ch6 讲课 整群抽样 (1)
(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样第七章整群抽样第壹节整群抽样概述壹、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取壹部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元能够分成多级,则能够对前几级单元采用多阶抽样,而在最后壹阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的俩个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中且不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括俩步:首先,总体被分为群;然后,在总体中抽取群的样本且访问群中的所有单元。
如果总体单元是自然分成组或群的,创建壹个这种关于群的抽样框且对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而能够创建地域框。
群的抽取能够采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样壹样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有俩个问题:壹是如何定义群,即当群且非是壹个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取壹部分群进行调查,且在抽中的群内作全面调查。
(抽样检验)第七章整群抽样

第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。
整群抽样

第七章 整群抽样第一节 整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
采用整群抽样的两个理由:抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
二、群的划分问题关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
群的划分应该是:尽量扩大群内差异,而缩小群间差异。
这样,每个群都具有足够好的代表性。
如果所有的群都相似,那么抽少数群就可获得相当好的精度;反之,若群内的单元比较相似,而群与群之间的差别较大,则整群抽样的效率就低。
所以分群的原则使“群内差异大、群间差异小”与分层的原则使“层内差异小,层间差异大”是恰好相反的。
至于群的规模的选择,一是取决于精度与费用之间的平衡,二是从抽样实施的组织管理等因素来考虑。
三、整群抽样的特点同其他抽样组织形式相比较,整群抽样具有如下特点:整群抽样则不需要编制庞大的抽样框;在样本单元数相同的条件下,整群抽样与简单随机抽样相比,样本单元的分布相对较集中,组织实施过程更加便利,同时还可以大大地节省调查费用;整群抽样的随机性体现在群与群间不重叠,也无遗漏,群的抽选按概率确定;如果把每一个群看作一个单位,则整群抽样可以被理解为是一种特殊的简单随机抽样;整群抽样也是多阶段抽样的前提和基础;整群抽样有特殊的用途;整群抽样要求分群后各群所含次级单元数目应该确知,否则会给抽样推断带来不便。
第二节 等概率整群抽样的情形一、群的大小相等时(一)估计量1、总体均值Y 的估计∑===ni i Y n y Y 11ˆ2、总体总和Y 的估计y nN Y nN y NM Yni i ∑===•=1ˆ 3、总体比例P的估计∑∑=====ni in i i nMP n p P 1111ˆα(二)估计量的方差及其估计由于群是按简单随机方法抽取的,因此,估计量Y Y ˆ,ˆ与P ˆ的方差及方差的无偏估计量可直接按第三章的方法构造:1)(1)(122---=∑=N Y YnM f y V Ni i22221])1(1[1)1,1(1)1(1[)1(1bC C S nMf M S nM f NM NM N N N M S NM nM f -=-+-≈-≈-≈--+•-•-=ρρ 21211)(1)(ˆb ni is nMf n y Ynf y V-=--•-=∑= 1)()1()()ˆ(ˆ12222---=•=∑=N Y Yn f N y V M N Y VNi i≈22)1(b S nf M N - 1)()1()(ˆ)ˆ(ˆ21222--•-=•=∑=n y Ynf N y V M N Y Vni i≈22)1(b s nf M N -1N )P (P nf 1)Pˆ(V N1i 2i---=∑=1n )PˆP(n f1)P ˆ(Vˆn1---=∑=i i三、群的大小不等时(一)简单估计如果群的抽取是简单随机的,则可将每个群的总和i Y 看作是第i 群的指标,于是总体总和∑==N1i i Y Y 的简单估计可依照简单随机抽样的情形来做,即:y N Y n N Y ˆn 1i i ==∑=可以证明,Yˆ是Y 的无偏估计,其方差为: 1N )Y Y(n)f 1(N )Yˆ(V N1i 2i2--•-=∑=方差估计量为:11N Y ˆ(Vˆ122---=∑=n y Y n f ni i)()())Y ˆ(Vˆ为)Y ˆ(V 无偏估计。
整群抽样

