初二数学 分式经典讲义
八年级上册分式专题讲义

八年级上册分式专题讲义一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式.例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0中,是分式的有______个二、 分式有意义的条件是分母不为零:(B ≠0) 分式没有意义的条件是分母等于零.( B=0 )分式值为零的条件分子为零且分母不为零.( B ≠0且A=0,即分子零分母不零 )例1.下列分式,当x 取何值时有意义.(1)2132x x ++ (2)2323x x +-练习1.当x______时,分式2134x x +-无意义,当x_______时,分式2212x x x -+-的值为零.练习2.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x +中考链接:(2007昆明,10,3分)当x ≠________时,分式13x -有意义. (2014昆明,12,3分)要使分式101-x 有意义,则x 的取值范围是 .三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变.(C ≠0) (C ≠0)四、分式的通分和约分:关键是因式分解 分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.如果一个分式中没有可约的因式,则为最简分式.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式.注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂.②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分.分式的通分定义:根据分式的基本性质,把几个异分母的分式分别化成同分母分式(分式值不变).步骤:分式的通分最主要的步骤是最简公分母的确定.最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.确定最简公分母的一般步骤: ①取各分母系数的最小公倍数;②单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; ③相同字母(或含有字母的式子)的幂的因式取指数最大的; ④保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取; 注意:分式的分母为多项式时,一般应先因式分解.C B CA B A ⋅⋅=C B C A B A ÷÷=例1.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有 个.练习1.约分:(1)22699x x x ++- (2)2232m m m m -+-练习2.通分:(1)26x ab ,29y a bc(2)2121a a a -++,261a -例2.已知1x -1y =3,求5352x xy yx xy y+---的值.五、分式的运算分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.分式乘方法则:分式乘方要把分子、分母分别乘方.bcad c d b a d c b a =⋅=÷分式的加减法则:同分母的分式相加减,分母不变,把分子相加减.异分母的分式相加减,先通分,变为同分母分式,然后再加减.c b a c b c a +=± bd bc ad bd bc bd ad d c b a +=±=± 混合运算:运算顺序和以前一样.能用运算率简算的可用运算率简算.bd ac d c b a =⋅n nn ba b a =)(例1.当分式211x --21x +-11x -的值等于零时,则x=_________.练习1.已知a+b=3,ab=1,则a b +ba的值等于_______.例2.计算:222x x x +--2144x x x --+练习2.计算:21x x --x-1练习3.先化简,再求值:3a a --263a a a +-+3a,其中a=32练习4.计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2练习5.计算a-b+22b a b+得( )A .22a b b a b -++B .a+bC .22a b a b ++D .a-b中考链接:(2009昆明,17改编,6分)化简,求值:x 6)1x 11x 1(x 3x 3÷+--⋅+,其中x =23(2010昆明,12,3分)化简:1(1)1a a -÷=+(2011昆明,13,3分)计算:2()ab a ba ab a b++÷--错误!未找到引用源。
分式讲义

一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a+⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸n nna ab b⎛⎫=⎪⎝⎭(n是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
八年级数学分式知识点

八年级数学分式知识点八年级数学分式知识点概述一、分式的定义分式(Fraction)是指一个表达式,其中包含一个分子(Numerator)和一个分母(Denominator),形式为 a/b,其中 a 是分子,b 是分母,b 不等于零。
