两异面直线所成角
异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。
由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。
在△GHS 中,设正方体边长为a 。
GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
∴Cos ∠GHS=61。
所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。
以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。
2020年新高考数学核心知识点25.1 空间向量方法--空间的角(精讲精析篇)(学生版)

专题25.1 空间向量方法--空间的角(精讲精析篇)提纲挈领点点突破热门考点01 异面直线所成的角1.两条异面直线所成的角①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.②范围:两异面直线所成角θ的取值范围是(0,2π.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos|cos|||||||a ba bθϕ⋅==⋅r rr r.【典例1】(2018·全国高考真题(理))在长方体1111ABCD A B C D-中,1AB BC==,13AA则异面直线1AD与1DB所成角的余弦值为( )A.15B5C5D2【典例2】(2019·广西高考模拟(理))在直三棱柱111ABC A B C-中,3,3,32AC BC AB===14AA=,则异面直线1A C与1BC所成角的余弦值为__________.【总结提升】向量法求两异面直线所成角的步骤(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v1,v2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角.热门考点02 直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【典例3】(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【典例4】(2020·天水市第一中学高三月考(理))如图,在三棱柱ABC A B C '''-中,已知CC '⊥平面ABC ,90ACB ∠=o ,3BC =,4AC CC ='=.(1) 求证:AC A B '⊥';(2) 求直线CC '与平面ABC '所成角的正弦值. 【规律方法】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.热门考点03 二面角1.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图2、3,12,n n u r u u r分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).【典例5】(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【典例6】(2017·北京高考真题(理))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD P 平面MAC ,6PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 【规律方法】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.热门考点04 空间角有关的探索性问题【典例7】(2019·浙江高二期中)如图所示的几何体中,PD 垂直于梯形ABCD 所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,12,12PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【典例8】(2019·河北名校联盟模拟)如图所示,在梯形ABCD 中,AB ∥CD,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE =2BF =2,平面BFED ⊥平面ABCD.(1)求证:AD⊥平面BFED.(2)在线段EF上是否存在一点P,使得平面P AB与平面ADE所成的锐二面角的余弦值为5728?若存在,求出点P的位置;若不存在,说明理由.【总结提升】与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.热门考点05 利用向量求空间距离1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则222212121||()()()ABd AB a a b b c c ==-+-+-u u u r.2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【典例9】(2019·安徽高考模拟(理))在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF的距离为( )A.3λB.2C.2λ D.5 【典例10】设正方体的棱长为2,则点到平面的距离是( )A. B. C. D.【典例11】(2018·四川省广安石笋中学校高考模拟(理))如图,在棱长为2的正方体中,M是线段AB 上的动点.证明:平面;若点M 是AB 中点,求二面角的余弦值;判断点M 到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.巩固提升1.(2019·四川高二期中(文))已知正方体1111ABCD A B C D 中,E ,F 分别为1BB ,1CC 的中点,那么异面直线AE ,1D F 所成角的余弦值为( ) A .45B .35C .23D .572.(2019·福建高二月考)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记11D PD B=λ.当∠APC 为钝角时,λ的取值范围是________.3.(2019·浙江高三期中)如图,已知三棱台111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=o ,30BAC ∠=o ,11114AA CC BC AC ====,,E F 分别是11,ACBC 的中点.