华师大版七年级数学上册练习卷(四)-有理数的乘、除法、乘方及科学记数法.docx

合集下载

华师大七年级上数学各单元试卷及答案

华师大七年级上数学各单元试卷及答案

第一章走进数学世界略 第二章有理数单元测试题一. 判断题:1.有理数可分为正有理数与负有理数.( )2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数.( ) 3.两个有理数的差一定小于被减数.()4.任何有理数的绝对值总是不小于它本身.( ) 5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+.()二.填空题:1.最小的正整数是,最大的负整数是,绝对值最小的数是.2.绝对值等于2)4(-的数是,平方等于34的数是,立方等于28-的数是.3.相反数等于本身的数是,倒数等于本身的数是,绝对值等于本身的数是,立方等于本身的数是. 4.已知a 的倒数的相反数是715,则a =;b 的绝对值的倒数是312,则b =. 5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为. 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数:. 7.绝对值不大于10的所有负整数的和等于;绝对值小于2002的所有整数的积等于. 三.选择题: 1.若a ≤0,则2++a a 等于()A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1,p 是数轴到原点距离为1的数,那么122000++++-m abcdba cd p 的值是(). A .3B .2 C .1D .0 3.若01<<-a ,则2,1,a aa 的大小关系是(). A .21a aa <<B .21a a a<<C .a a a<<21D .aa a 12<<4.下列说法中正确的是(). A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.ccb b a a ++的值是() A .3±B .1± C .3±或1±D .3或16.设n 是正整数,则n)1(1--的值是()A .0或1B .1或2C .0或2D .0,1或2 四.计算题 1.[]24)3(2611--⨯-- 2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷- 五、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值. 六、 a 是有理数,试比较2a a 与的大小. 七.32-12=8×1 52-32=8×2 72-52=8×3 92-72=8×4 ……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第三章整式的加减单元测试题(一)一、填空题:(每小题3分,共24分) 1.代数式-7,x,-m,x 2y,2x y +,-5ab 2c 3,1y 中,单项式有______个,其中系数为1的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5这几个单项式按次数由高到低的顺序写出是_________. 3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里,后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数),应收租金______元.7.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______. 二、选择题:(每小题3分,共24分) 9.下列判断中,正确的个数是()①在等式x+8=8+x 中,x 可以是任何数;②在代数式18x 中,x 可以是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8 A.0个B.1个C.2个D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为() A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为() A.2x-2zB.0 C.2x-2yD.2z-2x12.对于单项式-23x 2y 2z 的系数、次数说法正确的是() A.系数为-2,次数为8B.系数为-8,次数为5 C.系数为-23,次数为4D.系数为-2,次数为7 13.下列说法正确的有()①-1999与2000是同类项②4a 2b 与-ba 2不是同类项 ③-5x 6与-6x 5是同类项④-3(a-b)2与(b-a)2可以看作同类项 A.1个B.2个C.3个D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是() A.yxB.x+yC.10y+xD.100y+x15.