上式中的分子为:
பைடு நூலகம்
(Y
N
ij
Y )(Yik Y )
NM ( M 1) 2
第二节 群规模大小相等时的估计
上式中的分母为:
2 ( Y Y ) ij N M
NM
故 又可写为:
NM 1 2 S MN
2 (Yij Y )(Yik Y ) ( NM 1)(M 1) S 2
(1)
第二节 群规模大小相等时的估计
2.
估计量
性质1:
y 的性质
y 是 Y 的无偏估计,即
E y Y
因为是按简单随机方法抽取群,所以样本群均值 总体群均值 Y 的无偏估计,因而
y是
Ey Y
M
Y
第二节 群规模大小相等时的估计
性质2
y 的方差为
1 f V ( y) n N 1 1 f 2 Sb nM
从方法上看,整群抽样可以看成单阶段抽样向多阶段抽样 过渡的桥梁。如果抽出群后,对其中所有的次级单元进 行调查,称为单阶段整群抽样;如果抽出群后,在次级 单元中进一步抽取子样本,称为两阶段抽样;如果进一 步在两阶段抽样的子样本中按更低一级的单元再抽子样 本,称为三阶段抽样;如此类推,等等。如果最后一个 阶段所抽出的单元是组成总体的基本单元,一般称为多 阶段抽样,将在后面章节讨论;如果最后一个阶段所抽 出的单元是群(基本单元的集合),可将其称为多阶段 整群抽样,也即是多阶段抽样中的一种情形。本章仅介 绍单阶段整群抽样。
Y Yi N y yi n
n
N
第二节 群规模大小相等时的估计
Y
: 总体中的个体均值
(各群 M i M)
06第六章 整群抽样

n
n
M
N M 1 S ( yij Y ) 2 为总体方差; NM 1 i 1 j 1 2
n M 1 s ( yij y ) 2 nM 1 i 1 j 1 2
2 b
为样本方差; 为总体群间方差;
M N 1 N 2 S (Yi Y ) N 1 (Yi Y ) 2 N 1 i 1 i 1
第一节 第二节 第三节 第四节
整群抽样概述 等概率整群抽样的情形 不等概率整群抽样的情形 设计效应和样本容量的确定
第一节 整群抽样概述
一、整群抽样的概念 整群抽样是先将总体各单元划分成若干群(组),然后以 群为单位,从中随机抽取一部分群,对中选群内的所有单 元进行全面调查。确切地说,这种抽样组织形式应称为单 级整群抽样。 如果总体中的单元可以分成多级,则可以对前几级单元采 用多阶抽样(详见下章),而在最后一阶中对该阶抽样单 元所包含的全部个体(最基本单元)进行调查,这种抽样 称作多级整群抽样。本章只讨论单级整群抽样。 设总体被划分为N群,第i群含有Mi个次级单元,全部总 体次级抽样单元数记为M 0,即 M 0 M i 。当诸Mi都相等 时,称为等群;否则,称为不等群。
M n 1 n 2 (Yi y ) (Yi y ) 2 s n 1 i 1 n 1 i 1
2 b
为样本群间方差;
N M 1 S ( yij Yi ) 2 N ( M 1) i 1 j 1 2
为总体平均群内方差; 为样本平均群内方差;
二、分群的原则 尽量扩大群内差异,而缩小群间差异。 三、整群抽样的特点 1.在大规模抽样调查中,常常没有或很难编制出包括总 体所有次级单元在内的抽样框,而整群抽样则不需要编制 庞大的抽样框。 2.在样本单元数相同的条件下,整群抽样与简单随机抽 样相比,样本单元的分布相对较集中,虽然样本的代表性 较差,但调查组织实施过程更加便利,同时还可以大大地 节省调查费用。因此,实际工作中,在权衡费用和精度之 后,有时宁可适当增加一些样本单元数,也采用整群抽样 方法。 3.整群抽样的随机性体现在群与群间不重叠,也无遗漏, 群的抽选按概率确定。
第四章整群抽样

1 (M 1)c
上面结果意味着:按同样的样本量(以次级单元计) 整群抽样的方差约为简单随机抽样的方差的 1 (M 1)c 倍。换句话说,为了获得同样的精度,整群抽样的样本 量必须是简单随机抽样的样本量的 1 (M 1)c 倍。
20
第21页/共49页
群内相关系数
NM
2
(Yij Y )(Yik Y )
• Def.1 一般地说,如果总体中所有较小的基本单元可 以以某种形式组成数量较少但规模较大的单元;或反 过来说,每个“大”单元都由若干“小”单元组成, 称这些 “大”单元为初级(抽样)单元(primary sampling unit),“小”单元为次级(抽样)单元 (secondary sampling unit).
Deff = (所考虑抽样设计估计量的方差)/(相同样 本量下简单随机抽样估计量的方差)
18
第19页/共49页
设计效应值愈大,表明它的效率愈低。若deff>1,表明
所考虑的抽样设计的效率不如简单随机抽样;若deff<1,
表明该抽样设计的效率比简单随机抽样高。
在整群抽样中,我们在前面已经指出:如何划分群以
27
第28页/共49页
(3) 若 令为简单随机抽样的样本量 则
nsrs
即可达到整群抽样96户样本量相同的估计精度
Mn nsrs deff
812 20(户) 4.7
28
第29页/共49页
群规模不相等的整群抽样
一、等概抽样,简单估计 二、等概抽样,加权估计 三、等概抽样,比率估计 四、例子
29
8 230,205,187,176,212,253,189,240 211.50 27.48
9 274,208,195,307,264,258,210,309 253.13 44.52
第六章 整群抽样

