1-2 第3部分 基本可行解的几何意义

合集下载

管理运筹学教案

管理运筹学教案
二约束条件中右边系数bj的灵敏度分析
本章总结(10分钟)
本章思考题
1什么是资源的影子价格,同相应的市场价格之间有何区别,以及研究影子价格的意义。
主要
参考资料
1、韩伯棠.管理运筹学。高等教育出版社P43-p49
备注
教案
第10次课(2学时)
章节
第三章整数规划(1)
教学目的
和要求
1掌握一般整数规划问题概念及模型结构;
2.有人提出,求解整数规划时可先不考虑变量的整数约束,而求解其相应的线性规划问题,然后对求解结果中为非整数的变量凑整。试问这种方法是否可行,为什么?
主要
参考资料
1、韩伯棠.管理运筹学。高等教育出版社P70-p72
备注
教案
第11次课(2学时)
章节
第四章整数规划(2)
教学目的
和要求
1掌握分枝定界法原理
重点
主要
参考资料
熊伟编著.运筹学(第二版)。P11—16
备注
1、学生交作业;
2、复习与预习
3、写出下面几个问题的初始基可行解
教案
第5次课( 2学时)
章节
第一章线性规划(4)
教学目的
和要求
1要能熟练准确地用单纯形表求解线性规划问题。
2能准确地根据单纯形表中的检验数判别所解问题的解的类型;
重点
难点
重点:用单纯形表求解线性规划问题。
本章思考题
1、什么是单纯形法计算的两阶段法,为什么要将计算分两个阶段进行,以及如何根据第一阶段的计算结果来判定第二阶段的计算是否需继续进行.
2、简述退化的含义及处理退化的勃兰特规则。
3、举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述.

运筹管理MBA运筹学讲义

运筹管理MBA运筹学讲义

运筹管理M B A运筹学讲义集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#MBA运筹学讲义运筹学是一门应用科学,它广泛应用现代科学技术知识、用定量分析的方法,解决实际中提出的问题,为决策者选择最优决策提供定量依据。

运筹学的核心思想是建立在优化的基础上。

例如,在线性规划中体现为两方面:(1)对于给定的一项任务,如何统筹安排,使以最少的资源消耗去完成(2)在给定的一定数量的资源条件下,如何合理安排,使完成的任务最多运筹学解决问题的主要方法是用数学模型描述现实中提出的决策问题,用数学方法对模型进行求解,并对解的结果进行分析,为决策提供科学依据。

随着计算机及计算技术的迅猛发展,目前对运筹学的数学模型的求解已有相应的软件。

因此,在实际求解计算时常可借助于软件在计算机上进行,这样可以节省大量的人力和时间。

第一部分线性规划内容框架LP问题基本概念数学模型可行解、最优解LP问题解的概念基本解、基可行解提出基本最优解基本方法图解法原始单纯形法单纯形法大M法人工变量法对偶单纯形法两阶段法对偶理论进一步讨论灵敏度分析──参数规划*在经济管理领域内应用运输问题(转运问题)特殊的LP问题整数规划多目标LP问题*第一部分线性规划(Linear Programming)及其应用第一章 LP问题的数学模型与求解§1 LP问题及其数学模型(一)引例1(生产计划的问题)某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A、B两种原材料的消耗以及每件产品可获的利润如下表所示。

问应如何安排计划使该工厂获利最多该问题可用一句话来描述,即在有限资源的条件下,求使利润最大的生产计划方案。

解:设x1,x2分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。

由于资源的限制,所以有:机器设备的限制条件:x1+2x2≤8原材料A的限制条件: 4x1≤16 (称为资源约束条件)原材料B的限制条件: 4x2≤12同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有x 1≥0,x2≥0 (称为变量的非负约束)显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。

