八年级数学上册 15.1 分式教案 (新版)新人教版
八年级数学上册15.1分式教案新人教版(new)

15.1分式15。
1.1从分数到分式教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。
重点难点1.重点:理解分式有意义的条件,分式的值为零的条件。
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
一、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv 。
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程。
设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3。
以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 二、例题讲解 P128例1。
当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围。
[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念。
(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:错误!分母不能为零;错误! 1-m m32+-m m 112+-m m分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解。
[答案] (1)m=0 (2)m=2 (3)m=1三、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3。
八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。
通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
本节内容是整个分式部分的基础,对于学生来说具有重要的意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。
但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。
因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。
三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。
四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。
2.难点:分式的运算规律,分式方程的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。
2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。
3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。
然后引导学生思考分数与分式的关系,引出分式的概念。
2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。
新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。
2、能分析简单问题中的数量关系,并用代数式(分式)表示。
一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。
为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。
三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
八年级数学上册-15.1.2-分式的基本性质教案-(新版)新人教版

八年级数学上册-15.1.2-分式的基本性质教案-(新版)新人教版一、教学目标1.使学生理解并掌握分式的基本性质及变号法则;并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的基本性质;这是学好本章的关键.2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的基本性质?有什么用途?(二)新课1.类比分数的基本性质;由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式;分式的值不变;即:2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析;并反问:为什么c≠0?解:∵c≠0;教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.) 解:∵x≠0;解:∵z≠0;练习1 填空:把学生分为四人一组开展竞赛;看哪个组做得又快又准确;并能小结出填空的依据.(1)看分母如何变化;想分子如何变化;(2)看分子如何变化;想分母如何变化; 例2 不改变分式的值;使下列分式的分子和分母都不含“-”号:规律总结分式符号变换的依据与分数符号变换的依据相同;也遵循“同号得正;异号得负”的原则。
练习2:不改变分式的值;把分子或分母中多项式的第一项都不含“-”号.b a a b a 2224) ( )(=-b a ab 2)(13 )(=y xy x ) ( )(=31;633222)(y x )(+=+x xy x 5(1) 6b a --(2) 3xy -2(3) m n -55(1)5 66(1)6b b b a a a --⨯-==--⨯-解(1)()333x x x y y y -=-÷=-(2)222()m m m n n n=÷-=--(3).y x y x 2b a c 1--+-+-);()(解:(三)课堂小结本节课学习了哪些内容?1.什么是分式的基本性质?分式的分子与分母乘(或除以)同一个不等于0的整式 ;分式的值不变.2. 运用分式的基本性质应注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.(四)作业(五)板书15.1.2 分式的基本性质1.分式的基本性质2.典例分析3.小结(六)反思.yx y x )y x ()y x (y x y x 2b a c )b a (c b a c 1+-=+---=--+---=--=+-)(;)(。