n
n 1
➢比估计
n
N
YˆR M 0Yˆ M 0
yi
i 1 n
mi
,V (YˆR )
N 2 (1
i
Y
)2
N 1
i 1
v(YˆR )
N 2 (1 n
f
)
1 n n 1 i1
yi2
2
Y R
n i 1
mi2
2Y
R
n i 1
mi
yi
例4:从共有790个单位的某系统中按简单 随机抽样抽取n=20个单位,这些单位的职
1
n
1
n i 1
ai2
p2
n i 1
mi2
2p
n i 1
ai mi
M
第四节 群大小不等的一般情形
若群大小Mi 相差不多,以平均群大小M 代替M, 仍可按群大小相等处理;若Mi 相差较大,有两 种处理方法。
一、记号
➢ 总体第i群第j个小单位指标值 Yij,i=1,2,…,N; j=1,2,…, Mi,Mi 是群的大小。
费额的户平均值 Y ,并给出其95%的置信区
间(P213)。
12个楼层96户居民人均月食品消费额资料
i
yij
1 240, 187, 162, 185, 206, 197, 154, 173
2 210, 192, 184, 148, 186, 175, 169, 180
3 149, 168, 145, 130, 170, 144, 125, 167
yi
yi M
➢总体平均群和 Y Yi N
➢样本平均群和 y yi n
➢总体均值
NM
Y Yij MN Y M i1 j1
(标准抽样检验)第七章整群抽样