(1)证明:BC EF ⊥(2)求直线EB 与平面11BCC B 所成角的正弦值.4.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.(2019·首都师范大学附属中学高二期中)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(1)若点F 为PD 上一点且13PF PD =,证明:CF P 平面PAB .(2)求二面角B PD A --的大小.6.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.7.(2020·江苏淮阴中学高三期中)直三棱柱111ABC A B C -中, AB AC ⊥, 2AB =, 4AC =,12AA =, BD DC λ=u u u r u u u r .(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.8.(2017·江苏高考真题) 如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.9. (2019·江苏高三期中)如图,正三棱柱111ABC A B C -的所有棱长均为2,点E 、F 分别在棱1AA 、1BB 上移动,且1AE AA λ=u u u r u u u r ,1(1)BF BB λ=-u u u r u u u r .(1)若12λ=,求异面直线CE 与1C F 所成角的余弦值; (2)若二面角A EF C --的大小为θ,且25sin θ=,求λ的值. 10.(2019·福建高二月考)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,棱长为2,M ,N 分别为A 1B ,AC 的中点.(1)证明:MN //B 1C ;(2)求A 1B 与平面A 1B 1CD 所成角的大小.11.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 12.(2018·上海交大附中高二月考)如图,在三棱柱111ABC A B C -中,11AAC C 边长为8的正方形,6AB =,110BC A B ==(1)求证:1AA ⊥平面ABC ;(2)求二面角111A BC B --的余弦值;(3)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BD BC 的值. 13.(2019·湖北高三期中(理))如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,222AD AB BC ===,2PA =,点M 满足2MD PM =u u u u r u u u u r.(1)求证://PB 平面MAC ;(2)求直线PC 与平面MAC 所成角的正弦值.14.(2019·河北唐山一中高三期中(理))如图,在三棱柱111ABC A B C -中,122AA AB ==,13BAA π∠=,D 为1AA 的中点,点C 在平面11ABB A 内的射影在线段BD 上.(1)求证:1B D ⊥平面CBD ;(2)若BCD ∆是正三角形,求二面角1C BD C --的余弦值.15.(2019·宁夏银川一中高三月考(理))如图,在四棱锥S ABCD -中,侧棱SA ⊥底面ABCD ,底面ABCD 是直角梯形,AD ∥BC ,AB AD ⊥,且2SA AB BC ===,1AD =,M 是棱SB 的中点 .(Ⅰ)求证:AM ∥平面SCD ;(Ⅱ)求平面SCD 与平面SAB 所成锐二面角的余弦值;(Ⅲ)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.16.(2019·安徽高三期末(文))如图,在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=o V ,AD CD =,PO ⊥底面ABCD .()1求证:AC⊥底面PBD;()2若PBCV是边长为2的等边三角形,求O点到平面PBC的距离.。
异面直线成角求法

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。
还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B )倡导的方法,下面举例说明两种方法的应用。
例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。
解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以 所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:利用公式21cos cos cos θθθ⋅=设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是θ、θ1、θ2,则21cos cos cos θθθ⋅=(注:在上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为θ,AOD cos BD D cos cos 1∠⋅∠=θ,55BD BD BD D cos 11==∠。
异面直线所成角的计算

C1
D
C
则MON=120,
即异面直线AC与BD所成的角为60°.
2.已知正方体的棱长为a , M为AB的中点,N 为 BB1的中点, 求 A1M 与 C1 N 所成角的余弦值.
解: 如图,取AB的中点E, 连BE, 有BE∥ A1M
取CC1的中点G,连BG. 有BG∥ C1N 则∠EBG即为所求角. 在△EBG 中 D1 C1
1 2 1 2
∴异面直线 AD, BC 所成的角即为 EG, FG 所成的角(或其补角)
∵ EG AD 1, FG BC 1 ,
EG 2 FG 2 EF 2 1 ,∴ EGF 120 在 EGF 中, cos EGF 2 EG FG 2
,
∵两异面直线所成角的范围是: 00 , 90 0 ∴异面直线 AD, BC 所成的角为 60
BG=BE=
由余弦定理, cos∠EBG=2/5
5 2
a,, F C1 =
6 a 2
A1
E
F
B1
G D N C
想一想:还有其他定角的方法吗?
取EB1的中点F,连NF,有BE∥NF
则∠FNC为所求角.
A
M
B
小结:
1、求异面直线所成的角是把空间角转化为平面角,体现了化 归的数学思想.
化归的一般步骤是:定角
方法归纳: 平移法 即根据定义,以“运动”的观点,用“平移
转化”的方法,使之成为相交直线所成的角.
