二 、物质的聚集状态
物质的聚集状态

• (3)胶体的应用:自来水厂用含铝或含铁的化合 物做净水剂,其实是利用胶体吸附水中的悬浮 颗粒并沉降,从而到达净水的目的。
3.溶液的导电性
• 为什么溶液会NaCl、NaOH、盐酸发生 导电而酒精、蔗糖溶液不导电?溶液导电 的本质原因是什么? • 【分析】水溶液中的化合物在水分子的 作用下发生电离,生成了自由移动的水合 离子,从而使溶液具有导电性。
点燃
H2 + Cl2 ==== 2HCl 化学计量数γ之比 1 :1 : 2 微粒个数之比 1 :1 : 2 扩大NA倍 1×NA :1×NA : 2×NA 物质的量之比 1mol :1mol : 2mol 22.4L :22.4L : 44.8L 相同条件下气体体积比 1体积 : 1体积 : 2体积 结论:对于气体物质,因为相同条件下分子数相等,物质的量相等、物 质的体积也相等,所以化学反应中物质的系数之比等于相同条件下气体的体积比,即 1LH2和1LCl2完全反应生成2LHCl气体。
• 钠、镁、铝与过量的盐酸反应,在相同状况下产生H2 的体积相等,则钠、镁、铝三种金属的物质的量之比 是_______________________ • 问题表征:已知:生成的H2的体积相等 求 解目标:三种金属的物质的量之比 • 思路分析:此题容易一般用方程式来解,但比较繁, 可以采用关系式法求解。 • 钠、镁、铝建立关系,关系依据是“反应生成H2的体 积相等”。产生H2的体积相等,即是金属化合价变化 总数相等。 • 6Na ~ 3Mg ~ 2Al ~ 6H ~ 3H2
• 5.______g 硫酸铝溶于水可得使溶液中所 含铝离子刚好为amol。 • 问题表征:已知Al3+的物质的量 求解目 标: Al2(SO4)3的质量 • 思路分析:可根据Al3+与Al2(SO4)3的关系列 比例式解决。 • 解答: Al2(SO4)3 → 2Al3+ • 342g 2mol • m Al2(SO4)3 amol
大学化学物质的聚集状态

04 固态物质
晶体结构
1 2 3
晶体结构定义
晶体是由原子、分子或离子按照一定的规律在三 维空间内周期性重复排列形成的固体物质。
晶体分类
根据晶体内部原子、分子或离子的排列方式,晶 体可以分为离子晶体、原子晶体、分子晶体和金 属晶体等。
晶体性质
晶体具有规则的几何外形、固定的熔点和各向异 性的特点。
非晶体结构
高分子溶液的特性与应用
特性
高分子溶液的特性主要包括溶液粘度较高、稳定性较好、不易结晶等。这些特性使得高分子化合物在 许多领域都有广泛的应用,如塑料、橡胶、涂料、粘合剂等。
应用
高分子溶液在工业生产和科学研究中具有广泛的应用,如制备高分子材料、改善材料性能、制备高分 子复合材料等。此外,高分子化合物在生物医学领域也有广泛应用,如制备药物载体、组织工程支架 等。
胶体的性质
胶体具有丁达尔效应、布朗运动、电泳和电渗等性质。这些性质与胶体粒子的大 小和带电性质密切相关,是胶体区别于其他分散体系的重要特征。
大分子溶液的定义与性质
大分子溶液的定义
大分子溶液是由高分子化合物溶解于溶剂中形成的均一、透 明、稳定的溶液。
大分子溶液的性质
大分子溶液具有粘度较大、扩散系数较小、不易渗透等性质 ,这是因为高分子化合物在溶液中能够形成较大的分子链, 对溶剂分子产生较大的阻力。
大学化学物质的聚集状态
contents
目录
• 物质的聚集状态简介 • 气态物质 • 液态物质 • 固态物质 • 溶液的聚集状态 • 胶体与大分子溶液
01 物质的聚集状态简介
聚集状态的定义
聚集状态是指物质在一定条件下所呈 现的空间形态,包括单个分子、分子 间相互作用形成的聚集集体以及更大 尺度的物质结构。
物质的聚集状态

