不断创新,新颖、实 用的输入输出设备不断地进入市场。而这些都为虚拟现实系统 的发展打下了良好的基础。 例如1993年的11月,宇航员利用虚拟现实系统成功地完成 了从航天飞机的运输舱内取出新的望远镜面板的工作,而用虚 拟现实技术设计波音777获得成功,是近年来引起科技界瞩目 的又一件工作。

虚拟现实 答案

1.什么叫虚拟现实技术 虚拟现实技术(Virtual Reality 简称VR) 是一种模拟人类视觉、听觉、力觉、触觉等感知行为的高度逼真的人机交互技术,是在数字图像处理、计算机图形学、多媒体技术、人—机接口技术、计算机仿真技术及传感器技术等许多信息技术基础上发展起来的一门多学科的交叉技术。 2.虚拟现实系统的构成 典型的虚拟现实系统主要是由计算机、应用软件系统、输入输出设备、用户和数据库等组成。 3.虚拟现实技术的特征 虚拟现实技术有3个主要特征:沉浸性(Immersion)、交互性(Interactivity)和想像性(Imagination)。 (1)沉浸性 沉浸性(Immersion)又称临场感,指用户感到作为主角存在于模拟环境中的真实程度。 (2) 交互性 交互性(Interactivity)的产生,主要借助于VR系统中的特殊硬件设备(如数据手套、力反馈装置等),使用户能通过自然的方式,产生同在真实世界中一样的感觉。 (3) 想像性 想像性(Imagination)指虚拟的环境是人想像出来的,同时这种想像体现出设计者相应的思想,因而可以用来实现一定的目标。 4.虚拟现实系统的分类 在实际应用中,根据虚拟现实技术对沉浸程度的高低和交互程度的不同,将虚拟现实系统划分为以下4种类型: (1) 桌面式VR系统 它是利用个人计算机或图形工作站等设备,采用立体图形、自然交互等技术,产生三维立体空间的交互场景,利用计算机的屏幕作为观察虚拟世界的一个窗口,通过各种输入设备实现与虚拟世界的交互。 桌面式VR系统具有以下主要特点: ①缺少完全沉浸感,参与者不完全沉浸,因为即使戴上立体眼镜,仍然会受到周围现实世界的干扰。 ②对硬件要求极低 ③应用比较普遍,因为它的成本相对较低 (2) 沉浸式VR系统

最新版VR虚拟现实开发软件使用解决方案

最新版VR虚拟现实开发软件使用 解决方案

第一章系统概述 1.1 系统介绍 “虚拟现实VR系统开发软件”是基于客户/服务器模式,其中服务器提供VR文件及支持资源客户通过网络下载希望访问的文件,并通过本地平台上的VR浏览器交互式访问该文件描述的虚拟境界。因为浏览器是本地平台提供的,从而实现了和硬件平台的无关性。VR 象HTML一样,是一种ASCII码描述语言,它是一套告诉浏览器如何创建一个三维世界并在其中航行的指令,这些指令由再现器解释执行,再现器是一个内置于浏览器中或外部的程序。由于VR是一个三维造型和渲染的图形描述性语言,复杂的3D术语转换为动态虚拟世界是高速的硬件和浏览器,又由于其交互性强和跨平台性,使虚拟现实在Internet上有着广泛的应用,例如远程教育、商业宣传等等。 为此本公司研发出“基于VR的虚拟模型软件”,从用户的角度来说,基本上是HTML加上第三维,但从开发者角度来说, VR环境的

产生提供了一套完全的新标准,新过程以及新的Web 技术。交叉平台和浏览器的兼容性是首先要解决的问题。设计之前,必须明确指定目标平台(PC、 Mac、SGI的新O2等等), CPU速度、可以运行的带宽以及最适合使用的VR浏览器。 1.2系统功能概述 1.建模 “虚拟现实VR系统开发软件”的建造概念和其他工程建模概念相似,必须解决交流的问题,画出草图并研究材质的处理,生成模型、空间、化身,但必须考虑一些技术的限制,如,考虑到目标平台,决定在VR文件中放入多少多边图形;预先考虑到虚拟现实VR系统开发软件执行的动作,把相应的目标归类,用于设定三维物体之间的相互联系,建模与动画相互配合,如果归类正确合适,就会缩小生成动画效果之后文件的体积。虚拟现实的设计中必须考虑加入重力和碰撞的效果,以使虚拟现实的场景和生活中的相似。

虚拟仿真(虚拟现实)实验室解决方案设计

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决 方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,

