高一数学下册《点、线、面之间的位置关系》知识点整理

合集下载

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。

这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。

下面将详细介绍该知识点的内容。

一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。

2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。

(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。

(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。

(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。

二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。

2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。

(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。

(3)如果P在线段AB上,则距离为0。

三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。

2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。

3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。

点、线、面之间的位置关系——垂直关系 - 简单 - 讲义

点、线、面之间的位置关系——垂直关系 - 简单 - 讲义

点、线、面之间的位置关系——垂直关系知识讲解一、线面垂直1.定义:如果一条直线和一个平面相交于点O ,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.1)这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.2)垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.3)如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.4)画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如下图. αl直线l 与平面α互相垂直,记作l α⊥. 2.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.符号语言表述:,,,,l a l b a b a b A l αα⊥⊥⊂=⇒⊥图像语言表述:3.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行. 符号语言表述:,//a b a b αα⊥⊥⇒ lαm n pl a b αA图像语言表述:4.线面垂直的性质(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线.(2)推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面;(3)推论2:如果两条直线垂直于同一个平面,那么这两条直线平行;(4)垂直于同一直线的两个平面平行.5.证明线面垂直的方法(1)线面垂直的定义(2)线面垂直的判定定理(,,,,a b a c b c b c M a ααα⊥⊥⊂⊂=⇒⊥)(3)平行线垂直平面的传递性(,a b b a αα⊥⇒⊥)(4)面面垂直的性质(,,,l a a l a αβαββα⊥=⊂⊥⇒⊥)(5)面面平行的性质(,a a ααββ⊥⇒⊥)(6)面面垂直的性质(,,l l αβαγβγγ=⊥⊥⇒⊥)二、面面垂直1.定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,则称这两个平面互相垂直.2.平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号语言表述:,m m αβαβ⊥⊂⇒⊥图像语言表述:αβm a bα3.面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.符号语言表述:,,,l m m l m αβαββα⊥=∈⊥⇒⊥ 图像语言表述:4.面面垂直的性质(1)两相交平面同时垂直于第三个平面,那么两相交平面的交线垂直于第三个平面.(2)两平面互相垂直,过公共交线上一点做一个平面的垂线,则这条直线在第二个平面内.5.