如果m 是三次多项式,n 是三次多项式,则m+n 一定是() A.六次多项式B.次数不高于三的整式 C.三次多项式D.次数不低于三的多项式 16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为() A.-2B.-1 C.0D.1 三、解答题:(共52分)17.如果单项式2a mx y 与235a nx y --是关于x 、y 的单项式,且它们是同类项.(1)求2002(722)a -的值.(2)若2amx y 235a nxy --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y -=-. (2)已知A=x 2+4x-7,B=-12x 2-3x+5,计算3A-2B. (3)已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn)-7mn-5]的值. (4)若3x 2-x=1,求6x 3+7x 2-5x+1994的值.19.某同学做一道数学题,误将求“A-B ”看成求“A+B ”,结果求出的答案是3x 2-2x+5.已知A=4x 2-3x-6,请正确求出A-B.(8分) 20.探索规律(8分)(1)计算并观察下列每组算式:88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩(2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发现了什么规律,你能用语言叙述这个规律吗?你能用代数式表示设这个规律吗? 21.(8分)有理数a 、b 、c 在数轴上对应点为A 、B 、C,其位置如图所示,试去掉绝对值符号并合并同类项:│c │-│c+b │+│a-c │+│b+a │.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费,然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6元(本题的通话均指市内通话).若一个月内通话x 分钟,两种方式的费用分别为y1元和y2元.(8分) (1)用含x 的代数式分别表示y1和y2,则y 1=________,y 2=________. (2)某人估计一个月内通话300分钟,应选择哪种移动通讯合算些?第三章整式的加减单元测试题(二)一、选择题(20分)1.下列说法中正确的是().A .单项式223x y-的系数是-2,次数是2B .单项式a 的系数是0,次数也是0C .532ab c 的系数是1,次数是10D .单项式27a b -的系数是17-,次数是32.若单项式421m a b -+与272m m a b +-是同类项,则m 的值为().A .4B .2或-2C .2D .-23.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是(). A .a 2-5a +6B .7a 2-5a -4 C .a 2+a -4D .a 2+a +64.当23,32a b ==时,代数式2[3(2)1]b a a --+的值为().A .269B .1113C .2123D .135.如果长方形周长为4a ,一边长为a +b,,则另一边长为(). A .3a -bB .2a -2bC .a -bD .a -3b6.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可表示为(). A .abB .10a+bC .10b+aD .a+b7.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为().().A .3n -2B .3n -1C .4n +1D .4n -38.长方形的一边长为2a+b,另一边比它大a -b ,则周长为() A.10a+2b B.5a+bC.7a+b D.10a -b 9.两个同类项的和是() A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对10、如果A 是3次多项式,B 也是3次多项式,那么A +B 一定是() (A )6次多项式。

华师大版初中数学七年级上册《2.11 有理数的乘方》同步练习卷(含答案解析

华师大版初中数学七年级上册《2.11 有理数的乘方》同步练习卷(含答案解析