虚拟现实技术简介

虚拟现实技术 虚拟现实(简称VR),又称灵境技术,是以沉浸性、交互性和构想性为基本特征的计算机高级人机界面。他综合利用了计算机图形学、仿真技术、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。使用者不仅能够通过虚拟现实系统感受到在客观物理世界中所经历的“身临其境”的逼真性,而且能够突破空间、时间以及其他客观限制,感受到真实世界中无法亲身经历的体验。 VR技术具有超越现实的虚拟性。虚拟现实系统的核心设备仍然是计算机。它的一个主要功能是生成虚拟境界的图形,故此又称为图形工作站。目前在此领域应用最广泛的是SGI、SUN等生产厂商生产的专用工作站,但近来基于Intel 奔腾Ⅲ(Ⅳ代)代芯片的和图形加速卡的微机图形工作站性能价格比优异,有可能异军突起。图像显示设备是用于产生立体视觉效果的关键外设,目前常见的产品包括光阀眼镜、三维投影仪和头盔显示器等。其中高档的头盔显示器在屏蔽现实世界的同时,提供高分辨率、大视场角的虚拟场景,并带有立体声耳机,可以使人产生强烈的浸没感。其他外设主要用于实现与虚拟现实的交互功能,包括数据手套、三维鼠标、运动跟踪器、力反馈装置、语音识别与合成系统等等。虚拟现实技术的应用前景十分广阔。它始于军事和航空航天领域的需求,但近年来,虚拟现实技术的应用已大步走进工业、建筑设计、教育培训、文化娱乐等方面。它正在改变着我们的生活。 虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。虚拟现实的明确定义不太好说,按最早提出虚拟现实概念的学者https://www.360docs.net/doc/0e9206302.html,niar的说法,虚拟现实,又称假想现实,意味着“用电子计算机合成的人工世界”。从此可以清楚地看到,这个领域与计算机有着不可分离的密切关系,信息科学是合成虚拟现实的基本前提。生成虚拟现实需要解决以下三个主要问题:

桌面虚拟现实演示系统研究与实现

桌面虚拟现实演示系统研究与实现 李玉平 张国峰 戴树岭 (北京航空航天大学先进仿真技术航空科技重点实验室 北京 100083) 摘要:讨论了一个廉价的基于PC的半沉浸式(Semi-Immersive[1])桌面虚拟现实(VR, Virtual Reality)演 示系统的实现方法。系统地阐述了桌面虚拟现实演示系统的硬件组成和系统结构,探讨了成像系统的两个 关键技术――立体显示技术和同步技术。利用该平台为某公司实现了一个机械产品演示系统。系统有较高 的性价比,具有很好的推广前景和实用价值。 关键词:虚拟现实 Semi-Immersive 被动式立体显示 背投影模式 1引言 基于投影(Projector-Based)的虚拟现实演示系统中典型的例子是CAVE。CAVE是由4面环绕投影屏幕所组成的沉浸式虚拟现实系统,它给用户较强烈的沉浸感,但这种系统均采用SGI工作站和高档工作站图形卡,成本较高。随着图形卡处理能力的提高以及CPU的快速发展,继CAVE以后,不少研究机构研究了基于PC的CAVE系统(如浙江大学的PCCAVE,德国Fraunhofer IAO的HyPI26),但这种多面立体投影的结构总体造价都不低,而且系统物理框架移动不便,降低了实用性,给其推广带来了阻力。因此对便携、廉价的投影式VR演示系统提出了要求,一种被称为半沉浸式的虚拟现实系统随之产生。 国外便携式半沉浸式虚拟现实系统典型的例子是由EVL(Electronic Visualization Lab at University of Illinois at Chicago)研究开发的ImmersaDesk系列[2]。ImmersaDesk系统一个较大特点是折叠式外形结构,该结构让整个系统可以方便地移动。该系统在会议、展示、教学培训、监控指挥等得到广泛的应用。但ImmesaDesk价格昂贵,它的系列产品之一immersaDesk R2系统,硬件(不包括软件开发)花费就在20万美元左右,不适宜普通的商用、教学或其它应用。 以系统实用性和可推广性作为设计的基本目标,本课题组自主研究开发了一个廉价的、基于PC 的、便携式的半沉浸式桌面虚拟现实系统。系统采用背投影模式,提供60英吋屏幕输出,图象帧速率为30~90HZ,分辨率为1024*768。用户戴上立体眼镜可观察到具有深度感的三维虚拟场景,同时通过操纵手持跟踪设备可实时调节观察位置和角度、抓取场景中实体。 2 系统体系结构 2.1 系统整体结构 从结构上看,系统可以分成四个部分。一是三维图形生成系统,三维图形生成系统采用两台PC,通过千兆以太网同步生成左右眼图像,生成的图像作为投影系统的输入。二是投影系统,投影系统采用背投影模式,将图形生成系统的输出信号经过反光镜的反射投影到屏幕上,这样减少投影空间,达到减少整个系统的体积的目的。三是交互系统,交互系统包括6自由度的跟踪器和立体眼镜。四是“盒子式”机械架构,它将系统硬件包含在一个带滑轮的“盒