证明面面垂直的方法(1)面面垂直的定义(2)面面垂直的判定定理(,a αβααβ⊥⊂⇒⊥)三、垂直模型总结1.勾股定理cba C BA222a b c AC CB +=⇒⊥2.等腰三角形三线合一D CB Aαβml,AB AC D =为BC 重点AD BC ⇒⊥3.直径所对的圆周角为直角DCBABD CD AD BA AC ==⇒⊥4.菱形对角线垂直平分O DCBA在菱形ABCD 中BD AC ⇒⊥5.正方形、矩形临边垂直DCB A,AB BC BC CD ⊥⊥6.正方形中点连线垂直F EDCB A在正方形ABCD 中,,E F 为,CD BC 的中点⇒AE DF ⊥7.直棱柱、正棱柱中侧棱垂直底面EFD CBA在直三棱柱中AD ⇒⊥面ABC ,,,AD AB AD BC AD AC ⊥⊥⊥典型例题一.选择题(共10小题)1.(2018•云南模拟)在正方体ABCD﹣A1B1C1D1中,点P是线段BC1上任意一点,则下列结论中正确的是()A.AD1⊥DP B.AP⊥B1C C.AC1⊥DP D.A1P⊥B1C【解答】解:在正方体ABCD﹣A1B1C1D1中,∵B1C⊥BC1,B1C⊥AB,BC1∩AB=B,∴B1C⊥平面ABC1D1,∵点P是线段BC1上任意一点,∴AP⊥B1C.故选:B.2.(2018春•武邑县校级月考)如图,四棱锥P﹣ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是()A.PB⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD【解答】解:在A中,取PB中点O,连结AO、CO,∵四棱锥P﹣ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,∴AO⊥PB,CO⊥PB,∵AO∩CO=O,∴PB⊥平面AOC,∵AC⊂平面AOC,∴PB⊥AC,故A成立;在B中,∵△PAB与△PBC是正三角形,∴PA=PC,AB=AC,设AC∩BD=M,连结PM,则PM⊥AC,∴PD与AC不垂直,∴PD与平面ABCD不垂直,故B不成立;在C中,∵PB⊥平面AOC,AC⊂平面AOC,∴AC⊥PB,∵AC⊥BD,PB∩BD=B,∴AC⊥平面PBD,∵PD⊂平面PBD,∴AC⊥PD,故C成立;在D中,∵AC⊥平面PBD,AC⊂平面ABCD,∴平面PBD⊥平面ABCD,故D成立.故选:B.3.(2016秋•湖北期末)如图,四边形ABCD是圆柱的轴截面,E是底面圆周上异于A、B的一点,则下面结论中错误的是()A.AE⊥CE B.BE⊥DE C.DE⊥CE D.面ADE⊥面BCE【解答】解:由AB是底面圆的直径,则∠AEB=,即AE⊥EB.∵四边形ABCD是圆柱的轴截面,∴AD⊥底面AEB,BC⊥底面AEB.可得:BE⊥DE,因此BE⊥平面ADE.同理可得:AE⊥CE,平面BCE⊥平面ADE.可得A,B,D正确.而DE⊥CE不正确.故选:C.4.(2016秋•杭州期末)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使面ABD⊥面BCD,连结AC,则下列命题正确的是()A.面ABD⊥面ABC B.面ADC⊥面BDC C.面ABC⊥面BDC D.面ADC⊥面ABC 【解答】解:由题意知,在四边形ABCD中,CD⊥BD.在三棱锥A﹣BCD中,平面ABD⊥平面BCD,两平面的交线为BD,所以CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.故选:D.5.(2017春•昆都仑区校级期中)如图,△ABC是直角三角形,∠ABC=90°,PA ⊥平面ABC,此图中直角三角形的个数为()A.1 B.2 C.3 D.4【解答】解:∵△ABC是直角三角形,∠ABC=90°,PA⊥平面ABC,∴AB⊥BC,PA⊥BC,∵AB∩PA=A,∴BC⊥平面PAB,∴图中直角三角形有△ABC(∠ABC是直角),△PAC(∠PAC是直角),△PAB(∠PAB是直角),△PBC(∠PBC是直角),∴图中直角三角形有4个.故选:D.6.(2017•青州市模拟)如图,在三棱锥A﹣BCD中,AB⊥平面BCD,∠ACB=45°,∠ADB=30°,∠BCD=120°,CD=40,则AB=()A.10 B.20 C.30 D.40【解答】解:设BC=x,∵在三棱锥A﹣BCD中,AB⊥平面BCD,∠ACB=45°,∠ADB=30°,∴∠BAC=∠ACB=45°,∠BAD=60°,∠ABC=∠ABD=90°,∴AB=x,AD=2x,BD=,∵∠BCD=120°,CD=40,∴cos120°=,解得x=40或x=﹣20(舍).∴AB=40.故选:D.7.(2017秋•赣州期中)设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()A.若m⊂α,n⊂β,m∥n,则α∥β B.若n⊥α,n⊥β,m⊥β,则m⊥αC.若m∥α,n∥β,m⊥n,则α⊥βD.