物质的聚集状态
物质的聚集状态主要有气态、液态、固态和等离子态等。
气态是物质的一种聚集状态,特点是分子间的距离较大,分子间的相互作用力很微弱,分子可以自由运动。
液态是物质的一种聚集状态,特点是分子间的距离较小,分子间的作用力较大,分子可以有限制地运动。
固态是物质的一种聚集状态,特点是分子间的距离很小,分子间的作用力很大,分子只能在平衡位置附近振动。
此外,还有等离子态、超固态和玻色-爱因斯坦凝聚态等其他聚集状态。
当气体中分子运动更加剧烈,成为离子、电子的混合体时,称为等离子态;当压强超过百万大气压时,固体的原子结构被破坏,原子的电子壳层被挤压到原子核的范围,这种状态称为超固态;有些原子气体被冷却到纳开(10-9K)温度时,被称为气体原子(玻色子)都进入能量最低的基态,称为玻色–爱因斯坦凝聚态。
物质的四种聚集状态

物质的四种聚集状态
物质存在四种不同的聚集状态,包括固体、液体、气体和等离子体。
这些状态的区别在于原子或分子之间的相互作用和排列方式。
固体是一种最密实的聚集状态,其中原子或分子紧密排列在一起。
它们的形状和体积都是固定的,不像液体或气体那样随着温度或压力的变化而改变。
例子包括冰、岩石和金属。
液体是一种聚集状态,其中原子或分子之间的相互距离比固体稍大,但比气体小。
液体的形状是不稳定的,而体积是固定的。
液体的分子之间存在相互作用,因此液体可以流动。
例子包括水、牛奶和汽油。
气体是一种聚集状态,其中原子或分子之间的距离比液体和固体更大。
气体的形状和体积都是不稳定的,可以根据温度和压力的变化而变化。
气体的分子之间的相互作用很弱,因此气体可以自由流动。
例子包括氧气、氮气和二氧化碳。
等离子体是一种高能状态下的物质,其中原子或分子被剥离电子,形成带正电荷的离子。
等离子体存在于极端条件下,如太阳表面、闪电和等离子体切割器中。
它们通常表现出高温、高压和高电流的特性,因此在工业和科学中具有广泛的应用。
- 1 -。
第2章 物质的聚集状态

第2章物质的聚集状态(3学时)2.1 概述2.2 理想气体2.3 溶液2.4 固体—晶体物质的聚集状态:气体、液体、固体以及超临界液体等物质的聚集状态物质由分子组成,在通常情况下,物质呈固态、液态和气态。
固体:有一定的体积和一定的形状液体:有一定的体积气体:没有固定的体积和形状。
组成物质的分子是不停地运动的,并且分子间存在着相互作用力(引力和斥力)。
固体内部粒子的相互作用力最强,液体次之,气体最弱。
2.1 概述1. 相态(phase):是物质的状态(或简称相,也叫物态)指一个宏观物理系统所具有的一组状态。
一个态中的物质拥有单纯的化学组成和物理特性(如密度、晶体结构、折射率等)。
2.相图表达一系列温度压力下的相平衡关系右图区:液相区,固相区,气相区和超临界区线:两相平衡区,S-L线(BD),S-G线(AB),L-G线(BC)点:三相共存点:B点,临界点:C点,Tc:临界温度,Pc:临界压力✧三相点:273.16K,610.75Pa ✧临界点:647.29K, 22.09MPa水的相图临界点与超临界态✧在临界点以下,气态和液态之间具有显著区别✧在临界点以上,这种区别将不复存在✧这种状态称为:超临界流体(supercritical fluid,简称SCF)如:水的临界点为T= 374.3℃,P c = 22.09MPa,c在此临界点以上,就处于超临界状态,该状态的水就称为超临界水。
超临界流体特点:具有液体和气体的优点,密度大,粘稠度低,表面张力小,有很强的溶解能力。
CO2:临界温度较低(Tc=364.2K),临界压力也不高(Pc=73.8MPa),无毒,无臭,不污染环境,实际工作中使用较多的事超临界流体。
如:用超临界CO:2从咖啡豆中除去咖啡因从烟草中脱除尼古丁大豆或玉米胚芽中分离甘油酯轻易穿过细菌的细胞壁,在其内部引起剧烈氧化反应,杀死细菌。
超临界流体在绿色化工工艺的开发研究中具有重要的价值。
其他聚集态当温度足够高时,外界提供的能量足以破坏分子中的原子核和电子的结合,气体就电离成自由电子和正离子,即形成物质的第四态——等离子态(plasma),电离气体。
物质的聚集状态