沉浸式投影融合系统方案之欧阳歌谷创作

四通道沉浸式投影融合互动系统 欧阳歌谷(2021.02.01) 技 术 方 案 1.前言 沉浸式虚拟现实提供参与者完全沉浸的体验,使用户有一种置身于虚拟世界之中的感觉。其明显的特点是:利用显示设备把用户的视觉、听觉封闭起来,产生虚拟视觉,同时,它利用数据手套把用户的手感通道封闭起来,产生虚拟触动感。系统采用识别器让参与者对系统主机下达操作命令,与此同时跟踪器的追踪,使系统达到尽可能的实时性。临境系统是真实环境替代的理想模型,它具有最新交互手段的虚拟环境。常见的沉浸式系统有:基于头盔式显示器的系统、投影式虚拟现实系统。 沉浸式虚拟现实显示系统基于多通道视景同步技术、三维空间整形校正算法、立体显示技术的房间式可视协同环境,该系统可提欧阳歌谷创编2021年2月

供一个同房间大小的四面(或六面)立方体投影显示空间,供多人参与,所有参与者均完全沉浸在一个被三维投影画面包围的高级虚拟仿真环境中,借助相应虚拟现实交互设备,从而获得一种身临其境的高分辨率三维立体视听影像和6自由度交互感受。由于投影面几能够覆盖用户的所有视野,所以沉浸式虚拟现实显示系统能提供给使用者一种前所未有的带有震撼性的身临其境的沉浸感。这种完全沉浸式的立体显示环境,为科学家带来了空前创新的思考模式。 多通道投影融合沉浸式虚拟现实系统采用边缘融合拼接系统是指整幅投影画面由不同的投影机投射画面拼接组成,每个单独的投影画面拼接中有着投影光线和画面内容的重叠部分,通过软硬件的结合处理,消除光线重合部分的多余亮度,从而确保整幅画面上面没有任何接缝,亮度均匀一致,给观众完美的视觉冲击。(见下图)本方案中采用边缘融合大屏幕拼接。 1.1与单屏大屏幕相比,四通道投影融合沉浸式虚拟现实系统的优势 1.增加图像尺寸;画面的完整性:多台投影机拼接投射出 来的画面一定比单台投影机投射出来的画面尺寸更大;鲜艳靓丽的画面,能带给人们不同凡响的视觉冲击,采用无缝边缘融合技术拼接而成的画面,要很大程度上保证了画面的完美性和色彩的一致性。 欧阳歌谷创编2021年2月

虚拟现实系统的组成

虚拟现实系统的组成 1 构建虚拟现实系统的目的 使参与者沉浸于多维信息空间中,进行仿真、建模,获取知识和形成新概念。 目标:利用并集成高性能的计算机软硬件及各类先进的传感器,去构建一个使参与者处于身临其境的沉浸感、具有完善的交互作用、能帮助和启发构思的信息环境。 技术支持:各种传感器技术、三维显示和音响器、虚拟环境产生器、程序设计工具集、计算机高速网络和高性能计算机平台。 2 虚拟现实系统的组成 用户通过头盔、手套和话筒等输入设备为计算机提供输入信号,虚拟现实软件收到输入信号后加以解释,然后对虚拟环境数据库进行必要更新,调整当前虚拟环境视图,并将这一新视图及其它信息如声音立即传送给输出设备,以便用户及时看到效果。 系统由输入部分、输出部分、虚拟环境数据库、虚拟现实软件组成。 2.1输入部分 虚拟现实系统通过输入部分接收来自用户的信息。用户基本输入信号包括用户的头、手位置及方向、声音等。其输入设备主要有: (1)数据手套 用来监测手的姿态,将人手的自然动作数字化。用户手的位置与

方向用来与虚拟环境进行交互。如在使用交互手套时,手势可用来启动或终止系统。类似地,手套可用来拾起虚拟物体,并将物体移到别的位置。 (2)三维球 用于物体操作和飞行控制。 (3)自由度鼠标 用于导航、选择及与物体交互。 (4)生物传感器 用来跟踪眼球运动。 (5)头部跟踪器 通常装在HMD头盔上跟踪头部位置,以便使HMD显示的图像随头部运动而变化。用户头的位置及方向是系统重要的输入信号,因为它决定了从哪个视角对虚拟世界进行渲染。 (6)语音输入设备 通过话筒等声音输入设备将语音信息输入,并利用语音识别系统将语音信号变成数字化信号。 2.2 输出系统 虚拟现实系统根据人的感觉器官的工作原理,通过虚拟现实系统的输出设备,https://www.360docs.net/doc/0e9206302.html,使人对虚拟现实系统的虚拟环境得到虽假犹真、身临其境的感觉。主要是由三维图像视觉效果、三维声音效果和触觉 (力觉)效果来实现的。 (1)三维图像生成与显示