若α⊥β,n⊥β,m⊥n,则m⊥α【解答】解:A若m⊂α,n⊂β,m∥n,则α∥β或α与β相交,故不正确;B若n⊥α,n⊥β,m⊥β,则m⊥α,由n⊥α,n⊥β可得α∥β,又因m⊥β,所以m⊥α.故正确;C若m∥α,n∥β,m⊥n,则α⊥β不正确,也可能平行;D若α⊥β,n⊥β,m⊥n,则m⊥α,不正确,可能有m⊂α;故选:B.8.(2015秋•临海市校级月考)在三棱锥A﹣BCD中,若AD⊥BC,BD⊥AD,△BCD是锐角三角形,那么必有()A.平面ABD⊥平面ADC B.平面ABD⊥平面ABCC.平面ADC⊥平面BCD D.平面ABC⊥平面BCD【解答】证明:由AD⊥BC,BD⊥AD⇒AD⊥平面BCD,AD⊂平面ADC,∴平面ADC⊥平面BCD.故选:C.9.(2014秋•兴庆区校级期末)两个平面平行的条件是()A.一个平面内一条直线平行于另一个平面B.一个平面内两条直线平行于另一个平面C.一个平面内的无数条直线平行于另一个平面D.一个平面内的任意一条直线平行于另一个平面【解答】解:①如图l∥β,l⊂α,但α,β却相交.①错②如图l∥β,l⊂α,m∥β,m⊂α但α,β却相交.②错③类似于②在α内有无数与l平行的直线,它们均与β平行,但α,β却相交,③错④可知,两个平面无公共点,它们平行.④对故选:D.10.(2015秋•东昌区校级期中)过△ABC所在平面α外一点P,作PO⊥α,垂足为O,若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的()A.垂心B.重心C.内心D.外心【解答】解:连接AO并延长交BC于一点E,连接PO,由于PA,PB,PC两两垂直可以得到PA⊥面PBC,而BC⊂面PBC,∴BC⊥PA,∵PO⊥平面ABC于O,BC⊂面ABC,∴PO⊥BC,∴BC⊥平面APE,∵AE⊂面APE,∴BC⊥AE;同理可以证明才CH⊥AB,又BH⊥AC.∴H是△ABC的垂心.故选:A.二.填空题(共4小题)11.过平面外两点,可作0或1个平面与已知平面平行.【解答】解:两点与平面的位置不同,得到的结论是不同的,当这两点在平面的同一侧,且距离平面相等,这样就有一个平面与已知平面平行,当这两点在平面的异侧,不管两个点与平面的距离是多少,都没有平面与已知平面平行,∴这样的平面可能有,可能没有,故答案为:0或1.12.(2015春•上海校级期末)点P为△ABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA、PB、PC两两垂直,则点O是△ABC的垂心.【解答】证明:连结AO并延长,交BC与D连结BO并延长,交AC与E;因PA⊥PB,PA⊥PC,故PA⊥面PBC,故PA⊥BC;因PO⊥面ABC,故PO⊥BC,故BC⊥面PAO,故AO⊥BC即AD⊥BC;同理:BE⊥AC;故O是△ABC的垂心.故答案为:垂.13.(2015春•上海校级期中)如图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则∠BAC=60°.【解答】解:设AB=AC=1,则BD=CD=,∵BD⊥平面ADC,CD⊂平面ADC,∴BD⊥CD,∵△BDC是等腰直角三角形,∴BC=CD=1,∴△ABC是正三角形,∴∠BAC=60°.故答案为:60°.14.直角△ABC的两条直角边BC=3,AC=4,PC⊥平面ABC,PC=,则点P 到斜边AB的距离是3.【解答】解:∵△ABC的两条直角边BC=3,AC=4,∴AB==5,过C作CM⊥AB,交AB于M,连结PM,由三垂线定理得PM⊥AB,∴点P到斜边AB的距离为线段PM的长,由,得CM==,PM===3.∴点P到斜边AB的距离为3.故答案为:3.三.解答题(共2小题)15.如图所示,在直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1中点,求证:AD⊥平面A1DC1.【解答】证明:∵AA1⊥平面A1B1C1,∴AA1⊥A1C1又A1C1⊥A1B1,∴A1C1⊥平面A1B1BA∴AD⊥A1C1∵AD=,A1D=,AA1=2,由AD2+A1D2=,得A1D⊥AD∵A1C1∩A1D=A1∴AD⊥平面A1DC116.(2017秋•东湖区校级期末)如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证:(Ⅰ)A1C∥平面BDE;(Ⅱ)平面A1AC⊥平面BDE.【解答】证明:(Ⅰ)连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点∴EO为△A1AC的中位线∴EO∥A1C又∵EO⊂平面BDE,A1C⊄平面BDE∴A1C∥平面BDE;…(6分)(Ⅱ)∵AA1⊥平面ABCD,BD⊂平面ABCD ∴AA1⊥BD又∵四边形ABCD是正方形∴AC⊥BD,∵AA1∩AC=A,AA1、AC⊂平面A1AC∴BD⊥平面A1AC又∵BD⊂平面BDE∴平面A1AC⊥平面BDE.…(12分)。