物质的聚集状态一、物质的聚集状态物质的聚集状态主要有气态 、 液态 和 固态 三种。
不同聚集状态物质的特性为:物质的聚集状态微粒结构微粒运动方 式宏观性质形状体积压缩微粒排列紧密,微固态粒间的空隙很小在固定的位置上振动固定固定几乎不能微粒排列较紧密, 液态微粒间空隙较小可以自由移动 不固定 固定 不易气态 微粒间距离较大 可以自由移动 不固定 不固定 容易【知识拓展】①固体的构成粒子(分子、原子或离子)不能自由移动,但在固定的位置上会发生振动。
②溶液中的粒子及在一定空间范围内的气体粒子能自由移动。
③固体可以分为固体可以分为晶体和非晶态物质。
二、 1mol 不同物质体积的比较状密度( 273K ,1mol 物结论3相同条件下, 1mol 固 3体的体积不同33相同条件下, 1mol 液物质摩尔质量( g ·mol -1 )态101kPa )质体积Fe55.857.86g ·cm -37.11cm 固Al26.982.7g ·cm -39.99cm 态Pb207.2 11.3g ·cm -318.34cm液H 2 O18.020.998g ·cm -318.06cm态 C 2H 5 OH 46.07 0.789 g ·cm -358.39cm 3 体的体积不同H 2 2.016 0.0899g ·L-122.42 L 相同条件下,1mol 气气N 228.02 1.25g ·L -122.42 L 体的体积相同,在标态CO 28.01 1.25g ·L -122.41 L 准状况下约为22.4 L三、影响物质体积大小的因素1. 物质体积的大小取决于构成这种物质的粒子数目、粒子的大小和粒子间的距离三个因素。
1mol 任何物质中的粒子数目大致相同的,即为 6.02 ×1023 。
因此1mol 物质的体积大小主要决定于构成物质的粒子大小和粒子间距离。
专题01 物质的聚集状态及物质分类、胶体(知识梳理+专题过关)(解析版)

专题01 物质的聚集状态及物质分类、胶体考点1 物质的聚集状态1.常见的物质有三种聚集状态,固态、液态、气态。
不同聚集状态的特性主要由构成物质的微粒之间的平均距离_和作用力及运动方式有关。
2.物质的聚集状态变化:改变微粒间距离的远近与微粒间作用力的强弱,能改变物质的聚集聚集状态 宏观性质(共性)微观性质(共性)是否有固定的形状是否可以被压缩微粒间距离的远近微粒间作用力的强弱气态 无 可以 远 弱 液态 有 否 较近 较弱 固态 有否镜强(熔化) (凝固)(汽化 ) (液化 )(升华 ) (凝华)固态 液态 气态状态,即改变温度和压强等条件。
升高温度,微粒间距离变大,微粒间作用力变大。
增大压强,微粒间距离变小,微粒间作用力变大。
【典例1】下列关于物质聚集状态的说法错误的是()A.物质只有气、液、固三种聚集状态B.气态是高度无序的体系存在状态C.固态中的原子或者分子间结合较紧凑,相对运动较弱D.液态物质的微粒间距离和作用力的强弱介于固、气两态之间,表现出明显的流动性【答案】A【解析】物质除了气、液、固三种聚集状态之外,还存在等离子态及其他状态。
【典例2】下列关于物质聚集状态的说法正确的是()A.气体有固定的形状和体积B.固体、液体不易被压缩的原因是构成的微粒直径太大C.影响物质聚集状态的外界因素主要是温度D.不同聚集状态的物质其内部微粒之间的平均距离、作用力和运动方式各不相同【答案】D【解析】A中气体并没有固定的形状以及体积;B中固体、液体不易被压缩的原因是构成微粒之间距离较近,微粒间存在较大的斥力;C中影响物质聚集状态的外界因素主要温度和压强;【典例3】下列对生活中常见现象的正确解释是()A.汽化:舞台上常用干冰制作“云雾”效果B.液化:从冰箱里取出的鸡蛋过一会儿会“出汗”C.升华:冰雪消融D.凝固:冬日温暖的车内窗玻璃会变模糊【答案】B【解析】A干冰起雾是升华:C中冰雪消融是熔化;D中温暖的车窗变得模糊是窗外的水汽遇到温暖的车窗气体变化为液体。
物质的聚集状态