虚拟现实简介

虚拟现实技术简介 虚拟现实(VR-Virtual Reality),也称虚拟实境或灵境,是一种可以创建和体验虚拟世界的计算机系统,它利用计算机技术生成一个逼真的、具有视、听、触等多种感知的虚拟环境,用户即可以简单的通过网页浏览、应用程序查看时键盘和鼠标的操作甚至通过使用各种交互设备,同虚拟环境中的实体相互作用,使之产生身临其境感觉的交互式视景仿真和信息交流,是一种先进的数字化人机接口技术。 与传统的模拟技术相比,虚拟现实技术的主要特征是:操作者能够看到三维实体、逼近真实的场景,结合环幕等硬件设备可以使操作者真正进入一个由计算机生成的交互式三维虚拟现实环境中,与之产生互动,进行交流。通过参与者与虚拟仿真环境中对象的相互作用,并借助人本身对所接触事物的感知和认知能力,帮助启发参与者的思维,以全方位地获取虚拟环境所蕴涵的各种空间信息和逻辑信息。这是符合人类认知过程一种计算机技术。 沉浸/临场感和实时交互性是虚拟现实的实质性特征,对时空环境的现实构想(即启发思维,获取信息的过程)是虚拟现实的最终目的。虚拟现实技术的先进特性使得该项技术应用于各行各业的模拟仿真研究中,并切实有效地指导了生产实践。自从虚拟现实技术诞生以来,它已经在军事模拟、先进制造、城市规划/地理信息系统、医学生物等领域中发挥了巨大的经济、军事和社会效益。预言家们预言虚拟现实技术在不远的将来虚拟现实技术就会象当年地计算机一样应用于社会生产实践的各个领域,它与网络、多媒体将并称为21世纪最具应用前景的三大技术。 目前已经众多国内外的公司退出了自己的虚拟现实技术解决方案,包括软件的解决方案和硬件的解决方案,更多的是软硬件结合的解决方案。好的软件也需要好的硬件来配合实现身临其境的效果,因此这是一个系统工程,技术门槛不高,但实际应用难度大。

虚拟现实

虚拟场景摄制---调研 应用和产业背景 什么是虚拟现实 虚拟现实(VirtualReality.简称VR)是一种多通道的新型人机交互接口。人们可以通过视觉、听觉、触觉和加速度等多种感觉通道感知计算机模拟的虚拟世界。可以通过移动、语言、表情、手势和视线等最自然的方式和虚拟世界交互。从而产生身临其境的体验。虚拟现实技术是计算机技术、传感器技术、人机交互技术、人工智能技术等多种技术的综合发展。目前已经在军事、医疗、教育、娱乐、制造业、工程训练等各个方面得到应用。它被认为是当前及将来影响人们生活的重要技术之一。 虚拟现实的研究开发工作可追溯到80年代初。如1983年美国国防部制定了SIMENT的研究计划;1985年SGI公司成功开发了网络VR游戏DogFlight。到90年代初,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:虚拟战场环境,当兵模拟训练,实施诸军兵种联合演习,指挥员训练。 目前虚拟现实系统主要划分为四个层次:一是桌面虚拟现实系统,也称为窗口中的VR。它可以通过桌上型机实现,所以成本比较低,功能比较简单,主要用于CAD(计算机辅助设计)、CAM(计算机辅助制造)建筑设计、桌面游戏等领域。二是增强现实性虚拟现实系统,又称为混合虚拟现实系统,它是把真实环境和虚拟环境结合起来的一种系统。三是沉浸虚拟现实系统,例如各种用途的体验器,使人有身临其境的感觉,各种培训、演示以及高级游戏等用途均可用这种系统。四是网络分布式虚拟现实系统,它在因特网环境下,充分利用分布于各地的资源,协同开发各种虚拟现实的利用。网络分布式虚拟现实将分散的虚拟现实系统或仿真器通过网络连接起来,采用协调一致的结构、标准、协议和数据库,形成一个在实践和空间上相互耦合的虚拟/合成环境,参与者可自由地进行交互作用。目前,分布式虚拟交互仿真已经成为国际上的研究热点,相继推出了DIS、MA等相关标准。网络分布式虚拟现实在航天中极具应用价值,例如,国际空间站的参与国分布在世界不同区域,分布式虚拟现实训练环境不需再各国重建仿真系统,这样不仅减少了研制费用,而且也减少了人员出差费用和异地生活的不适。 虚拟现实的特征 沉浸感,是指作为主角的人感受到的虚拟环境的真实性。理想的虚拟环境应该达到使用户难以分辨真假的程度,从而用户全身心的投入到计算机创造的三维虚拟环境中;该环境中的一切看上去都是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来是真的,如同在现实世界中一样。 交互性,是指用户对虚拟环境内的物体的可操作程度和从环境得到反馈的自然程度。例如,用户可以用手直接抓取虚拟环境中的物体,手有触摸感,并可以感觉物体的重量。 想象力,是指用户沉浸在多维信息空间中,依靠自己的感知和认识能力全方位的获得知识,发挥主观能动性,寻求解答,形成新的概念。 虚拟现实系统的类型 虚拟现实系统根据用户参与形式的不同一般分为4种模式:桌面式、沉浸式、增强式和分布式。桌面式,使用普通显示器或立体显示器作为用户观察虚拟环境的一个窗口;沉浸式可以利用头盔式显示器、位置跟踪器、数据手套和其他装备,