第一部分 第三章 3.3 第二课时 简单的线性规划问题

第一部分  第三章  3.3  第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

第二章 单纯形法

第二章 单纯形法
运筹学
15
华东交通大学工业工程与物流管理系
单纯形法的求解步骤
重复步骤2~5,直到终止。
判优换基迭代
判优换基迭代 判优换基迭代 判优 最优解
运筹学Leabharlann 16华东交通大学工业工程与物流管理系
基本可行解的改进
• 换入变量的确定——最大增加原则
假设检验向量σN=(CN- CB B-1N )=(σm+1, σm+2, …,σn), 若其中有两个以上的检验数为正,选取最大正检验数所对应的 非基变量为换入变量。 若:max{σj| σj>0,m+1≤j≤n}= σm+K 则选取对应的xm+k为换入变量。
1 0 B 0 1
2 / 5 3 / 5 1 / 5 N 6 / 5 1 / 5 2 / 5
17 / 5 b 6/5
CB (3,5), CN (2,1,1)
再转向步骤(2) 运筹学
25
华东交通大学工业工程与物流管理系
(2)检验X’=(0,0,4,0,3)T是否最优:
检验向量 N CN CB B N
1
1 / 2 1 1 / 2 N (5,2,1) (3,1) (1,4,2) 5 / 2 3 1 / 2
华东交通大学工业工程与物流管理系
单纯形法
线性规划问题的几何意义: • 凸集:没有凹入部分,内部没有空洞。实习圆、实 心球体、实心立方体都是凸集;两个凸集的交集是 凸集。 • 若线性规划问题存在可行域,则可行域是凸集。 • 线性规划问题的基可行解对应可行域的顶点。 • 若可行域有界,线性规划问题的目标函数一定可以 在其可行域的顶点上达到最优。
由最优解判别定理,非基变量检验数σ1=1>0, 所 以X‘=(0,0,4,0,3)T不是最优解

1.2线性规划问题的图解法及几何意义

1.2线性规划问题的图解法及几何意义

2

可行域
1
Z增大方向
-1
0
1

2
3 x1
图解法(总结三个特点)
从图解法可以看出一般情况下: 从图解法可以看出一般情况下: (1)具有两个变量的线性规划问题的可行域是凸多边形。 具有两个变量的线性规划问题的可行域是凸多边形。 凸多边形 顶点得到 (2)若线性规划存在最优解,它一定在可行域的某个顶点得到。 若线性规划存在最优解,它一定在可行域的某个顶点得到。 (3)若在两个顶点上同时得到最优解,则在这两点的连线上的任 若在两个顶点上同时得到最优解, 意一点都是最优解; 意一点都是最优解; 虽然图解法只能求解包含两个变量的问题,作为算法, 虽然图解法只能求解包含两个变量的问题,作为算法,没有 太大价值,但是上述结论却非常有意义。它将搜索最优解的范围 太大价值,但是上述结论却非常有意义。 从可行域的无穷多个点缩小到有限几个顶点。 从可行域的无穷多个点缩小到有限几个顶点。这就开启了人们的 思路。 思路。而后面我们要介绍的求解多维线性规划的单纯形法就是在 此结论的基础上推广得到的。 此结论的基础上推广得到的。
无可行域的情况将会出现, 这时不存在可行解, 时 , 无可行域的情况将会出现 , 这时不存在可行解 , 即 该线性规划问题无解。 该线性规划问题无解。
无有限最优解(可行域无界,目标值不收敛) 无有限最优解(可行域无界,目标值不收敛):
线性规划问题的可行域无界, 线性规划问题的可行域无界 , 是指最大化问题中的目标 函数值可以无限增大, 函数值可以无限增大 , 或最小化问题中的目标函数值可 以无限减少。 以无限减少。
1.2 线性规划问题的图解法 及几何意义
如何求解线性规划模型是本章讨论的中心问题。 如何求解线性规划模型是本章讨论的中心问题。首先介绍 只有两个决策变量的线性规划的图解法, 只有两个决策变量的线性规划的图解法,该方法能够对线性规 划的解法从几何直观上给我们以启迪。 划的解法从几何直观上给我们以启迪。 对于两个决策变量的每一组取值, 对于两个决策变量的每一组取值,都可以看作平面直角坐标 系中一个点的坐标,因此, 系中一个点的坐标,因此,我们可以把满足约束条件的点在平 面直角坐标系中表示出来。 面直角坐标系中表示出来。