二、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以一个非零的数或式子,分式的值不变。
2. 约分:通过找出分子和分母的公因数并约去,使分式化为最简分式。
3. 通分:将两个或多个分式,使其具有相同的分母,这样的操作称为通分。
三、分式的运算1. 分式的加减法:- 同分母分式相加减:分母不变,分子相加减。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 分式的乘法:- 分子乘分子,分母乘分母。
3. 分式的除法:- 除以一个分式等于乘以它的倒数。
4. 分式的混合运算:- 先乘方,再乘除,最后加减。
- 遇到括号,先计算括号内的运算。
四、分式的条件应用1. 分式方程:- 解分式方程时,通常需要去分母转化为整式方程求解。
2. 分式不等式:- 解分式不等式时,需要注意不等号的性质,通常也需要去分母处理。
3. 分式函数:- 分式可以作为函数的表达式,如 y = f(x) = (ax + b) / (cx + d),其中 a, b, c, d 为常数,且cx + d ≠ 0。
五、分式的化简与求值1. 化简:- 通过约分和通分,将复杂的分式化为最简形式。
2. 求值:- 在已知分式中某些字母的值的情况下,可以通过代入法求出分式的数值。
六、分式的实际应用1. 比例问题:- 分式常用于解决比例问题,如速度、时间和距离的关系。
2. 利率问题:- 分式在计算利息、本金和本息和等问题中有广泛应用。
七、分式的图形表示1. 函数图像:- 分式函数的图像可以通过描点法绘制,注意分母不能为零的点。
2. 几何应用:- 分式在计算几何图形的面积、周长等方面也有应用。
八、分式的综合练习1. 练习题:- 通过解决各种分式相关的数学问题,加深对分式知识点的理解和应用。
八年级上册数学讲义分式-

(1)分式有意义的条件:分式的分母不等于__________.
(2)分式无意义的条件:分式的分母等于 0.
【注意】(1)分式有无意义与分母有关,与分子无关.
(2)分式中分母是含字母的式子,它的值随着字母取值的不同而变化,当字母的取值使分母等于 0 时,
分式就没有意义了.
3.分式的值为 0 的条件
分式的值为 0 的条件:当分式的分子等于 0 且__________不等于 0 时,分式的值为 0.
分式的基本性质是分式变形的理论依据.
【注意】①基本性质中的 A,B,C 表示的都是整式,其中 B≠0 是已知条件中隐含着的条件,一般在解
题过程中不另强调;C≠0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调
C≠0 这个前提条件.
②应用分式的基本性质时,要深刻理解“同”的含义:一是要同时做“乘法”或“除法”运算(不是
做“加法”或“减法”运算);二是“乘”(或“除以”)的对象必须是同一个不等于 0 的整式.
③若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除
以同一个整式 C.
(2)分式的符号法则:分式的分子、分母与分式本身的符号,同时改变其中两个,分式的值不变.
用式子表示为:
5.约分、最简分式
1.分式的概念
(1)分式的定义:
A
A
一般地,如果 A,B 表示两个整式,并且 B 中含有字母,那么式子 B 叫做分式.分式 B 中,A 叫做分
子,B 叫做__________.
(2)一个式子是分式需满足的三个条件:
A ①是形如 B 的式子;
②A,B 为__________式;
③分母 B 中含有字母.三个条件缺一不可.
分式讲义

分式讲义【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac ∙=,b c b d bda d a c ac÷=∙=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2一、分式定义题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有:题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.二、分式的基本性质1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+.【例4】已知:21=-x x ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.对应训练1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .90 2.下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a bc c-++=-; ④m n m nm m ---=-中,成立的是( ) A .①② B .③④ C .①③ D .②④ 3.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.已知13x x +=,求2421x x x ++的值.8.下列各式πa ,11x +,15x y +,22a b a b--,23x -,0•中,是分式的有___ ________;是整式的有_____ ______;是有理式的有___ ______. 9.下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.3.下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x + D .2221x x +4.