沉浸式虚拟现实VR一体机系统

沉浸式虚拟现实VR一体机系统 系统概述 VR是Virtual Reality的缩写,译为中文即“虚拟现实”,该技术融合了计算机3D图形技术、计算机仿真技术、传感器技术、显示技术等多种科学技术,在多维信息空间上创建一个虚拟信息环境,能使用户具有身临其境的沉浸感和模拟现实环境的交互性,有助于加深感受、启发认知。因此,VR系统环境具备沉浸感、交互性、构想性这三个基本特性。 VR虚拟现实的关键技术主要包括模拟环境三维图形处理技术、位置追踪技术、触觉或力觉反馈、智能传感设备各等。理想的VR体验,是基于计算机生成逼真的三维立体虚拟环境,借助VR输入/输出设备体会到人体正常应感应到的视觉、听觉、触觉、力觉、运动等所有感知,甚至还包括嗅觉和味觉等,并利用位置追踪技术,对头部转动、眼睛、手势等其它行为动作进行采集,由计算机处理体验者动作的相应数据,并做出实时响应和反馈。 随着移动互联网技术、人工智能技术的发展,推动了VR虚拟现实技术在工业、医疗、教育、军事等多个领域的应用,沉浸式虚拟现实设备因实用便携、最能展现虚拟现实效果而成为未来主要的发展趋势,由于沉浸式交互技术、VR外 设硬件技术的不断突破,VR技术也逐步朝着完整成熟的产业化方向发展。 VR产业现状分析 VR产业覆盖了硬件、系统、平台、开发工具、应用以及消费内容等诸多方面,

作为一个处于技术创新井喷期的产业,VR虚拟现实的想象空间和市场前景十分广阔,全球科技巨头纷纷投身其中。目前,VR作为新兴产业,其技术要求高、资源投入大,产业链的部分环节相对比较单薄,国内VR产业主要集中在硬件制作环节,而内容与工具提供商,尤其是内容平台搭建者,主要以国际大型IT科技公司为主。 尽管目前VR/AR行业都处于起步阶段,但整个市场未来增长潜力巨大:根据Digi Capital预测至2020年,全球AR与VR市场规模将达到1500亿美元,而根据市场研究机构BI Intelligence的统计,2020仅年头戴式VR硬件市场规模将达到28亿美元,未来5年复合增长率超过100%。在过去的2015年,VR毫无疑问成为资本市场最受热捧的风口。 2016年,VR将在全世界范围内迎来行业大爆发,成为互联网科技界新一代的智能硬件入口。由于VR带来的时代颠覆性,国内外各大型知名高新科技公司纷纷进驻VR产业,寻求下一个发展切入点: ?国内:腾讯进入VR领域,发布“TOS+”智能硬件开放平台,布局虚拟现实产品在内的智能硬件生态圈;百度视频成立VR频道,成为BAT中投入VR 领域的首一家;暴风、360、小米、迅雷、京东等知名互联网公司也纷纷开发其VR产品迅速占据国内主流市场。 ?国外:索尼PS VR、HTC Vive、Facebook旗下的Oculus、三星GearVR、微软VR Kit、谷歌Cardboard成为国际VR消费级市场主流产品;Magic Leap