解法二:
如图,补一个与原长方体全等的并与原长方体有公共面
BC1的方体B1F, 连结A1E,C1E,则A1C1E为A1C1与BD1 所成的角(或补角), 在A1C1E中, 由余弦定理得
-异面直线所成角-的求法

浅谈”异面直线所成角”的求法摘要:求异面直线所成的角,是高考常考的一个知识点。
本文通过对”异面直线所成角”求解的探讨,对”异面直线所成角”求解的两种通法的基本思路、关键点进行分析,以达到灵活运用它们。
关键词:异面直线所成的角,传统几何法,直角坐标向量法【中图分类号】g633.6一、两种求”异面直线所成角”的通法。
1.传统几何法依据:两异面直线所成角的定义步骤:作角--证明--求角关键点:异面直线所成角的顶点的选取。
取点技巧:在图形中选定两个平面,使这两个平面各自含有一条异面直线,则两异面直线所成角的顶点可在两平面交线上选取。
2.直角坐标向量法依据:异面直线所成的角与这两条异面直线方向向量所成的角相等或互补。
步骤:1.建立空间直角坐标系2.求相关点的坐标,并求出两异面直线的方向向量。
3.两异面直线所成角θ满足:二、举例说明例1.如图,正三角形abc的边长为3,过其中心g作bc边的平行线,分别交ab、ac于b1、c1.将δab1c1沿b1c1折起到δa1b1c1的位置,使点a1在平面bb1c1c上的射影恰是线段bc的中点m.求:(1)二面角a1-b1c1-m的大小;(2)异面直线a1b1与cc1所成角的大小(用反三角函数表示).解(1)(略)(2)解法一分析:取平面a1b1c1与平面bcc1b1,它们的交线为b1c1,故可在b1c1和选取一恰当的点作为两异面直线所成角的顶点。
详解:过b1作c1c的平行线交bc于p,则∠a1b1p等于异面直线a1b1与cc1所成的角.由pb1c1c是平行四边形得b1p=c1c=1=bp,pm=bm-bp=a1b1=ab1=2.∵a1m⊥面bb1c1c于m.∴a1m⊥bc,∠a1mp=90°.在rt△a1gm中,a1m=a1g·在rt△a1mp中,在△a1b1p 中,由余弦定理得,∴异面直线a1b1与cc1所成角的大小为arccos 方法二.分析:建立空间直角坐标系,利用向量求解.详解:如图,以m为坐标原点o,ma1为z轴,bc所在直线x轴,am所在直线为y轴建立空间直角坐标系.并设异面直线a1b1与cc1所成角为θ. ∵g为等边△abc的中心,b1c1//bc.∴∴∴∴异面直线a1b1与cc1所成角的大小为arccos剖析:技巧性大,灵活性强是使用传统几何法求异面直线所成的角的特征,体现在如何在空间中选取恰当的点作为两异面直线所成角的顶点,很多学生对此都无所适从,所以点的选取是解决此类问题的关键,也是难点之一。
两条异面直线所成的角的取值范围

两条异面直线所成的角的取值范围1. 引言嘿,朋友们!今天我们来聊聊一个挺有意思的话题——两条异面直线所成的角的取值范围。
乍一听可能觉得这事儿有点复杂,像是数学课上那些让人头疼的公式,但别急,让我来给你讲讲这其中的乐趣和奥妙。
说到这里,你可能在想,什么是异面直线?它们怎么能成角?这就好比两条不相交的铁轨,虽然走得各自的路,但它们之间总有一种微妙的关系。
好啦,闲话少说,咱们开始吧!1.1 异面直线的定义首先,咱们得搞清楚什么是异面直线。
异面直线,顾名思义,就是在三维空间里,不在同一个平面上的两条直线。
可以想象一下,想象你在一个立体的空间中,有两根杆子,一个竖着,一个横着,它们完全不碰头,这就是异面直线。
它们就像是两个好朋友,各自忙着自己的事,偶尔瞄一眼,但没法聚在一起。
这种直线的存在,正是我们要探讨的关键。
1.2 角度的概念好啦,接下来咱们聊聊角度。
我们常说的角,通常是在两个直线相交的地方形成的,像个“V”字。
但异面直线不一样,它们就像两条不相干的河流,虽然不交汇,但依然可以有自己的角度。
这里的角,指的是这两条直线延长后,所形成的最小角度。
听上去是不是很神奇?这就像你和朋友拍照,虽然站得很远,但用镜头一拍,瞬间就能捕捉到你们之间的那个“角”。