运筹学概念

运筹学概念

运筹学基本概念➢线性规划问题的基与解LP: max(min)z=CX (1-1)s.t AX=b (1-2)X>=0 (1-3)设A施m*n矩阵,且A的秩为m,则有●可行解:满足上述约束条件(1-2)、(1-3)的向量X称为可行解。

●最优解:满足式(1-1)的可行解称为最优解●基:A中任何一组m个线性无关的列向量构成的子矩阵B,称为该问题的一个基,即B为A的m*m非奇异子矩阵。

●基向量:基B中的一列即为B的一个基向量。

基B中公寓m个基向量●非基向量:矩阵A中基B之外的一列即为B的一个非基向量。

A中共有n-m个非基向量。

●基变量:与基B的基向量相应的变量恒伟B的基变量,基变量共有m个。

●非基变量:与基B非基向量相应的变量称为B的非基变量,非基变量共有n-m个。

●基本解:对于基B,令所有非基变量为零,求得满足式(1-2)的解,称为B对应的基本解。

●基本可行解:满足式(1-3)的基本解称为基本可行解,其对应的基称为可行基。

●基本最优解:满足式(1-1)的基本可行解称为基本最优解,其对应的基称为最优基。

●退化的基本解:若基本解中有基变量为零这,则称之为退化的基本解。

类似地,有退化的基本可行解和退化的基本最优解。

➢几何意义上的几个基本概念●凸集:设S是n维空间的一个点集,若任意两点X(1)、X(2) ∈S的所连线段上的一切点αX(1)+(1-α)X(2),(0<=α<=1),则称S为凸集。

●凸组合:设X(1)、X(2)……X(K),为n维空间中的k个点。

则X=μ1X(1)+μ2X(2)+ μkX(K)(0<=μi<=1,i=1,2……k,且μ1+……μk=1)称为X(1)、X(2)……X(K)的凸组合。

●极点:S是凸集,X∈S,若X不能用S中相异的两点X(1)、X(2)线性表示为:X=αX(1)+(1-α)X(2),α∈(0,1),则称X为S的极点或定点。

即极点不能成为任何线段的内点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明要点:(1)引理: X为LP的基本可行解
<=>X的正分量所对应的系数列向量线性无关
必要性→由基本可行解定义直接证得
充分性←正分量k个
k=m →X=(x1,x2,…,xm,0,…0)T即为 基本可行解 k<m →补齐得基→退化的基本可行解
(2)定理1-2 (反证法)
必要性→
第一步:将反证法假设和已知条件具体化;
F(-2,0,6,0,4)T, G(0,4,0,-8,6)T,
I(4,0,0,6,-2)T, O(0,0,4,2,2)T;
E(0,-2,6,6,0)T, A(0,1,3,0,3)T,
(3)求得的基本解和图解法对照,找 出相应的点; 2、结论:
(1) 基本解对应所有可行域边界及其延 长线、坐标轴之间的交点;
(2) 基本可行解对应可行域的顶点。
四、线性规划解的性质
1、基本概念:
凸集——设K是n维欧氏空间的一个点 集,若任意两点X (1)∈ K,X (2)∈ K的 连线上的一切点: αX(1)+(1-α)X(2) ∈ K (0<α<1),则称K为凸集。
凸组合——设X(1) ,X(2) ,…,X(k) 是n
证明思路:
根据凸组合的定义直接证得结论。
课后小组讨论2: ( 1 )读懂证明,理清思路,写出从最 罗嗦的证明过渡到最简洁的证明过程 (加上边注——段落大意) (2)P43思考讨论题1
(①检查是否属于可行域;②检查相应 的Pj是否线性相关;)
上述4个定理的一些有意义的启示:
LP的可行域一定是凸集,但是凸集不
X2
5 4 3
G(0,4) (2,2)
H(6,4)