各种虚拟现实软件比较

各种虚拟现实软件比较 辣条|2013-09-29 11:13|次浏览|Unity(261) 虚拟现实软件的好坏问题争论了很久,相信也会一直争论下去,软件的好坏本身就是相对的,因此使用者更应该从自身的角度和所处的行业特点来选择适合自己的软件. virtools 接近于微型游戏引擎,互动性强大,目前被认为是功能最强大的元老级虚拟现实制作软件.学 习资料也比较多,开发WEB3D游戏的首选浏览插件10M左右的庞大体积是个瓶颈,但是随 着国内带宽的增加,这方面的影像已经越来越显得微不足道了。他的应用将有着无限的前景! QUEST3D 也是元老级的软件了,曾经的超牛DEMO让许多人热捧,且好像是节点式的操作,比较强大. vrml q3d vt vgs vrp cult3d quest3d anark,画质也比较优异,入门难度有,浏览插件2M左右,算是中级化,也可以适应亚洲. UNITY 3D DEMO的高质量致使许多人热捧,画质确实够强,互动性近期也有几个游戏式的作品,也可以 说明UNITY是有很强的互动性的,运行于MAC系统上,所以目前用的人比较少.有强大的地 形绘制器,这个是比较引以为荣的,浏览插件大概3M左右。 TURNTOOL 此虚拟现实制作软件,在展示方面比较擅长,画质国内的和WEBMAX差不多.资料还是比较少,英文好的朋友可以去TT的官方论坛看老外的教程,以插件的方式嵌入3DMAX里,导出比 较简易,也是为数不多的轻量级WEB3D软件.浏览插件在800K左右,也适合亚太地区的带宽 承受范围。 GLUT - OpenGL Utility Toolkit GLUT 是一个与操作系统无关的OpenGL程序工具库, 它实现了可移植的OpenGL窗口编程 接口,GLUT支持C/C++、FORTRAN、ADA。工具包当前版本号为3.7,支持OpenGL多 窗口渲染、回调事件处理、复杂的输入设备控制、计时器、层叠菜单、常见物体绘制函数、各种窗口管理函数等。GLUT不是一个全功能的开发包,并不适合大型应用的开发,它只 为中小应用而设计,特别适合初学者学习和应用OpenGL,由此入门相对容易。 SGI OpenGL Peformer SGI公司是业界的领导厂商之一,在实时可视化仿真或其它对显示性能要求高的专业3D图形应用领域里,OpenGL Performer为创建此类应用提供的强大而容易理解的编程接口。Performer可以大幅度减轻3D开发人员的编程工作,并可以容易地提高3D应用程序的性能。它的软件模块对数据的组织和显示做了广泛的优化。 OpenGL Performer是SGI可视化仿真系统的一部分。它提供了访问Onyx4 UltimateVision、SGI Octane、SGI VPro图形子系统等SGI视景显示高级特性的接口。Performer和SGI图 形硬件一起提供了一套基于强大的、灵活的、可扩展的专业图形生成系统。Performer已 经被移植到多种图形平台,在使用的过程中,用户不需要考虑各种平台的硬件差异。

虚拟现实技术介绍

虚拟现实技术介绍 虚拟现实(VR-----Virtual Reality),也称灵境,是一种可以创建和体验虚拟世界的计算机技术,它汇集了计算机图形学、多媒体技术、人工智能、人机接口技术、传感器技术、高度并行的实时计算技术和人的行为学研究等多项关键技术。它利用计算机技术生成一个逼真的、具有视、听、触等多种感知的虚拟环境,用户通过使用各种交互设备,同虚拟环境中的实体相互作用,使之产生身临其境感觉的交互式视景仿真和信息交流。 虚拟现实的主要特征是:多感知性(Multi-Sensory)、浸没感(Immersion)、交互性(Interactivity)、构想性(Imagination)。虚拟现实系统具有融合海量信息、逼真再现实景、表现形式新颖直观、传播范围遍及全球、异地浏览方便快捷、内容更新快速简单、互动参与趣味多多等独特优势和特征。 本公司采用空间信息技术和虚拟现实技术开发的系统具有如下功能特点: (1)、支持虚拟漫游,临场体验 实现场景虚拟漫游,用户可以自由的漫步其间,可以快速到达想去的地方,这一切都由用户亲手控制。本系统可以通过键盘、鼠标或操纵杆实现前、后、左、右、上、下方向的位移,同时可以实现左转、右转、仰视、俯视等功能。用户观看不受限制时间、空间的限制,能根据他们的意志探索整个环境,选择他们自己想体验的东西。