当x ______时,分式2134x x +-无意义.5.当x _______时,分式2212x x x -+-的值为零.6.当x ______时,分式435x x +-的值为1;当x _______时,分式435x x +-的值为1-.7.分式24xx -,当x _______时,分式有意义;当x _______时,分式的值为零. 8.有理式①2x ,②5x y +,③12a -,④1xπ-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 9.分式31x ax +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义 C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零10.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负. 11.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++12.使分式||1xx -无意义,x 的取值是( )A .0B .1C .1-D .1± 13.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.三、分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂. 题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算: (1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--;(6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ;(7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;输入n 计算n (n+1)n>50 Yes No 输出结果m (2)已知:432zy x ==,求22232zy x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值.四、分式其他类型试题:例1:观察下面一列有规律的数:32,83,154,245,356,487,……. 根据其规律可知第n个数应是___(n 为正整数)例2: 观察下面一列分式:2345124816,,,,,...,x x x x x---根据你的发现,它的第8项是 ,第n 项是 。
分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
分式讲义(上部分内容)

基本知识点——分式
分式的通分
①分式的通分:根据分式的基本性质,把几个异分母的分式分别化成同分母分式(分式值不变)。
②分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:
Ⅰ取各分母系数的最小公倍数;
Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;
Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
分式的约分
定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
分式乘除法则
分式的乘方
分式的加减法法则
遇到分式相加减,首先观察比较,辨别是同分母分式相加减,还是异分母分式相加减;若是同分母分式相加减,分母不变,只把分子相加减,即若是异分母分式相
加减,先通分,变为同分母分式,再加减,即运算的结果,能约分的一定要约分,将结果化为最简形式.。
人教版数学 八年级上 第十五章 《分式》精品讲义

所以 x2 y2 z2 0. yz zx xy
【解读策略】 条件分式的求值,如需把已知条件或所示条件分式变形,必 须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现 了整体的数学思想和转化的数学思想.
所以 (x
xyz y)( y z)(x
z)
2k k 3k 3k 4k 5k
6k 3 60k 3
1 10
.
例6 已知 x a, z c, 且 abc o ,求 a b c 的值.
yz xy
a 1 b1 c 1
解: 由已知得 1 y z , ax
所以 1 1 y z 1 x y z , 即 a 1 x y z ,
同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分
子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性
质化为最简形式.
专题 2 有关求分式值的问题
【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化
简,然后将字母的值代入,求出分式的值.但对于分式的求值问题,却没有直接给
知识网络结构图
分式的概念
分式的概念 分式的意义、无意义的条件
分式的值为 0 的条件
分式的基本性质
分式的基本性质 分式的约分
分式的通分
分式的乘法规则
分式的除法规则
分式
同分母分式的加减法法则
分式的运算 分式的加减法法则
异分母分式的加减法法则
运算性质
负正数指数幂
科学记数法
公式方程的概念
解分式方程的步骤