华师大新版七年级上学期《2.11 有理数的乘方》同步练习卷一.选择题(共60小题)1.计算(﹣3)2的结果等于()A.5B.﹣5C.9D.﹣92.a2=1,b是2的相反数,则a+b的值为()A.﹣3B.﹣1C.﹣1或﹣3D.1或﹣33.计算(﹣1)2的正确结果是()A.1B.2C.﹣1D.﹣24.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b5.﹣22=()A.﹣2B.﹣4C.2D.46.计算(﹣1)2017的结果是()A.﹣1B.1C.﹣2017D.20177.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣20178.计算﹣42的结果等于()A.﹣8B.﹣16C.16D.89.计算:23=()A.5B.6C.8D.910.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42B.49C.76D.7711.﹣12等于()A.1B.﹣1C.2D.﹣212.计算(﹣3)2的结果是()A.﹣6B.6C.﹣9D.913.计算(﹣3)2等于()A.﹣9B.﹣6C.6D.914.计算﹣32的结果是()A.9B.﹣9C.6D.﹣615.下列计算正确的是()A.﹣1+2=1B.﹣1﹣1=0C.(﹣1)2=﹣1D.﹣12=1 16.计算﹣22+3的结果是()A.7B.5C.﹣1D.﹣5 17.(﹣1)2的值是()A.﹣1B.1C.﹣2D.218.﹣(﹣3)2=()A.﹣3B.3C.﹣9D.919.(﹣2)3的相反数是()A.﹣6B.8C.D.20.如果a的倒数是﹣1,那么a2013等于()A.1B.﹣1C.2013D.﹣2013 21.若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1B.1C.0D.201222.若(a﹣2)2+|b﹣1|=0,则(b﹣a)2012的值是()A.﹣1B.0C.1D.201223.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有()A.4个B.3个C.2个D.1个24.如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2018的值是()A.1B.﹣1C.±1D.200825.下列各组数中,相加等于0的是()A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1 26.下列各组中运算结果相等的是()A.23和32B.(﹣2)4和﹣24C.()2和()2D.(﹣2)3和﹣2327.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有()A.4对B.3对C.2对D.1对28.若(a+1)2+|b﹣2018|=0,则a b的值为()A.2018B.﹣2018C.1D.﹣129.下列各组中,两个式子的值相等的是()A.(﹣4)2与﹣42B.52与﹣52C.﹣33与(﹣3)3D.|﹣2|与﹣|﹣2|30.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过()A.1小时B.2小时C.3小时D.4小时31.下列各数(﹣2)2,,﹣(﹣0.75),π﹣3.14,﹣|﹣9|,﹣3,0,4中属于非负整数的有()个,属于正数的有()个A.4,4B.4,5C.3,5D.3,632.下列各式子中,结果相同的一组是()A.﹣(﹣3)与﹣|﹣3|B.(﹣2)2与﹣22C.23与32D.﹣33与(﹣3)333.下列说法:①有理数包括正有理数和负有理数;②a为任意有理数,|a|+1总是正数;③绝对值等于本身的数是0和1;④(﹣1)2019=﹣2019;⑤若a2=(﹣5)2,则a=﹣5.其中正确的有()A.1个B.2个C.3个D.4个34.下列各式:①﹣(﹣7),②﹣|﹣7|,③﹣(﹣2)2,④﹣52,计算结果为负数的有()个.A.4个B.3个C.2个D.1个35.下列说法:①﹣|a|一定是负数;②互为相反数的两个数的符号必相反;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个36.若(a﹣1)2+|b+2|=0,则(a+b)2018的值是()A.﹣1B.1C.0D.201837.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是55,则m 的值是()A.5B.6C.7D.838.下列各组数中,互为相反数的一组是()A.﹣1 与﹣|﹣1|B.2 与﹣C.﹣(﹣1)与﹣|﹣1|D.(﹣2)3与﹣2339.若|m﹣1|+(n+3)2=0,则(m+n)3的值为()A.6B.﹣6C.8D.﹣840.已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.141.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则﹣a一定是负数;(4)a是大于﹣1的负数,则a2小于a3A.1B.2C.3D.442.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个43.312是96的()A.1倍B.