2. 两条异面直线的角的取值范围那么,异面直线所成的角到底有什么取值范围呢?其实,事情并不复杂。
两条异面直线所成的角,范围在0度到90度之间。
嗯,是的,没错,虽然它们不在同一个平面,但它们之间的角度却是有上下限的。
就像你和朋友一起吃火锅,最不喜欢的就是那种油腻腻的底料,而最喜欢的当然是清淡爽口的了。
这种角度的范围,让我们在数学的世界里,也能找到一些温暖的“底料”。
2.1 具体取值让我们具体看看,0度和90度分别意味着什么。
0度意味着这两条直线几乎重合,简直是“如胶似漆”的感觉;而90度则是它们完全垂直,像个坚定的士兵。
其实这也可以让我们联想到生活中,朋友之间的关系。
如何求异面直线所成的角

如何求异面直线所成的角立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。
其中“作”是关键,那么如何作两条异面直线所成的角呢本文就如何求异面直线所成的角提出了最常见的几种处理方法。
Ⅰ、用平移法作两条异面直线所成的角一、端点平移法例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若1AB BC CC ==,求CD 与AF 所成的角的余弦值。
解:取BC 的中点E ,连结EF ,DF ,//DF EC 且DF EC =∴四边形DFEC 为平行四边形//EF DC ∴EFA ∴∠(或它的补角)为CD 与AF 所成的角。
设2AB =,则EF =AF =EA =故2222EF FA EA EFA EF FA +-∠==arccos10EFA ∴∠=二、中点平移法例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。
解:连结MD ,取MD 的中点O ,连结NO ,1O 、N 分别MD 、AD 为的中点,∴NO 为DAM ∆的中位线, ∴//NO AM ,ONC ∴∠(或它的补角)为AM 与CN 所成的角。
设正四面体ABCD 的棱长为2,则有2NO =,CN =2CO =, 故2222cos 23NO CN CO ONC NO CN +-∠== 2arccos 3ONC ∴∠=三、特殊点平移法例3、如图,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知4AB =,20CD =,7EF =,13AF BE FD EC ==,求异面直线AB 与CD 所成的角。
解:在BD 上取一点G ,使得13BG GD =,连结EG FG 、,在BCD ∆中,13BE BG EC GD ==,故//EG CD ,同理可证://FG ABFGE ∴∠(或它的补角)为AB 与CD 所成的角。
两异面直线所成角.

F H
B
E
C
A
F
D
H
B
E
C
D
N
F
M
A
H C
B E
G
D
N
F
M
A
H C
B E
G
高考题体验:如图,已知空间四边形ABCD中:AB=BC=AC= 2 ,DA= 3 , BD=DC=1,求AC与BD所成角的余弦值。
A
B
C
D
课堂练习
空间四边形 ABCD中,AD BC 2 , E, F 分别是 AD与BC的中点,EF 3 求 AB,CD所成的角。
线 D1B和A1C1所成的角
D1 A1
D1
H1
B1 A1
G1 F1
D A
补形平移法
HC AB B
G F
典例反馈
如图,已知空间四边形A-BCD中: AB=BC=CD=DA=AC=BD,E、F分别为BC、AD中 点,求AE与CF所成角的余弦值。
A
F
B
E
C
典例反馈
如图,已知空间四边形A-BCD中: AB=BC=CD=DA=AC=BD,E、F分别为BC、AD中 点,求AE与CF所成角的余弦值。
2.方法: 求异面直线所成的角:
3.步骤:
平移
构造可解三角形
①作(找) ② 证 ③ 算 ④ 答
小组作业
请大家回家以后,尝试探讨能否从我 们高一所学过的向量的角度,将本节课 的例习题问题加以解决?