分式方程 分式方程中使最简公分母为 0 的解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 分式§17.1 分式及其基本性质 一. 知识点:1.分式的概念:形如BA(A 、B 是整式,且B 中含有字母(未知数),B ≠0)的式子,叫做分式(fraction ).其中A 叫做分式的分子(numerator ),B 叫做分式的分母(denominator ).整式和分式统称有理式(rational expression ). 注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义。
(分式有意义的条件)2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.与分数类似,根据分式的基本性,可以对分式进行约分和通分.3.分式值为零的条件:分子等于零且分母不等于零。
二.学习过程:1.先由分数,整数,有理数的概念引入分式,有理式。
(单项式和多项式统称为整式。
代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式) 再按教材的思路讲解,并归纳相关的知识点。
2. 和学生一起完成课后习题。
三.例题及习题:教材中的题目。
典型例题1.23m m是一个分式么?答:是。
虽然可以化成3m 的整式形式,但在化简的过程中正是运用了分式的基本性质化简的,另外23m m与3m 中的字母的取值也不同.习题一(1).当x 取什么值时,下列分式有意义?(1)12+a a ;(2) 3252-a a (2). 要使分式)5)(32(23-+-x x x有意义,则.( )(A )x ≠23-(B)x ≠5 (C)x ≠23-且x ≠5 (D)x ≠23-或x ≠5(3). 当a 为任意有理数时,下列分式一定有意义的是.( )(A )112++a a (B )12+a a (C )112++a a (D )21a a +(4). 当x 是什么数时,分式252++x x 的值是零?解:由分子x+2=0得x=-2 而当x=-2时,分母2x-5≠0所以,当x=-2时,分式的值是零习题二一、填空题 1.约简公式= .2.a 取整数 时,分式(1-114++a a )·a 1的值为正整数.3.如果x+x 1=3,则1x x x 242++的值为 .4.已知x=1+a 2,y=1-a 1.用x 的代数式表示y ,得y= ;用y 的代数式表示x ,得x= .5.要使代数式3a 2a 3a 2---的值为零,只须 .6.已知s=)y s (q 1yqx ≠--,用x 、y 、s 表示q 的式子是 .7.两个容积相等的瓶子中装满了酒精和水的溶液,其中一个瓶子中酒精与水的容积之比是p ∶1,另一个瓶子中是q ∶1.若把这两瓶溶液混合在一起,混合液中酒精与水的容积之比为 .二、解答题8.化简分式232m m 21m m m 1+-+--9.解关于x 的方程,其中a+2b-3c ≠0,a 、b 、c 互不相等.10.已知ab=1,证明11b b 1a a =+++11.甲的工作效率是乙的2倍,若甲先完成32后乙来完成,这样完成工作所用时间比甲、乙两人同时工作晚4天,甲、乙两人单独完成这项工作各需多少天?参考答案【同步达纲练习】一、1. c d a c b a -+-+ 2.-2或-4 3.814.2x 3- 3-2y5.a=-36.q=y S x S --7.2q p pq 2q p ++++二、8.当m ≥0时,且m ≠1时,原式=1+m. 当m <0时,且m ≠-1时,原式=m 1)m 1(2+-9.x=c 3b 2a bcac 2ab 3-+-- 10.提示:将第二个分式的分母中的1换为ab.11.甲单独完成需6天,乙需12天.§17.2 分式的运算 一. 知识点:1.分式的乘除法:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方的法则:分子的乘方作分子,分母的乘方作分母。
2.分式的加减法:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二.学习过程:1.按教材的思路讲解,并归纳相关的知识点。
2. 和学生一起完成课后习题。
三.例题及习题:教材中的题目。
分式的运算 一、选择题:1.下列各式计算正确的是( )A.222a ab b a b b a -+=--; B.2232()x xy y x y x y ++=++C.23546x x y y ⎛⎫= ⎪⎝⎭; D.11x y x y -=-+- 2.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭ 的结果为( ) A.1 B.x+1 C.1x x + D.11x -3.下列分式中,最简分式是( )A.a bb a -- B.22x y x y ++ C.242x x -- D.222a a a ++-4.已知x 为整数,且分式2221x x +-的值为整数,则x 可取的值有( )A.1个B.2个C.3个D.4个5.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A.1 B.x y C.yx D.-16.当,代数式2111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ 的值是( )A.B.C.D.二、填空题7.计算213122x x x ---- 的结果是____________.8.计算a 2÷b ÷1b ÷c ×1c ÷d ×1d 的结果是__________. 9.若代数式1324x x x x ++÷++有意义,则x 的取值范围是__________. 10.