(2)、支持建筑或设备的信息查询及定位功能 我们将在系统中建立建筑或设备的信息数据库,通过输入建筑或设备名称,可快速定位到相应的区域或者对象上,同时可以迅速获得相关的数据信息,包括文字介绍、图像、视频、动画、背景音乐以及配音解说等等。 (3)、支持多媒体资源超链接 可以将与该建筑或设备相关的视频、音频、实景图片、动画、电子文档等多媒体资源整合在该系统中,采用超链接形式,只需用鼠标轻轻一点,即可调出所需资料。 (4)、支持导航地图 可建立一个平面导航地图,使用户清楚了解自身所处地理位置,并可以利用该地图迅速到达指定地点,该地图可以缩小、放大或隐藏。 (5)、支持自动漫游和自主漫游的切换 可以在没有任何人工操作的时候,进入自动漫游模式,画面将沿着实现录制好的路径进行自动漫游,同时音乐会随着到达不同的地点而切换,在自动漫游的时候,用户也可随时控制停止,进入自主漫游。 (6)、支持多方案替换对比 在系统中实现不同设计的方案切换,为设计方案的选择提供一个方便直观的讨论环境,可以对比不同的设计所反映的效果,如方案对比、建筑高度调整、光影分析等。 (7)、支持分区规划 这个功能在数字城市中用途非常广泛。可以将整个城市分成几个

(完整版)虚拟现实技术考试题及答案

虚拟现实技术试题(一) 1、虚拟现实是一种高端人机接口,包括通过视觉、听觉、触觉、嗅觉和味觉等多种感觉通道的实时模拟和实时交互。 2、虚拟现实与通常CAD系统所产生的模型以及传统的三维动画是不一样的。 3、虚拟现实技术应该具备的三个特征:Immersion(沉浸) Interaction(交互) Imagination(想象) 4、一个典型的虚拟现实系统的组成主要由头盔显示设备\多传感器组\力反馈装置 5、从虚拟现实技术的相关概念可以看出,虚拟现实技术在人机交互方面有了很大的改进。常被称之为“基于自然的人机界面”计算机综合技术,是一个发展前景非常广阔的新技术。 6、根据虚拟现实对“沉浸性”程度和交互程度的不同,可把虚拟现实系统划分为四种典型类型沉浸式\桌面式\增强式\分布式。 7、有关虚拟现实的输入设备主要分为两类。三维位置跟踪器 8、在虚拟现实系统的输入设部分,基于自然交互设备主要有力反馈设备\数据手套\三维鼠标. 9、三维定位跟踪设备是虚拟现实系统中关键设备之一,一般要跟踪参与对象的宽度、高度、深度、俯仰角(pitch)、转动角(yaw)和偏转角(roll),我们称为6自由度(6DOF)。 10、空间位置跟踪技术有多种,常见的跟踪系统有机械跟踪器\电磁跟踪器\超声波跟踪器\惯性跟踪器\光学跟踪器。 11、所谓力反馈,是运用先进的技术手段将虚拟物体的空间无能运动转变成物理设备的机械运动,使用户能够体验到真实的力度感和方向感,从而提供一个崭新的人机交互界面。该项技术最早应用于尖端医学和军事领域。 12、立体显示技术是虚拟现实系统的一种极为重要的支撑技术。要实现立体的显示。现已有多种方法与手段进行实现。主要有互补色\偏振光\时分式\光栅式\真三维显示 . 12、正是由于人类两眼的视差,使人的大脑能将两眼所得到的细微差别的图像进行融合,从而在大脑中产生有空间感的立体物体视觉。 13、HMD(Head_Mounted_Display),头盔式显示器,主要组成是显示元件\ 光学系统 14、洞穴式立体显示装置(CAVE Computer Automatic Virtual Enviroment)系统是一套基于高端计算机的多面式的房间式立体投影解决方案,CAVE主要组成由高性能图形工作站\投影设备\跟踪系统\声音系统。 13、三维视觉建模又可细分为几何建模、物理建模、行为建模技术,分别是基于物体的几何信息来描述物体模型的建模方法、涉及到物体的物理属性,行为建模反映研究对象的物理本质及其内在的工作原理。 14、在真实感实时绘制技术中,为了提高显示的逼真度,加强真实性,常利用的方法有纹理映射\反走样 \环境映射。 15、在基于几何图形的实时绘制技术实现过程中,目前有下面几种用来降低场景的复杂度,以提高三维场景的动态显示速度的方法:预测计算法、脱机计算法、3D剪切法、可见消隐法、细节层次模型法。其中细节层次模型法应用较为普遍。16、为了保证虚拟环境的真实性,常需要对虚拟物体进行碰撞检测,实现方法有多种,但其中的层次包围盒法方法是碰撞检测算法中广泛使用的一种方法,它是解决碰撞检测问题复杂性的一种有效方法。 实时绘制技术\场景简化\快速消隐\纹理化对象\限时绘制\ 17、VRML(Virtual Reality Modeling Language)即虚拟现实建模语言。是一种用于建立真实世界的场景模型或人们虚构