()2倍C.()6倍D.(﹣6)2倍44.下列说法,正确的有()(1)整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个45.下列各组数中,数值相等的是()A.23和32B.﹣22和(﹣2)2C.﹣33和(﹣3)3D.(﹣3×2)2和﹣32×2246.下列式子中正确的是()A.﹣24=﹣16B.﹣24=16C.(﹣2)4=8D.(﹣2)4=﹣16 47.下列算式中,运算结果为负数的是()A.﹣|﹣2|B.﹣(﹣2)3C.﹣(﹣2)D.(﹣3)2 48.﹣23表示的意义是()A.(﹣2)×2×2B.(﹣2)+(﹣2)+(﹣2)C.(﹣2)×3D.﹣2×2×249.计算(﹣1)2018的结果是()A.﹣1B.1C.﹣2018D.201850.在(﹣2)3,﹣23,﹣(﹣2),﹣|﹣2|,(﹣2)2中,负数有()A.1个B.2个C.3个D.4个51.在0,﹣(﹣1),(﹣3)2,﹣32,﹣|﹣3|,﹣中,负数的个数有()A.1个B.2个C.3个D.4个52.下列各数中负数是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.(﹣2)3 53.在|﹣2|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这四个数中,负数共有()A.1个B.2个C.3个D.4个54.若|x﹣|+(y+2)2=0,则(xy)2017的值为()A.1B.﹣2017C.﹣1D.201755.下列不等式对任何实数x都成立的是()A.x+1>0B.x2+1>0C.x2+1<0D.|x|+1<0 56.(﹣2)3表示的意义为()A.(﹣2)×(﹣2)×(﹣2)B.﹣2×2×2C.(﹣2)+(﹣2)+(﹣2)D.(﹣2)×357.下列不等式,一定成立的是()A.a2≥a B.a2≥0C.(a﹣1)2>1D.(a﹣1)2<a2 58.在有理数(﹣2)2,﹣24,0,﹣|﹣2|,﹣(﹣5),(﹣2)3中正数的个数有()A.1个B.2个C.3个D.4个59.计算﹣12018的值为()A.1B.﹣1C.2018D.﹣2018 60.若a2=16,|b|=3,则a+b所有可能的值为()A.7B.7或1C.7或﹣1D.±7或±1华师大新版七年级上学期《2.11 有理数的乘方》同步练习卷参考答案与试题解析一.选择题(共60小题)1.计算(﹣3)2的结果等于()A.5B.﹣5C.9D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.a2=1,b是2的相反数,则a+b的值为()A.﹣3B.﹣1C.﹣1或﹣3D.1或﹣3【分析】分别求出a b的值,分为两种情况:①当a=﹣1,b=﹣2时,②当a=1,b=﹣2时,分别代入求出即可.【解答】解:∵a2=1,b是2的相反数,∴a=±1,b=﹣2,①当a=﹣1,b=﹣2时,a+b=﹣3;②当a=1,b=﹣2时,a+b=﹣1.故选:C.【点评】本题考查了有理数的乘方,相反数,求代数式的值等知识点,关键是求出a b的值,注意有两种情况啊.3.计算(﹣1)2的正确结果是()A.1B.2C.﹣1D.﹣2【分析】根据有理数乘方的定义计算即可.【解答】解:原式=1.故选:A.【点评】本题考查有理数的乘方,记住乘方法则是解题的关键.4.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b【分析】根据有理数的乘方和绝对值的性质对各选项分析判断即可得解.【解答】解:A、若a=2,b=﹣2,a≠b,但a2=b2,故本选项错误;B、若a>|b|,则a>b,故本选项正确;C、若|a|=|b|,则a=b或a=﹣b,故本选项错误;D、若a=﹣2,b=1,|a|>|b|,但a<b,故本选项错误.故选:B.【点评】本题考查了有理数的乘方,绝对值的性质,理解有理数乘方的意义是解题的关键.5.﹣22=()A.﹣2B.﹣4C.2D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选:B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.6.计算(﹣1)2017的结果是()A.﹣1B.1C.﹣2017D.2017【分析】直接利用有理数的乘方性质得出答案.【解答】解:(﹣1)2017=﹣1,故选:A.【点评】本题主要考查了有理数的乘方,正确掌握:﹣1的奇数次方为﹣1,﹣1的偶数次方为1是解题关键.7.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017【分析】直接利用有理数的乘方性质得出答案.【解答】解:(﹣1)2017=﹣1.故选:B.【点评】此题主要考查了有理数的乘方,正确掌握运算法则是解题关键.8.计算﹣42的结果等于()A.﹣8B.﹣16C.16D.8【分析】乘方就是求几个相同因数积的运算,﹣42=﹣(4×4)=﹣16.