2 1 0
F(-2,0) E(0,-2)
I(4,0)
1 2 3 4 C=2

5
C=10
x1
三、基本可行解的几何意义
1、讨论课堂练习1-3
(1)观察图解法求解图,其中点I、 H、G均在第一象限,它们是基本解, 但不是基本可行解,这与基本可行 解非负性有无矛盾?
定理1-3 若可行域非空有界,则线性规 划问题的目标函数一定可以在可行域 的顶点上达到最优值。
证明思路:
首先可行域非空有界就肯定有最优解
本定理要证明的是设在非顶点X处取得最优 值,则存在顶点X(1)和X(2)也取得相同的 最优值。
定理1-4 若目标函数在k个点处达到最 优值(k≥2),则在这些顶点的凸组合 上也达到最优值.
(2)如何求得基本解?
第一步 模型标准化; 第二步 按照基本解的定义
① 找基(非退化3阶方阵)—— 多少个?不超过 C 5,为什么?怎么找?
3
② 确定基变量和非基变量; ③ 令非基变量为0,解出基变量; ④基变量和相应非基变量搭配构成基本解;
求解结果: H(6,4,-6,0,0)T, B(2,2,0,0,2)T, C(3,1,0,3,0)T, D(2,0,2,4,0)T,
一定成为LP的可行域,而非凸集一定 不会是LP的可行域。
(为什么?能举例说明吗?)
线性规划的基本可行解和可行域的顶
点是一一对应的(类似于坐标与点的对 应关系!)
在可行域中寻找LP的最优解可以转
化为只在可行域的顶点中找,从而把一
个无限的问题转化为一个有限的问题。
若已知一个LP有两个或两个以上最
第二步:寻找X附近的属于D的两个点X(1) 和X(2)(技巧:将第一步得到的两个式子相 加减得到);
第三步:选取适当的λ,可保证 X=1/2X(1)+1/2X(2), 从而与“X是顶点”矛盾。
充分性←
第一步:将反证法假设具体化,明确正分量; 第二步:由大前提X是可行解,找出不全为0的 一组数; 第三步:得到P1,P2,…,Pm线性相关的结论, 与已知条件矛盾;
课堂练习1-3
用图解法求解下面的线性规划
MaxZ 2 x1 5 x 2 x1 x 2 4 x1 2 x 2 2 s .t . x1 x 2 2 x , x 0 2 1
按小组分工完成:①画约束条件1,2;画约束条件3并
标明可行域;画目标函数等值线;说明如何得到最 优解,算出相应的目标函数最优值。其他小组进行讲评。
优解,那么就一定有无穷多个最优解。
X≠αX(1)+(1-α)X(2) (0<α<1)
则称X为K的一个顶点(也称为极点或角点)。


1、定义“顶点”的方式有什么特点?
2、这种定义方式在什么场合运用最 方便?
2、线性规划问题解的性质定理: 定理1-1 线性规划问题的可行解集 D (即可行域) X A X b , X 0 是凸集。

证明思路:根据凸集定义,采用直接法证明;
具体步骤:①从D中任取两个不同的点,
应满足 可行解定义中相应的条件;
②证明X=αX(1)+(1-α)X(2)∈D (利用①,证明X满足凸集定义中相应的条件)

定理1-2 线性规划几何理论基本定理
D X


j 1
n
Pj x
j
b, x
j
0

则X是D的一个顶点的充分必要条件是X为线 性规 划的基本可行解。
证明思路:定理1-2是X是D的一个顶点<=> X为LP的 基本可行解; 引理是X为LP的基本可行解<=>X的正 分量所对应的系数列向量线性无关; 从而将问题 转化

X是D的一个顶点 <=>
Hale Waihona Puke X的正分量所对应的系数列向量线性无关
维欧氏空间中的K个点,若存在k个数μ1 , μ2 ,…, μk ,满足 k 0≤μi≤1, i=1,2, …,k;

i , 1
则称X=μ1X(1)+μ2X(2)+…+μkX(k)为X(1), , X(2) ,…,X(k)的凸组合。 顶点——设K是凸集,XK;若X不能用
i 1
X(1) K,X(2) K 的线性组合表示,即
相关文档
最新文档