八年级数学上册 15.1.2分式的基本性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学

分式的基本性质教学准备1. 教学目标1.1 知识与技能:使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.1.2过程与方法:通过分式的恒等变形提高学生的运算能力。
1.3情感态度与价值观:通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
2. 教学重点/难点2.1 教学重点使学生理解并掌握分式的基本性质,这是学好本章的关键.2.2 教学难点灵活运用分式的基本性质和变号法则进行分式的恒等变形3. 教学用具4. 标签教学过程1课堂引入问题1:下列各组分数是否相等?可以变形的依据是什么?生:依据分数的基本性质问题2.分数的基本性质是什么?需要注意的是什么?生:分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.师:一般地,对于任意一个分数,有师:(1)分数分子和分母做乘法、除法中的同一种运算;(2)乘(或者除以)同一个数;(3)所乘(或除以)的数不为0;(4)分数值不变.问题3.运用分数的基本性质进行约分和通分的时候要注意什么?生:分数的基本性质是进行分数的约分和通分的依据,也是分数四则运算的基础.分数的约分:关键是确定分子和分母的最大公约数,再依据分数的基本性质进行化简成最简分数;分数的通分:关键是确定各个异分母分数所有分母的最小公倍数,再依据分数的基本性质进行通分.问题4.以下分式的变形是否成立?请简要说明理由.生:(1)成立.等号左边的分式的分子和分母都乘2;等号左边的分式的分子和分母都除以2.生:(2)成立.等号左边的分式的分子和分母都乘不为0的整式a;等号左边的分式的分子和分母都除以不为0的整式a.问题5:类比分数的基本性质,你能猜想出分式的基本性质吗?分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(C≠0)其中A , B , C是整式. 师:类比分数的基本性质,应用分式的基本性质时要注意什么?(1)分子和分母应同时做乘法或除法中的一种变换;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式不为0.2例2 填空:(1)(2)师:你是怎么想的?生:因为中的xy除以x才能变成y,根据分式的基本性质,分子也得除以x。
八年级数学上册15.1分式教案1(新版)新人教版

分式教学目标:1.掌握分式中分子、分母和分式本身符号变号的法则。
2.能正确熟练地运用分式的变号法则解决有关的问题。
教学重点:分式的分子、分母和分式本身符号变号的法则。
教学难点:分式的变号法则,在分式运算中应用十分广泛。
应用时要注意:分子与分母是多项式时,第一项的符号不能作为分子或分母的符号,应将其中的每一项变号。
教具准备: 多媒体课件.教学过程:一.解题方法指导【例1】不改变分式的值,使下列分式的分子、分母不含“-”号:(1)ba 34-- (2)y r 5- (3)nm 75-分析:由于要求分式的分子、分母不含“-”号,而对分式本身的符号未做规定。
解:由分式的符号变化法则,可得结果(1)b a 34--=ba 34 (2)y r 5-=y r 5- (3)n m 75-=nm 75-【例2】不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a分析:由于要求分式的分子、分母的最高次项的系数是正数,而对分式本身的符号未做规定,所以根据分式的符号法则,使分式中分子、分母与分式本身改变两处符号即可。
解:(1)原式=13232-+-+--a a a a =)13()2(32+---+-a a a a =13232+--+a a a a 。
(2)原式=11232+++--x x x x =1)1(232++-+-x x x x =11232++-+-x x x x 。
(3)原式=1123+-+--a a a =1)1(23+----a a a =1123+--a a a 。
说明:两个整式相除,所得的分式,其符号法则与有理数除法的符号法则相类似,也同样遵循“同号得正,异号得负”的原则。
二、激活思维训练【例】根据下列条件,求值或允许值的范围:(1)分式121+-x x 的值是负数;(2)分式xx 2)3(-的值是正数; 说明:此题是根据分式的符号法则,来判定分式的正负性。
2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版

- 分式的分子与分母同时乘以或除以同一个数,分式的值也不变。
3. 分式的运算
- 加减法:XXX
- 乘除法:XXX
4. 分式的应用
- 实际问题:XXX
- 解题步骤:XXX
5. 总结
- 分式的概念和性质
- 分式的运算方法
- 分式的应用实例
2. 调整教学方法:采用多种教学方法,如案例教学、小组讨论、实验法等,提高学生的学习兴趣和参与度。
3. 多元化评价:采用多元化评价方式,如过程性评价、学生互评、自我评价等,全面了解学生的学习情况,促进学生的全面发展。
八、板书设计
1. 分式的概念
- 分子:XXX
- 分母:XXX
- 分式:XXX
2. 分式的基本性质
强调分式的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对分式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决分式问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
学生预习:
发放预习材料,引导学生提前了解分式的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习分式内容做好准备。
教师备课:
深入研究教材,明确分式教学目标和分式重难点。