【解答】解:﹣42=﹣16故选:B.【点评】本题考查有理数乘方的法则.正数的任何次方都是正数;负数的奇次方为负,负数的偶次方为正;0的正整数次幂为0.9.计算:23=()A.5B.6C.8D.9【分析】根据立方的计算法则计算即可求解.【解答】解:23=8.故选:C.【点评】考查了有理数的乘方,乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.10.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42B.49C.76D.77【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.11.﹣12等于()A.1B.﹣1C.2D.﹣2【分析】根据乘方的意义,相反数的意义,可得答案.【解答】解:﹣12=﹣1,故选:B.【点评】本题考查了有理数的乘方,1的平方的相反数.12.计算(﹣3)2的结果是()A.﹣6B.6C.﹣9D.9【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】解:(﹣3)2=(﹣3)×(﹣3)=9.故选:D.【点评】本题考查有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.13.计算(﹣3)2等于()A.﹣9B.﹣6C.6D.9【分析】根据负数的偶次幂等于正数,可得答案.【解答】解:原式=32=9.故选:D.【点评】本题考查了有理数的乘方,负数的偶次幂是正数.14.计算﹣32的结果是()A.9B.﹣9C.6D.﹣6【分析】根据有理数的乘方的定义解答.【解答】解:﹣32=﹣9.故选:B.【点评】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.15.下列计算正确的是()A.﹣1+2=1B.﹣1﹣1=0C.(﹣1)2=﹣1D.﹣12=1【分析】根据有理数的加减法运算法则,有理数的乘方对各选项分析判断后利用排除法求解.【解答】解:A、﹣1+2=1,故本选项正确;B、﹣1﹣1=﹣2,故本选项错误;C、(﹣1)2=1,故本选项错误;D、﹣12=﹣1,故本选项错误.【点评】本题考查了有理数的乘方,有理数的加减运算,要特别注意﹣12和(﹣1)2的区别.16.计算﹣22+3的结果是()A.7B.5C.﹣1D.﹣5【分析】根据有理数的乘方,以及有理数的加法运算法则进行计算即可得解.【解答】解:﹣22+3=﹣4+3=﹣1.故选:C.【点评】本题考查了有理数的乘方,有理数的加法运算,要特别注意﹣22和(﹣2)2的区别.17.(﹣1)2的值是()A.﹣1B.1C.﹣2D.2【分析】根据平方的意义即可求解.【解答】解:(﹣1)2=1.故选:B.【点评】本题考查了乘方的运算,负数的奇数次幂是负数,负数的偶数次幂是正数.18.﹣(﹣3)2=()A.﹣3B.3C.﹣9D.9【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣3)2=﹣9.故选:C.【点评】本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.19.(﹣2)3的相反数是()A.﹣6B.8C.D.【分析】先根据有理数乘方的定义求出(﹣2)3,再根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵(﹣2)3=﹣8,∴(﹣2)3的相反数是8.【点评】此题考查了有理数的乘方,以及相反数,弄清题意是解本题的关键.20.如果a的倒数是﹣1,那么a2013等于()A.1B.﹣1C.2013D.﹣2013【分析】先根据倒数的定义求出a的值,再根据有理数的乘方的定义进行计算即可得解.【解答】解:∵(﹣1)×(﹣1)=1,∴﹣1的倒数是﹣1,a=﹣1,∴a2013=(﹣1)2013=﹣1.故选:B.【点评】本题考查了有理数的乘方的定义,﹣1的奇数次幂是﹣1.21.若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1B.1C.0D.2012【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选:B.【点评】本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.22.若(a﹣2)2+|b﹣1|=0,则(b﹣a)2012的值是()A.﹣1B.0C.1D.2012【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b﹣1=0,解得a=2,b=1,所以,(b﹣a)2012=(1﹣2)2012=1.故选:C.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.23.