化简131224a a a -⎛⎫-÷⎪--⎝⎭ 的结果是___________.11.若222222M xy y x yx yx y x y --=+--+ ,则M=___________. 12.公路全长s 千米,骑车t 小时可到达,要提前40分钟到达,每小时应多走____千米.三、计算题13.222299369x x x x x x x +-++++; 14.23111x x x x -⎛⎫÷+- ⎪--⎝⎭ 四、解答题15.阅读下列题目的计算过程:23232(1)11(1)(1)(1)(1)x x x x x x x x x ----=--++-+- ①=x-3-2(x-1) ② =x-3-2x+2 ③ =-x-1 ④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号:______. (2)错误的原因是__________.(3)本题目的正确结论是__________.16.已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 值的和.答案 一、 1.D2.C 解:原式=22211111111x x x x x x ⎛⎫--⎛⎫+÷+⎪ ⎪----⎝⎭⎝⎭=222(1)(1)1111x x x x x x x x x x x +-+÷=⨯=--- 3.B 点拨:A 的最简结果是-1;C 的最简结果是x+2;D 易被错选,因为a 2+a-2=(a+2)(a-1)易被忽视,故化简结果应为11a -.4.D 解:先化简分式2222(1)21(1)(1)1x x x x x x ++==-+-- ,故当x-1分别等于2,1,-1或-2,即x 分别等于3,2,0或-1时,分式的值为整数.点拨:解决此类问题,最关键的是先将分式化成最简形式.5.B 解:原式=1111xy xy xy xy xy y x x y x y ⎛⎫--⎛⎫-÷-=÷= ⎪ ⎪⎝⎭⎝⎭. 6.B 解:原式=(1)(1)2(1)(1)(1)(1)1x x x x xx x x x x⎡⎤+--÷⎢⎥+-+--⎣⎦=222211(1)(1)1(1)(1)21x x x x x x x x x x x x xx +-+--÷=⨯=+--+-+. 把,得原式12==. 点拨:这一步时,并未结束,还应进一步进行分母有理化, 应引起足够的重视. 二、7.5322x x -- 解:原式=2134134135312222222222x x x xx x x x x x --+--+=+==------. 8. 222a c d 解:原式=222211111a a b b c c d d c d ⨯⨯⨯⨯⨯⨯=. 点拨:先将除法统一成乘法后再运算,即简便又不易出错,否则,很容易犯运算顺序的错误.9.x ≠-2,-3和-4点拨:此题易忽略了“x ≠-3”这个条件,(x+3)虽然是分式34x x ++ 的分子,但是34x x ++ 又是整个算式的除式部分,由于除数不能为零,所以x+3≠0,即x ≠-3. 10.-2 解:原式=21332(2)2222(2)23a a a a a a a a a ----⎛⎫-÷=⨯=- ⎪-----⎝⎭.11.x 2 点拨:①将等号右边通分,得222x x y - ,比较等号左边的分式22Mx y - ,不难得出M=x 2. ②可以在等号两边都乘以(x 2-y 2)后,化简右边即可.12.2232s t t - 点拨:①首先把“40分钟”化为“23 小时”.②易列出23sst t --的非最简形式,应进一步进行化简计算:上式=233(32)232(32)(32)32s s st s t st t t t t t t t --=-=----.三、13.解:原式=2(9)(3)(3)93262(3)2(3)(3)3333x x x x x x x x x x x x x x x ++-+-+++=+===++++++.点拨:计算该题易错将263x x ++ 看成最终结果.强调:进行分式的运算, 要将结果化成最简形式为止.14.解:原式=2213213111111x x x x x x x x x ⎛⎫-+--⎛⎫÷-=÷- ⎪ ⎪-----⎝⎭⎝⎭=222421(2)1111141(2)(2)2x x x x x x x x x x x x x x --------÷=⨯=⨯=-----+-+. 四、15.(1)②;(2)错用了同分母分式的加减法则.(3)11x --.点拨:等学习了解分式方程之后,②步的错更易发生,特别提醒读者,进行分式的运算,每步都要严格遵守法则.16.解:原式=2221833(3)(3)xx x x x-++++-+-=2(3)2(3)218 (3)(3)(3)(3)(3)(3)x x xx x x x x x --+++++-+-+-=2626218(3)(3)x x xx x---+++-=262(3)2 (3)(3)(3)(3)3x xx x x x x++==+-+--.显然,当x-3=2,1,-2或-1,即x=5,4,2或1时,23x-的值是整数, 所以满足条件的数只有5,4,2,1四个,5+4+2+1=12.点拨:显然在原式形式下无法确定满足条件的x的值, 需先经过化简计算才能使问题得到解决,这是解决分式问题常用的做法.§17.3 可化为一元一次方程的分式方程一.知识点:1.分式方程:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2.解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.二.学习过程:1.按教材的思路讲解,并归纳相关的知识点。