【CN109754646A】桌面式虚拟现实教学系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910169499.1 (22)申请日 2019.03.06 (71)申请人 广州南洋理工职业学院 地址 510900 广东省广州市从化环市东路 1123号 (72)发明人 刘红玲 周合均 万的 钟庆鹏  (74)专利代理机构 北京远大卓悦知识产权代理 事务所(普通合伙) 11369 代理人 程丽娜 (51)Int.Cl. G09B 5/02(2006.01) G09B 7/02(2006.01) G06F 3/01(2006.01) (54)发明名称 桌面式虚拟现实教学系统 (57)摘要 本发明公开了一种桌面式虚拟现实教学系 统,包括:桌体,其包括箱体,箱体顶端设置可开 合的第一桌板,箱体内设置可升降的触摸显示 屏;箱体的两侧以及前端均设置移动挡板;支撑 装置;虚拟现实系统,其包括处理器和VR头显;虚 拟现实模块用于将虚拟数据以三维动态视景的 方式展现,并传输至处理器;问答同步模块用于 将学生的问题同步到讲解的虚拟场景内,并短视 频录制或者是画面截屏保存图片传输至问答再 现模块进行归纳整理;问答解答模块,其接收短 视频或者图片将解答传输至问答再现模块,同时 向处理器发送匹配信号。本发明将虚拟现实结合 教学应用于桌面,并在虚拟教学中设置问答同步 和后续解疑环节,便于学生虚拟现实教学展开以 及学习效率的提高。权利要求书2页 说明书6页 附图2页CN 109754646 A 2019.05.14 C N 109754646 A

权 利 要 求 书1/2页CN 109754646 A 1.一种桌面式虚拟现实教学系统,其中,包括: 桌体,其包括中空结构的箱体,所述箱体顶端设置开口,所述开口处设置以可转动的方式连接的第一桌板,所述第一桌板底端设置以可升降的方式连接于所述箱体内的第二桌板,所述第二桌板的顶端设置第一凹槽,所述第一凹槽内设置与所述第一凹槽适配的触摸显示屏,所述触摸显示屏底端设置位于所述第一凹槽内,以固定所述触摸显示屏的固定板;所述第一桌板的底端横向设置多个与所述固定板顶端适配的第二凹槽;所述箱体的两侧以及前端均设置以可上下移动的方式连接的挡板; 支撑装置,其设置在所述箱体的底端,所述支撑装置包括设置在所述箱体底端一侧的支撑腿以及设置在所述箱体底端另一侧的支撑箱; 虚拟现实系统,其包括与所述触摸显示屏连接的处理器和与所述处理器连接的VR头显,所述处理器控制所述第二桌板的升降; 虚拟数据存储模块,其用于存储与教学知识相关的虚拟数据,所述虚拟数据存储模块设置有输入端口; 虚拟现实模块,其连接到所述虚拟数据存储模块,所述虚拟现实模块用于将所述虚拟数据以三维动态视景的方式展现,并传输至所述处理器; 问答同步模块,其连接到所述虚拟现实模块,所述问答同步模块用于将学生的问题同步到讲解的虚拟场景内,并对讲解的所述虚拟场景进行短视频录制或者是画面截屏保存图片; 问答再现模块,其连接到所述问答同步模块,以接收记录有所述学生问题的所述短视频或者图片进行归纳整理;并将反馈的所述学生的问题的解答整理归纳至相应的所述学生的问题下;以及 问答解答模块,其用于存储相关教学中遇到的多种问题以及对应所述问题的多种解答,并在接收所述问答再现模块传输的所述短视频或者图片后,将所述学生的问题的多种解答传输至所述问答再现模块,同时向所述处理器发送匹配信号。 2.如权利要求1所述桌面式虚拟现实教学系统,其中,所述虚拟显示系统还包括教师解答模块,其连接到所述处理器,当所述处理器接收到所述匹配信号为成功时,则所述教师解答模块不启动;当所述处理器接收到所述匹配信号为未成功时,则所述处理器同时向所述问答同步模块和教师解答模块发送信号,以使所述问答同步模块将所述学生的问题传输至所述教师解答模块,通过所述教师解答模块使教师连线对应的学生对所述学生问题进行解答分析。 3.如权利要求2所述桌面式虚拟现实教学系统,其中,所述虚拟现实系统还包括连接到所述处理器的摄像语音模块,所述摄像语音模块用于在所述教师解答模块启动时教师连线对应的学生进行语音视频。 4.如权利要求1所述桌面式虚拟现实教学系统,其中,所述虚拟现实系统还包括连接到所述处理器的语音传递模块,所述语音传递模块用于将教师讲解教学的语音传递至所述虚拟场景内。 5.如权利要求1所述桌面式虚拟现实教学系统,其中,所述固定板底端设置辅助支撑装置,其包括支撑杆和与所述支撑杆适配的多组定位孔,所述支撑杆以可转动的方式设置在所述第一凹槽内,并与所述固定板的底端相对;多组定位孔对称设置在所述固定板的底端, 2

相关文档
最新文档