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有()A.4个B.3个C.2个D.1个【分析】根据小于0的数是负数,可得答案.【解答】解:﹣|﹣7|<0,﹣32<0,故选:C.【点评】本题考查了正数和负数,注意带负号的数不一定是负数.24.如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2018的值是()A.1B.﹣1C.±1D.2008【分析】根据非负数的性质,得出a,b的值,再代入计算即可.【解答】解:∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,∴a=﹣2,b=1,∴(a+b)2018=(﹣2+1)2018=1,故选:A.【点评】本题考查了非负数的性质,掌握非负数的性质是解题的关键.25.下列各组数中,相加等于0的是()A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【分析】根据相反数的定义求解即可.【解答】解:A、﹣(﹣1)+1=2;B、(﹣1)2+1=2;C、|﹣1|+1=2;D、﹣12+1=0.故选:D.【点评】本题考查了有理数的乘方,实数的性质,只有符号不同的数互为相反数.26.下列各组中运算结果相等的是()A.23和32B.(﹣2)4和﹣24C.()2和()2D.(﹣2)3和﹣23【分析】根据乘方的意义:a n表示n个a相乘,分别计算出每个选项中的结果,即可筛选出正确答案.【解答】解:A、23=8,32=9,故此选项错误;B、(﹣2)4=16,﹣24=﹣16,故此选项错误;C、()2=,()2=;故此选项错误;D、(﹣2)3=﹣8,﹣23=﹣8,故此选项正确;故选:D.【点评】此题主要考查了有理数的乘方,解此题是易出错的地方是:﹣24=﹣(2×2×2×2)=﹣16,一定要看准指数和底数.27.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有()A.4对B.3对C.2对D.1对【分析】各式计算得到结果,比较即可.【解答】解:①﹣22=﹣4,22=4,不相等;②(﹣3)2=9,33=27,不相等;③|﹣2|=2,﹣|﹣2|=﹣2,不相等;④(﹣3)3=﹣33=﹣27,相等;⑤﹣(+3)=+(﹣3)=﹣3,相等.故选:C.【点评】此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.28.若(a+1)2+|b﹣2018|=0,则a b的值为()A.2018B.﹣2018C.1D.﹣1【分析】根据非负数的性质求得a,b的值,再计算即可.【解答】解:∵(a+1)2+|b﹣2018|=0,∴a+1=0,b﹣2018=0,∴a=﹣1,b=2018,∴a b=(﹣1)2018=1,故选:C.【点评】本题考查了非负数的性质,掌握非负数的性质是解题的关键.29.下列各组中,两个式子的值相等的是()A.(﹣4)2与﹣42B.52与﹣52C.﹣33与(﹣3)3D.|﹣2|与﹣|﹣2|【分析】直接利用绝对值以及有理数的乘方运算法则分别化简得出答案.【解答】解:A、(﹣4)2=16与﹣42=﹣16,故两数不同,不合题意;B、﹣52=﹣25与﹣52=﹣25,故两数不同,不合题意;C、﹣33=﹣27与(﹣3)3=﹣27,故两数相同,符合题意;D、|﹣2|=2与﹣|﹣2|=﹣2,故两数不同,不合题意;故选:C.【点评】此题主要考查了绝对值以及有理数的乘方运算,正确化简各数是解题关键.30.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过()A.1小时B.2小时C.3小时D.4小时【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【解答】解:由题意可得:2n=64=26,则这个过程要经过:3小时.故选:C.【点评】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.31.下列各数(﹣2)2,,﹣(﹣0.75),π﹣3.14,﹣|﹣9|,﹣3,0,4中属于非负整数的有()个,属于正数的有()个A.4,4B.4,5C.3,5D.3,6【分析】直接化简各数,进而利用非负整数以及正数的定义分析得出答案.【解答】解:(﹣2)2=4,,﹣(﹣0.75)=0.75,π﹣3.14,﹣|﹣9|=﹣9,﹣3,0,4中属于非负整数的有:(﹣2)2=4,0,4共3个,属于正数的有:(﹣2)2=4,,﹣(﹣0.75)=0.75,π﹣3.14,4共5个.故选:C.【点评】此题主要考查了有理数的乘方以及相反数、绝对值,正确化简各数是解题关键.32.下列各式子中,结果相同的一组是()A.﹣(﹣3)与﹣|﹣3|B.(﹣2)2与﹣22C.23与32D.﹣33与(﹣3)3【分析】直接利用绝对值以及有理数的乘方运算法则分别化简得出答案.