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结_点、直线、平面之间的位置关系

高一数学知识点总结(一)空间点、直线、平面之间的位置关系以下知识点需要我们去理解,记忆。

1、数学所说的直线是无限延伸的,没有起点,也没有终点。

2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。

3、公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同一直线上的三点,有且只有一个平面。

5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。

高一数学知识点总结(二)直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面垂直判定定理线面垂直的定义两平面的法线垂直则两平面垂直面面垂直判定定理线面平行判定定理线面平行性质定理线面平行转化面面平行判定定理面面平行性质定理3、平行关系与垂直关系互推。

以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。

线线平行传递性:;b c c a b a //////⇒⎭⎬⎫面面平行传递性:;γαβγβα//////⇒⎭⎬⎫线面垂直、线面垂直线面平行:;⇒ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。

⇒βααβ⊥⇒⎭⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。

符号化语言一览表①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫④线线垂直:;b a b a ⊥⇒⎭⎬⎫⊂⊥αα⑤线面垂直:;;,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.||n d =3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。

点线面位置关系定理总结

点线面位置关系定理总结

培优辅导,陪你更优秀!
//a b //a b
1.线面平行判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(简述为线线平行线面平行) 表述及图示
2.线面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(简述为线面平行线线平行)
//a a b
α
β
αβ⊂⋂= 3.平面平行判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

////a b a b a b P
β
β
αα
⊂⊂⋂=//αβ
4.平面平行性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行
//a b
αβ
γαγβ⋂=⋂=
5.线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个
平面。

a b
a c
b c A b c α
α
⊥⊥⋂=⊂⊂a α⊥
6.线面垂直性质定理:垂直于同一平面的两条直线平行。

a b α
α⊥⊥ 7.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

简述为“线面垂直,则面面垂直”。

a a αβ
⊂⊥αβ⊥ 8.面面垂直性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

l a a l αβ
αβα
⊥⋂=⊂⊥αβ⊥ //a b a b α
α⊄
⊂//a
α
//a
b。

高一下册 第二章第一节 点、直线、平面之间的位置关系知识.

高一下册  第二章第一节  点、直线、平面之间的位置关系知识.

2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图(2平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ②两条异面直线所成的角θ∈(0, ; ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

点、线、面知识点

点、线、面知识点

点、直线、平面之间的位置关系一、本章知识结构二、知识点1.平面概述(1)平面的两个特征:①无限延展 ②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。

3.平面基本性质:公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.公理2:经过不在同一直线上的三点,有且只有一个平面.推论一:经过一条直线和这条直线外的一点,有且只有一个平面。

推论二:经过两条相交直线,有且只有一个平面。

推论三:经过两条平行直线,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.4.空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线(1)异面直线的画法常用的有下列三种:(2)公理4:平行于同一条直线的两条直线互相平行。

符号表示为:a∥b,b∥c⇒a∥c.(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(4)两条异面直线所成的角:异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.两条异面直线所成角的范围是(0°,90°];_a_b_a_bαα若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直. 5.空间中直线与平面之间的3种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧有无数个公共点直线在平面内没有公共点平行有且只有一个公共点相交直线在平面外:;:;:6.两个平面平行——没有公共点. 若α∩β=∅,则α∥β.两个平面相交——有一条公共直线. 若α∩β=AB,则α与β相交.图2 图37. 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:8. 直线与平面平行的性质:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符号语言为:图形语言为:9.平面与平面平行的判定定理:一个平面内有两条相交直线都平行于一个平面,则这两个平面平行。

第2讲 点、线、面的位置关系 (1)

第2讲  点、线、面的位置关系 (1)

第一讲 点、线、面的位置关系【知识梳理】1.平面的基本性质(平面是平的;无厚薄;可无限延展)公理1.如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

即:,,,A l B l A B l ααα∈∈∈∈⇒⊂公理2.过不在一条直线上的三点,有且只有一个平面。

(不共线三点确定一个平面)推论1:一条直线和直线外一点确定一个平面。

推论2:两条相交直线确定一个平面。

推论3:两条平行直线确定一个平面。

公理3.如果两个不重合的平面有一个公共点,那么它们有且只有一条经过该点的公共直线。

即: ,P P l P l αβαβ∈∈⇒=∈ 且且P l ∈2.空间两直线(1)位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:在同一平面内,有且只有一个公共点共面直线平行直线:在同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点(2)公理4:平行于同一条直线的两条直线互相平行(平行线的传递性)。

即://////a b a c b c ⎫⇒⎬⎭(3)等角定理:空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补。

(同向或反向时相等)(4)异面直线:不同在任何一个平面内的两条直线。

①异面直线的判定:定义法:反证法;结论法:平面内一点与平面外一点的连线与平面内不过该点的直线是异面直线。

②异面直线所成的角:设,a b 是两条异面直线,经过空间任一点O 作直线//a a ',//b b ',把,a b ''所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。