同温同压下,1mol任何气体的体
积都相等,但未必等于22.4L。
使用气体摩尔体积时应注意
(1)只适用于气态物质,对于固态物质 和液态物质来讲,都是不适用的。 (2)可适用于混合气体 (3)并不是只有标准状况下气体摩尔体 积是22.4 L·mol-1 ,非标准状况下也有 可能,当把22.4 L·mol-1 用于计算时必 须是标准状况。
决定气体体积 的主要因素
粒子的数目
粒子的大小
可以忽略 可以忽略
粒子的间距
二、决定气体体积的因素
1. 粒子的数目
2. 粒子间的距离 思考:气体分子间的距离和什 么有关?
温度越高,
气体分子
间距越大; 体积越大;
压强越大,
气体分子
间距越小; 体积越小;
思考:气体分子间的距离 和什么有关?
当粒子数目一定时:
物质的聚集状态
物质有固、液、气三种状态,三种状态有何差异? 从微观角度解释这三种状态存在差异的原因。
Fe
固体
H2O
液体
H2
气体
物质的聚集状态主要有气态、液态、固态三
种,这是宏观的;
其微观原因就是原子或分子聚集结构不同。
那么气态、液态、固态在宏观性质和微观结 构上到底有何差别呢?
不同聚集状态物质的结构与性质
气 态
Fe
H2O
Pb
H2SO4
1mol 任何物质所含的微粒数
目都相同,1mol 物质的质量往往
不同。1mol 物质的体积是否相同 呢?
表一
(表中所列物质的密度均为293K下的测定值) 物质 Al 物质的 质量 量(mol) (g) 1 27 密度 体积 (g· cm-3) ( cm-3 ) 2.7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 物质的聚集状态
一、物质体积的决定因素
1.物质体积的决定因素:微粒的数目;微粒的大小;微粒之间的距离
2.不同聚集状态的物质体积的决定因素
1mol 固体或液体的体积主要取决于微粒的大小
1mol 气体物质的体积主要取决于微粒间的距离
二、气体摩尔体积
1.定义:单位物质的量的气体所占的体积称为气体摩尔体积,用符号V m 表示,常用单位为L ·mol -1或m 3·mol -1
2.特例:标准状况下的1mol 任何气体所占的体积都约.
为22.4L ○1标准状况:温度273K (0℃);压强101kPa.
○2气体摩尔体积:约.
为22.4L/mol 3.计算公式:V=n ·V m
m o l
L V V V m /4.22n ==(标准状况下) 三、阿伏伽德罗定律及推论
1、阿伏伽德罗定律:在相同温度和压强下,相同体积的任何气体..
都具有相同的分子数。
2、阿伏伽德罗定律的推论pV=nRT (适用于单一气体或混合气体)
相同条件
关系 T 、p 相同 同温同压下,体积之比等于物质的量之比,等于分子数之比2
12121n V V N N n == T 、V 相同 同温同体积下,压强比等于物质的量之比,等于分子数之比2
12121n p N N n p == T 、p 相同 同温同压,密度比等于摩尔质量之比2
121M M =ρρ T 、p 、m 相同 同温、同压下,相同质量气体体积之比等于相对分子质量的反比
1221M M V V = T 、V 、m 相同 同温同体积下,相同质量气体压强之比等于相对分子质量的反比1
221p M M p = 标准状况下,气体的密度4
.22M =ρ(g ·L -1) 四、物质的量用于化学方程式的计算
化学方程式中,化学计量数之比等于相互作用的微粒数之比,等于参加反应的各物质的量之比,对于有气态物质参加的反应,还等于气体的体积之比。
具体关系如下:
2CO + O2点燃2CO2
化学计量数 2 1 2
微粒数 2 1 2
物质的量2mol 1mol 2mol
物质的体积 2 × V 1 x V 2 x V
物质的质量56g 32g 88g
例题1:N A代表阿伏伽德罗常数,下列有关叙述正确的是()
A、标准状况下,22.4LH2O含有分子数为N A
B、常温常压下,1.06gNa2CO3含有的Na+数为0.02N A
C、通常情况下,N A个CO2分子占有的体积为22.4L
D、常温下16gO2和14gN2组成的混合气体中,所含分子数大于N A
例题2:在标准状况下,等质量的CH4和CO2比较,下列说法中不正确的是()
A、密度比为4:11
B、分子数比为4:11
C、体积比为11:4
D、物质的量比为11:4
例题3:现有铁和锌的混合物12.1g,其中铁的质量分数为46.28% ,与足量的盐酸反应后生成标准状况下的氢气多少升?反应中消耗HCl的物质的量为多少?
随堂演练
1.在下列条件下,两种气体的密度一定相等的是()
A、同质量不同体积的C2H4和CO
B、不同温度同体积的C2H2和NO
C、同体积、同压强的N2和C2H4
D、同温同压下的CO和N2
2.下列关于气体体积的叙述正确的是()
A、一定温度和压强下,各种气体物质体积的大小,由构成气体的分子的大小决定
B、一定温度和压强下,各种气体物质体积的大小,由构成气体的分子数决定
C、不同的气体,若体积不同,则它们所含的分子数也不同
D、气体摩尔体积是指1mol任何气体所占的体积约为22.4L
3.相同状况下,下列气体所占体积最大的是()
A、64gSO2 B 、16gO2C、34gH2S D、3gH2。