【解答】解:A、﹣(﹣3)=3与﹣|﹣3|=﹣3,故两数不同,不合题意;B、(﹣2)2=4,﹣22=﹣4,故两数不同,不合题意;C、23=8与32=9,故两数不同,不合题意;D、﹣33=﹣27与(﹣3)3=﹣27,故两数相同,符合题意;故选:D.【点评】此题主要考查了绝对值以及有理数的乘方运算,正确化简各数是解题关键.33.下列说法:①有理数包括正有理数和负有理数;②a为任意有理数,|a|+1总是正数;③绝对值等于本身的数是0和1;④(﹣1)2019=﹣2019;⑤若a2=(﹣5)2,则a=﹣5.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用有理数乘方的意义,绝对值,以及非负数的性质判断即可.【解答】解:①有理数包括正有理数,0和负有理数,不符合题意;②a为任意有理数,|a|+1总是正数,符合题意;③绝对值等于本身的数是0和正数,不符合题意;④(﹣1)2019=﹣1,不符合题意;⑤若a2=(﹣5)2,则a=﹣5或5,不符合题意,故选:A.【点评】此题考查了有理数的乘方,绝对值,有理数,以及非负数的性质:绝对值,熟练掌握各自的性质是解本题的关键.34.下列各式:①﹣(﹣7),②﹣|﹣7|,③﹣(﹣2)2,④﹣52,计算结果为负数的有()个.A.4个B.3个C.2个D.1个【分析】利用乘方的意义判断即可.【解答】解:①﹣(﹣7)=7,②﹣|﹣7|=﹣7,③﹣(﹣2)2=﹣4,④﹣52=﹣25,结果为负数的有3个,故选:B.【点评】此题考查了有理数的乘方,正数与负数,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.35.下列说法:①﹣|a|一定是负数;②互为相反数的两个数的符号必相反;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】利用非负数的性质,倒数以及乘方的意义判断即可.【解答】解:①﹣|a|不一定是负数,不符合题意;②互为相反数的两个数(0除外)的符号必相反,不符合题意;③倒数等于它本身的数是±1,符合题意;④绝对值等于它本身的数是0,不符合题意;⑤平方等于它本身的数是0和1,不符合题意,故选:A.【点评】此题考查了有理数的乘方,非负数的性质,以及倒数,熟练掌握运算法则是解本题的关键.36.若(a﹣1)2+|b+2|=0,则(a+b)2018的值是()A.﹣1B.1C.0D.2018【分析】直接利用绝对值以及偶次方的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,解得:a=1,b=﹣2,则(a+b)2018=1.故选:B.【点评】此题主要考查了绝对值以及偶次方的性质,正确得出a,b的值是解题关键.37.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是55,则m 的值是()A.5B.6C.7D.8【分析】仿照题中“分裂”的方法判断即可.【解答】解:根据题意得:73=343=43+45+47+49+51+53+55,则m=7,故选:C.【点评】此题考查了有理数的乘方,弄清题中的方法是解本题的关键.38.下列各组数中,互为相反数的一组是()A.﹣1 与﹣|﹣1|B.2 与﹣C.﹣(﹣1)与﹣|﹣1|D.(﹣2)3与﹣23【分析】利用相反数,绝对值,以及倒数的定义判断即可.【解答】解:A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣互为倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点评】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.39.若|m﹣1|+(n+3)2=0,则(m+n)3的值为()A.6B.﹣6C.8D.﹣8【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣1|+(n+3)2=0,∴m﹣1=0且n+3=0,则m=1、n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.40.已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.41.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则﹣a一定是负数;(4)a是大于﹣1的负数,则a2小于a3A.1B.2C.3D.4【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【解答】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则﹣a一定是负数,符合题意;(4)a是大于﹣1的负数,则a2大于a3,不符合题意,故选:C.