准备教学用具和多媒体资源,确保分式教学过程的顺利进行。
设计课堂互动环节,提高学生学习分式的积极性。
(二)课堂导入(预计用时:3分钟)
(五)拓展延伸(预计用时:3分钟)
15.1分式教案

15.1分式教案15.1分式教案一、教学目标1.理解分式的基本概念、定义和性质2.掌握分式的化简、加减、乘除等基本方法3.掌握分式方程的基本解法二、教学重点1.分式的基本概念、定义和性质2.分式的化简、加减、乘除等基本方法3.分式方程的基本解法三、教学难点1.带分数及约分的分式2.分式方程以及方程的解法四、教学过程设计(一)引入1.探究:你们在中学时期已经学了很多知识,并掌握了一些新的知识。
但是,你们是否还记得小学阶段的知识呢?现在是为大家带来小学学习知识的好机会了,不要错过!2.主题介绍:本节课将会带大家一起回忆小学时期的数学学习,着重重点向大家介绍分式的定义、基本性质、化简、运算以及应用。
3.目标确认:你们是否知道分式是什么?你们掌握了分式的一些方法和公式吗?本节课将帮助大家更好地掌握和应用分式知识。
(二)概念讲解1.分式的定义:如果a、b是两个整数,且b≠0,那么a/b 称为分式。
a是分子,b是分母,‘/’是除号,表示a除以b。
2.分式的基本性质:①、分式的分母不为0.②、分式可以带有约分的形式;即分式化简时,通常对分子和分母进行约分操作。
③、分式的大小可以被计算出来,即计算分子和分母的大小,不同的分式可以被进行大小的比较。
④、分式可以被加减乘除。
加减法需要分母相同,乘除法无需分母相同。
(三)例题演示例题1:将a/12和6/a化为同分母。
①、先将a/12化为(6a)/(6×12)②、将6/a化为(12/a)×(6/12)例题2:求分式(a+b)/(a-b)的值解题思路:a+b/(a-b)可以化为((a-b)+2b)/(a-b)=1+2b/(a-b),所以(a+b)/(a-b)的值为1+2b/(a-b)。
(四)练习1.化简下列各式子:(1)(6x+4y)/(2x+3y)(2)(3a-b)/(2a-3b)2.解分式方程:(1)4/x=3/x+2(2)(a-5)/2+(2a-1)/3=a+63.思考题:从一个装有药品的药瓶里,倒出1/5的药液后,剩余的部分再倒出其中的1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1 分 式第1课时 从分数到分式教学目标1.了解分式的概念,知道分式与整式的区别和联系.2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件.3.理解分式的值为零、为正、为负时,分子分母应具备的条件.教学重点分式的意义.教学难点准确理解分式的意义,明确分母不得为零.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标一艘轮船在静水中的最大航速是20 km/h ,它沿江以最大船速顺流航行100 km 所用时间,与以最大航速逆流航行60 km 所用的时间相等.江水的流速是多少?提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速. ●自主学习 指向目标1.自学教材第127至128页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 分式的概念活动一:阅读教材思考问题:式子S a ,V S 以及式子10020+v 和6020-v有什么共同特点?它们与分数有什么相同点和不同点?展示点评:如果A ,B 表示两个________(整式),并且B 中含有________(字母),那么式子A B叫做分式. 小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母.针对训练:见《学生用书》相应部分探究点二 分式有意义的条件活动二:(1)当x ≠0时,分式23x有意义; (2)当x ≠1时,分式x x -1有意义; (3)当b ≠53时,分式15-3b有意义; (4)x ,y 满足__x≠y __时,分式x +y x -y有意义. 展示点评:教师示范解答的一般步骤,强调分母不为零.小组讨论:归纳分式有意义的条件.反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)学习了分式,知道了分式与分数的区别.(2)知道了分式有意义和值为零的条件.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标 1.下列各式①2x ,②x +y 5,③12-a ,④x π-1中,是分式的有( C ) A .①② B .③④ C .①③ D .①②③④2.当x 为任意实数时,下列分式中,一定有意义的是( C )A.x -1x 2B.x +1x 2-1C.x -1x 2+1D.x -1x +23.某食堂有煤m t ,原计划每天烧煤a t ,现每天节约用煤b(b<a) t ,则这批煤可比原计划多烧__mb a (a -b )__天. 4.如果分式|x|-1x 2+x -2的值为0,那么x 的值是__-1__. 5.当x 取何值时,下列分式有意义?(1)3x -62x +5; (2)5x x 2-9. 解:(1)2x +5≠0 ∴x≠-52(2)x 2-9≠0 ∴x≠±36.求分式x +82x 2-1的值,其中x =-12.解:当x =-12 原式=(-12+8)2×14-1=-15 ●布置作业,巩固目标教学难点1.上交作业 课本第133页1-3.2.课后作业 见《学生用书》.第2课时 分式的基本性质(一)教学目标1.理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.体会类比转化的数学思想方法.教学重点理解并掌握分式的基本性质.教学难点运用分式的基本性质进行分式化简.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标分数的基本性质是什么?你能用字母来表示分数的基本性质吗? 二、自主学习,指向目标1.自学教材第129页. 2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 分式的基本性质活动一:类比分数的基本性质,你能想出分式有什么性质吗?