再见!
2005年11月23日
D1
C1 (1) A1B和CC1
A1
B1 G (2) AC和BC1
E D
C (3)EF和A1G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作角
证角
算角
答角
[课堂练习]
在空间四边形 ABCD 中,BD 4 ,AC 6 , AC BD ,M , N 且 分别为 AB, CD 的中点,求 MN 与 BD 所成角的正切值。
A
M D N B C
3 2
尝试回忆
两条异面直线所成角的定义
两条异面直线所成角的求法
布置作业
1.课本习题 9.2 第 6、7 2.自助餐: 已知异面直线 a,b 所成的角为 50o, 为空间一点, P 则过 点P且 (1) a,b 所成角都是 25o 的直线有且只有_ _ _条 。 与 (2) a,b 所成角都是 30o 的直线有且只有_ _ _条 。 与 (3) a,b 所成角都是 65o 的直线有且只有_ _ _条 。 与 (4) a,b 所成角都是 70o 的直线有且只有_ _ _条 。 与
A
E
D B G F C
取 AC 的中点 R,连结 ER、FR,则 ERF (或其补角) 就是异面直线 AD,BC 所成的角。
A
E R
D B F
C
过点 D 在面 BCD 内作 DH // BC,连结 CH 、AH,则 ADH (或其补角) 就是异面直线 AD,BC 所在的角。
A
E
B F C
D
H
D1 A1 B1
C1
D A B
C
典例剖析
例 1.空间四边形 ABCD 中, AD BC 2 , E , F 分别是 例题2:
AB, CD 的中点, EF 3 ,
求异面直线 AD, BC 所成的角。A来自ED B F C
取 BD 的中点 G,连结 EG、FG,则 EGF (或其补角) 就是异面直线 AD,BC 所成的角。
高安市灰埠中学 兰炳根
a b
实验: 一张纸上画 有两条能相交的直 线a、b(交点在纸外). 现给你一副三角板 和量角器,限定不 许拼接纸片,不许 延长纸上的线段, 问如何能量出a、b 所成角的大小?
o a o o b
还等什 么?动 手实验 吧。
o
b
o
o a
异面直线所成的角定义:
已知异面直线a、b,在空间中任取一点O,过 点O分别作a′∥a,b′∥b,则a′,b′所成的锐角 (或直角)叫做两条异面直线所成的角.
过 B 在面 ABD 内作 BK // AD,连结 AK、CK,则 KBC (或其补角) 就是异面直线 AD,BC 所在的角。
K
D
A
思路1解:
取 BD 中点 G ,连结 EG, FG, EF ,
B
E
D G F C
∵ E, F 分别是 AB, CD 的中点, ∴ EG // AD, FG // BC,
敬 请 指 导 谢 谢
a
o b
a′
b′
已知异面直线a、b,在空间中任取一点O,过 点O分别作a′∥a,b′∥b,则a′,b′所成的锐角 (或直角)叫做两条异面直线所成的角. 问题1:过点O为什么可以作a′∥a和 b′∥b?它的理论依据是什么?
问题2:由于点O可以任意选取,那么按
此方法做出的角能有多少个?
它们的大小有什么关系?
∴异面直线 AD, BC 所成的角即为 EG, FG 所成的角(或其补角)
∵ EG AD 1, FG BC 1 ,
EG 2 FG 2 EF 2 1 ,∴ EGF 120 , 在 EGF 中, cos EGF 2 EG FG 2
1 2
1 2
∵两异面直线所成角的范围是: 00 , 90 0 ∴异面直线 AD, BC 所成的角为 60
为什么?
注意:
(1)异面直线所成角的大小只和两条异面直线的位 置有关,而和点O位置的选择无关。 (2)注意把握异面直线所成角的范围.
请记住 哦!很 重要的
即0 °<α≤90 °
(3)如果两条异面直线所成的角是直角,则叫两条 异面直线垂直。
典例剖析
例题1:
如图:表示正方体 ABCD A1 B1C1 D1 , 求异面直线 BA1和CC1 所成的角。