其范围是(0,]2π③两异面直线垂直:所成的角是直角的异面直线,a b ,记作a b ⊥。

3.直线与平面的位置关系: ⎧⎪⎨⎪⎩直线在平面内:直线与平面有无数个公共点直线与平面相交:直线与平面有且只有一个公共点直线与平面平行:直线与平面没有公共点4.平面与平面的位置关系:⎧⎨⎩两个平面平行:没有公共点两个平面相交:有一条公共直线5.共点(线,面)问题的证明方法(1)共点问题:证明123,,l l l 三线共点,一般先证12l l A = ,再证点3A l ∈即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学下册《点、线、面之间的位置
关系》知识点整理

件www.5y
1.直线在平面内的判定
利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.
若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα.
过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα.
过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.
如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则bα.
2.存在性和唯一性定理
过直线外一点与这条直线平行的直线有且只有一条;
过一点与已知平面垂直的直线有且只有一条;
过平面外一点与这个平面平行的平面有且只有一个;
与两条异面直线都垂直相交的直线有且只有一条;
过一点与已知直线垂直的平面有且只有一个;
过平面的一条斜线且与该平面垂直的平面有且只有一个;
过两条异面直线中的一条而与另一条平行的平面有且只有一个;
过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.
3.射影及有关性质
点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.
直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.
和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.
图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.
当图形所在平面与射影面垂直时,射影是一条线段;
当图形所在平面不与射影面垂直时,射影仍是一个图形.
射影的有关性质
从平面外一点向这个平面所引的垂线段和斜线段中:
射影相等的两条斜线段相等,射影较长的斜线段也较长;
相等的斜线段的射影相等,较长的斜线段的射影也较长;
垂线段比任何一条斜线段都短.
4.空间中的各种角
等角定理及其推论
定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.
推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角相等.
异面直线所成的角
定义:a、b是两条异面直线,经过空间任意一点o,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角叫做异面直线a和b所成的角.
取值范围:0°&lt;θ≤90°.
求解方法
①根据定义,通过平移,找到异面直线所成的角θ;
②解含有θ的三角形,求出角θ的大小.
5.直线和平面所成的角
定义和平面所成的角有三种:
垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
垂线与平面所成的角直线垂直于平面,则它们所成的角
是直角.
一条直线和平面平行,或在平面内,则它们所成的角是0°的角.
取值范围0°≤θ≤90°
求解方法
①作出斜线在平面上的射影,找到斜线与平面所成的角θ.
②解含θ的三角形,求出其大小.
③最小角定理
斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.
6.二面角及二面角的平面角
半平面直线把平面分成两个部分,每一部分都叫做半平面.
二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.
若两个平面相交,则以两个平面的交线为棱形成四个二面角.
二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是
0°&lt;θ≤180°
二面角的平面角
①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.
如图,∠PcD是二面角α-AB-β的平面角.平面角∠PcD 的大小与顶点c在棱AB上的位置无关.
②二面角的平面角具有下列性质:
二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PcD.
从二面角的平面角的一边上任意一点作另一面的垂线,垂足必在平面角的另一边上.
二面角的平面角所在的平面与二面角的两个面都垂直,即平面PcD⊥α,平面PcD⊥β.
③找二面角的平面角的主要方法.
定义法
垂面法
三垂线法
根据特殊图形的性质
求二面角大小的常见方法
①先找出二面角的平面角θ,再通过解三角形求得θ的值.
②利用面积射影定理
S′=S·cosα
其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.
③利用异面直线上两点间的距离公式求二面角的大小.
7.空间的各种距离
点到平面的距离
定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.
求点面距离常用的方法:
1)直接利用定义求
①找到表示距离的线段;
②抓住线段所在三角形解之.
2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.
3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.
4)转化法将点到平面的距离转化为直线与平面的距离
来求.
8.直线和平面的距离
定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.
求线面距离常用的方法
①直接利用定义求证某线段为距离,然后通过解三角形计算之.
②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.
③作辅助垂直平面,把求线面距离转化为求点线距离.
9.平行平面的距离
定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.
求平行平面距离常用的方法
①直接利用定义求
证某线段为距离,然后通过解三角形计算之.
②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线距离,通过解三角形或体积法求解之.
10.异面直线的距离
定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.
任何两条确定的异面直线都存在唯一的公垂线段.
求两条异面直线的距离常用的方法
①定义法题目所给的条件,找出两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.
此法一般多用于两异面直线互相垂直的情形.
②转化法为以下两种形式:线面距离面面距离
③等体积法④最值法⑤射影法⑥公式法

件www.5y。

相关文档
最新文档