(标准抽样检验)第七章整群抽样第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整群抽样
第七章 整群抽样
• •
群规模相等时的整群抽样 群规模不相等的整群抽样
6.1 概述
一、整群抽样(cluster sampling)的定义: 由若干个基本单元所组成的集合称为群。将总体划 分为若干群,然后以群为抽样单元,从总体中简单随机 抽取一部分群,对抽中的群中的所有基本单元进行调查 的一种抽样技术。 二、应用: 1 、农产品实割实测某地产量时,在地块中布点作为样 本块,群可以是一行或两行。 2、欲调查某大学的学生体质状况,群可以是班级或系 等。 3、工厂产品(例如食品)质量检查时,群可以 是一箱、 一包,或若干包等。 一旦抽中,对群中的每一个单元都进行调查。
(y s )
(y 4.3423 v )
Y的置信度为95%的置信区间为: y 1.96 (y s ), 1.96 (y y s ) 即89.66, 106.68
用sas软件编程如下:
proc surveymeans data=a total=315 mean stderr; cluster cluster; weight w ; var x; run;
yi yi / M
群间方差 群内方差
M n M N 2 2 sb S ( y i y )2 (Y i Y ) n 1 i 1 N 1 i 1 n M N M 1 1 2 2 2 sw Sw ( yij y i )2 (Yij Y i ) n( M 1) i 1 j 1 N ( M 1) i 1 j 1
yi
s
104.67 108.50 106.33 112.83 42.27 72.57
2 125.60 233.60 299.07 177.87 287.50 i
n 8, N 315 1 Y y n
2 b
y
i 1
n
i
98.17
n M 2 s ( y i y) 928.6648 n 1 i 1 1 f 2 (y v ) sb 18.8558 nM
1 6 4 4 21 23
2 24 26 9 14 5
3 18 17 23 9 29
4 14 7 20 24 15
5 24 24 8 39 28
6 25 18 23 37 22
7 32 19 25 23 30
8 35 12 12 22 16
9 29 21 39 16 13
10 2 3 9 7 23
第 i群个体均值
Yi
N
样本
yi
n
Y
j 1
M
ij
y
j 1
M
ij
Y Yi / N
i 1
y yi / n
i 1
Y
Y N M = Yij / NM M i 1 j 1
y n M y = yij / nM M i 1 j 1
Yi =Yi /M
2 b
学生2
学生3 学生4 学生5 学生6
83
74 82 66 87
83
79 111 101 69
89
94 109 79 80
105
98 107 129 90
99
132 87 99 124
100
116 99 107 105
115
117 99 106 120
80
63 130 105 86
试估计该学校平均每个学生每周的零花钱,并给出置信 度为95%的置信区间。
6.2 群规模相等时的估计量及其方差
一、符号: 总体群数:N 每群含有的单元数:M 总体第i群第j个单元的指标值:Yij 总体中单元总数:M0=NM 样本群数:n,样本中单元总数: nM 样本第i群第j个单元的观测值:yij
6.2 群规模相等时的估计量及其方差
一些记号: 总体 第 i群的和 群和的均值 个体均值
(自加权样本)
1 Y =Y M M 按简单随机法抽群,用样本群均值简单估计总体群均值, )= 且是无偏估计 E y =E( y
6.2 群规模大小相等时的估计
对群均值的估计: y Y= (Yi Y ) 2
N
y
1
n
i
M
1 f 1 V (y) n N 1 y的方差为 V ( y ) V ( y / M ) 1 f 1 1 f 2 nM N 1 n M N 2 1 f Sb (Y i Y ) 2 2 Sb N 1 i 1 nM (Yi Y ) 2
6.1 概述
整群抽样是由一阶抽样向多阶抽样过渡的桥梁。在第二阶 段中,如果抽出后对其中的所有单元进行调查,是整群抽 样;如果再从中抽取子样,即两阶段抽样;也可以从中再 继续抽样,叫多阶段抽样;
多阶段抽样中,如果最后一次对抽中群里所有的单元进 行调查,则称为多阶段整群抽样。
整群抽样分类: 1、群规模相等的抽样。(抽样方式和估计方法简单) 2、群规模不相等的抽样。
相应可以得到总体均值、总值估计的置信度为 95%的置信区间
例:在一次对某寄宿中学在校生零花钱的调查中,以宿 舍作为群进行整群抽样,每个宿舍有6个学生。用简单 随机抽样在全部315个宿舍中抽取8个宿舍。全部48个 学生上周每人的零花钱及相关数据如下:
宿舍1 宿舍2 学生1 58 91 宿舍3 宿舍4 宿舍5 宿舍6 宿舍7 宿舍8 123 99 110 111 120 96
2.群内相关系数:是表达总体中群内小单元间相关程度 的一个指标。 定义:
(Y
i 1 j k
N
M
ij
Y )(Yik Y )
E (Yij Y )(Yik Y ) E (Yij Y )
2
2 NCM
11 22 17 26 16 27
12 33 17 40 24 17
13 15 10 4 6 8
14 17 18 12 11 10
15 13 9 5 7 9
16 18 23 13 15 8
17 33 5 26 30 11
18 26 15 13 17 3
19 7 32 4 6 9
20 15 1 1 6 5
N
Y
N 1
i
Y
2
N 1
6.2 群规模大小相等时的估计
3、 V ( y ) 的样本估计为
1 f 2 1 f v( y ) sb nM n
M n s ( y i y )2 n 1 i 1
2 b
( yi y ) 2
1
n
n 1
因为 s
2 b
是的 S
2 无偏估计,所以v( y )是 V ( y ) b
例:调查一片荒地上煌蝻的数量,调查以一平方米为单位, 计算煌蝻数,该荒地有5000平方米,现在为方便调查将其划 分为每10平方米一块的地块,从500个地块中简单随机的抽取 20个样本,然后对抽中的地块调查每平方米煌蝻数,作整群 抽样,调查数据如下表,估计整块荒地的煌蝻数。 (本例子选自北京大学教材“抽样调查”125页)
1 n 1 Y y yi (15.3 19.7 20.5 ... 4.9) 17.56 n i 1 20
这一估计的方差为;
M n 10 20 2 2 [(15.3 17.56)2 ... (4.9 17.56)2 ] sb (y i y) 20 1 1 n 1 i 1
14
26 19 20
20
22 24 29
24
27 17 15
37
19 12 3823Leabharlann 32 34 3723
16 22 33
21
31 23 21
15
12 36 34
19
6 20 9
14
11 20 16
22
30 34 29
18
15 16 21
17
13 6 11
6
22 14 4
17
14 9 4
16
24 26 28
6.1 概述
引例:欲估计某校学生的每月个人消费,假定40000个学生, 共10000个宿舍(假设每个宿舍住4人),以下三种抽样方案:
方案一:根据学生名录,按简单随机抽取400名学生
方案二:根据学生宿舍名录简单随机抽取100个宿舍, 对抽到的宿舍全面调查。
方案三:先简单随机抽取400个宿舍,每个宿舍简单 随机抽取1人。
都是等概抽样,由于抽样方法不同,产生的抽样误差也不同。
6.1
概述
二、整群抽样特点: 1.可以简化抽样框的编制。 2.实施调查便利,节省费用。 3.通常比简单随机抽样的抽样误差大,可通过加大样 本量来弥补。 三、群的划分: 1.根据行政区或地域形成的群体。(方便,节约) 2.调查人员人为确定的。如一大块地分为若干块较小 面积的群。 3.分群的原则:群内单元差异大,群间差异小,这样, 被抽到的群代表性好, 抽样误差小。 (和分层抽样中划分层的原则相反)。
群内方差 S w 2
N M 1 ( ) M Y i Y) (
2 i 1 N
sw 2
(M 1 n )
2 M y i y) ( i 1 n
群间方差
Sb 2
N 1 ( Yij Y)
2 i 1 j 1 N M
sb 2
n 1
2 (yij y) i 1 j 1 n M
10
15 17 10
12
1 5 5
4
3 11 9
5
6 7 2
16
15.3
24
19.7
26
20.5
28