例1 (1)x 3xy =( )y ;3x 2+3xy 6x 2=x +y ( )(2)1ab =( )a 2b ;2a -b a 2=( )a 2b展示点评:学生说出填空的思考过程.小组讨论:运用分式的基本性质应注意什么问题?分数的基本性质与分式的基本性质有什么区别?反思小结:运用分式的基本性质应注意:(1)分子、分母必须是同乘以或除以同一个整式.(2)分子、分母同乘(或除以)的式子不能为零.它们的区别在于:分数的分子、分母同乘(或除)一个不为零的数,而分式的分子、分母同乘(或除)一个不为零的整式,体现了由数到式的深化.针对训练:见《学生用书》相应部分 探究点二 分式基本性质的应用活动二:不改变分式的值,把下列各式中分子、分母各项系数化为整数.(1)a +12b 34a -b (2)12a -0.2b 0.5b -14a 展示点评:(1)4a +2b 3a -4b ;(2)10a -4b 10b -5a.小组讨论:把分式中的分子、分母各项系数化成整数的依据是什么?反思小结:要根据分子和分母中的数字系数特点,运用分式的基本性质变形. 针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)理解并掌握分式的基本性质,并能运用这些性质对分式进行变形.2.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.把分式2x2x -3y 中的x 和y 都扩大5倍,那么这个分式的值( B )A .扩大为原来的5倍B .不变C .缩小到原来的15D .扩大为原来的52倍2.对于分式1x +1的变形一定成立的是( C )A.1x +1=2x +2 B.1x +1=x -1x 2-1C.1x +1=x+1(x +1)2 D.1x +1=-1x -13.不改变分式的值,使分式的分子与分母都不含负号:①--5x 2y =__5x2y __;②--a -3b =__-a 3b __.4.当2x -1xy =(2x -1)k x 2y 3时,k 代表的代数式是__xy 2__.5.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:①13x -12y x +16y ②0.2x -12y13x +14解:①2x -3y 6x +y ②12x-30y20x +156.不改变分式的值,使分式的分子.分母中的首项的系数都不含“-”号: ①-2x -3y ②-x 2+2x -1x -2 解:①2x 3y ②-x 2-2x +1x -2●布置作业,巩固目标教学难点1.上交作业 课本第133页第5题.2.课后作业 见《学生用书》.第3课时 分式的基本性质(二)教学目标1.理解并掌握分式的基本性质,运用分式的基本性质进行分式的约分和通分.2.通过分式的约分和通分体会类比的思想.教学重点分式的基本性质.教学难点运用分式的基本性质进行分式的约分和通分.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标想一想对分数812怎样化简? 你认为分式a 2a 与12相等吗?n 2mn 与n m呢? 二、自主学习,指向目标1.自学教材第130至第132页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标 探究点一 约分活动一:1.阅读教材思考问题:类比分数的约分,思考什么叫分式约分?什么叫最简分式?2.例1 约分:(1)-25a 2bc 315ab 2c解:-5ac 23b(2)x 2-9x 2+6x +9解:x -3x +3(3)6x 2-12xy +6y 23x -3y解:2x -2y展示点评:分式的约分类似于分数的约分,结果都是最简分式.小组讨论:分式约分的一般步骤是什么?反思小结:若分式的分子和分母是单项式,约分时先确定公因式,再约分;若分子,分母是多项式,约分时先对分子分母分解因式,再约分成最简分式.针对训练:见《学生用书》相应部分探究点二 通分活动二:1.阅读教材思考问题:类比分数的通分,思考如何对分式进行通分?什么叫最简公分母?例2 通分(1)32a 2b 与a -b ab 2c (2)2x x -5与3x x +5展示点评:(1)32a 2b =3bc 2a 2b 2c a -b ab 2c =2a 2-2ab 2a 2b 2c(2)2x x -5=2x 2+10x (x +5)(x -5) 3x x +5=3x 2-15x (x -5)(x +5)小组讨论:分式通分的关键是什么?反思小结:通分的关键是找准最简公分母.若各项是多项式,应先分解因式,再确定最简公分母.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)约分的步骤及最简分式;(2)通分的步骤及最简公分母.2.思想方法小结——渗透类比转化的数学思想方法.五、达标检测,反思目标1.下列分式12b 2c 4a 、5(x +y )2y +x 、a 2+b 23(a +b )、4a 2-b 22a -b 、a -b b -a中,最简分式的个数是( A ) A .1个 B .2个 C .3个 D .4个2.化简m 2-3m 9-m 2的结果是( B ) A.m m +3 B .-m m +3 C.m m -3 D.m 3-m 3.分式y 5x 2和y 2x 5的最简公分母是( C ) A .10x 7 B .7x 10 C .10x 5 D .7x 74.分式1(x +5)(5-x )2和1(5+x )2(x -5)的最简公分母是( B ) A .(x +5)3(5-x)3 B .(x +5)2(x -5)2C .(x +5)3(x -5)2D .(x +5)2(x -5)35.通分:(1)y 2x 2,56xy 2z ,4c 3xy ; 解:y 2x 2=3y 3z 6x 2y 2z56xy 2z =5x 6x 2y 2z4c 3xy =4c·2xyz 3xy·2xyz =8xyzc 6x 2y 2z(2)1x +2,4x x 2-4,22-x.解:1x +2=x -2(x +2)(x -2)4xx 2-4=4x(x +2)(x -2)22-x =-2(x +2)(x -2)(x +2)=-2x +4(x +2)(x -2)6.约分:(1)-36xy 2z 36yz 2 (2)2x 2y -2xy2x 2-2xy +y 2解:(1)原式=-6xyz(2)原式=2xy (x -y )(x -y )2=2xyx -y。