【点评】此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.42.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个【分析】按照有理数及其运算法则,逐一确定即可:①最小的负整数是﹣1,错误;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确;⑤(﹣2)3和﹣23相等,正确.【解答】解:①最小的负整数是﹣1,错误;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确;⑤(﹣2)3和﹣23相等,正确.故选:C.【点评】本题考查的是有理数及其运算法则问题,此类题目一定要把基本概念弄清楚.43.312是96的()A.1倍B.()2倍C.()6倍D.(﹣6)2倍【分析】根据题意列出算式312÷96,再依据幂的乘方与同底数幂的除法法则计算可得.【解答】解:312÷96=312÷(32)6=312÷312=1,故选:A.【点评】本题主要考查有理数的乘方,解题的关键是掌握幂的乘方与同底数幂的除法法则.44.下列说法,正确的有()(1)整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个【分析】根据有理数的分类、绝对值的性质、互为相反数的定义、立方的意义一一判断即可;【解答】解:(1)整数和分数统称为有理数;正确.(2)符号不同的两个数叫做互为相反数;错误,比如2,﹣4符号不同,不是互为相反数.(3)一个数的绝对值一定为正数;错误,0的绝对值是0.(4)立方等于本身的数是1和﹣1.错误0的立方等于本身,故选:A.【点评】本题考查有理数的分类、绝对值的性质、互为相反数的定义、立方的意义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.下列各组数中,数值相等的是()A.23和32B.﹣22和(﹣2)2C.﹣33和(﹣3)3D.(﹣3×2)2和﹣32×22【分析】根据有理数的乘方法则和有理数的乘法法则,分别分析各选项,找到数值相等的选项即可.【解答】解:A:23=8,32=9,二者数值不相等,B:﹣22=﹣4,(﹣2)2=4,二者数值不相等,C:﹣33=﹣27,(﹣3)3=﹣27,二者数值相等,D:(﹣3×2)2=36,﹣32×22=﹣36,二者数值不相等,故选:C.【点评】本题考查了有理数的乘法和有理数的乘方,正确掌握有理数的乘方法则和有理数的乘法法则是解题的关键.46.下列式子中正确的是()A.﹣24=﹣16B.﹣24=16C.(﹣2)4=8D.(﹣2)4=﹣16【分析】根据乘方的定义计算可得.【解答】解:﹣24=﹣16,(﹣2)4=16,故选:A.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及﹣a n与(﹣a)n的区别.47.下列算式中,运算结果为负数的是()A.﹣|﹣2|B.﹣(﹣2)3C.﹣(﹣2)D.(﹣3)2【分析】根据绝对值的性质、有理数的乘方法则、相反数的概念计算,根据负数的概念判断即可.【解答】解:A、﹣|﹣2|=﹣2,运算结果为负数;B、﹣(﹣2)3=8,运算结果为正数;C、﹣(﹣2)=2,运算结果为正数;D、(﹣3)2=9,运算结果为正数;故选:A.【点评】本题考查的是正数和负数,掌握绝对值的性质、有理数的乘方法则、相反数的概念是解题的关键.48.﹣23表示的意义是()A.(﹣2)×2×2B.(﹣2)+(﹣2)+(﹣2)C.(﹣2)×3D.﹣2×2×2【分析】根据有理数的乘方的概念判断即可.【解答】解:﹣23表示的意义是(﹣2)×(﹣2)×(﹣2),故选:D.【点评】本题考查的是有理数的乘方,掌握有理数的乘方的概念是解题的关键.49.计算(﹣1)2018的结果是()A.﹣1B.1C.﹣2018D.2018【分析】直接利用有理数的乘方运算法则计算得出答案.【解答】解:(﹣1)2018=1.故选:B.【点评】此题主要考查了有理数的乘方,正确掌握运算法则是解题关键.50.在(﹣2)3,﹣23,﹣(﹣2),﹣|﹣2|,(﹣2)2中,负数有()A.1个B.2个C.3个D.4个【分析】直接利用相反数以及绝对值和有理数的乘方运算法则计算得出答案.【解答】解:(﹣2)3=﹣8,﹣23=﹣8,﹣(﹣2)=2,﹣|﹣2|=﹣2,(﹣2)2=4,则负数有3个.故选:C.【点评】此题主要考查了相反数以及绝对值和有理数的乘方运算,正确掌握相关运算法则是解题关键.51.在0,﹣(﹣1),(﹣3)2,﹣32,﹣|﹣3|,﹣中,负数的个数有()A.1个B.2个C.3个D.4个【分析】根据相反数的性质、有理数的乘方法则计算,根据负数的概念判断即可.【解答】解:﹣(﹣1)=1,(﹣3)2=9,﹣32=﹣9,﹣|﹣3|=﹣3,﹣=﹣,∴﹣32,﹣|﹣3|,﹣是负数,故选:C.【点评】本题考查的是负数的识别、有理数的乘方、绝对值的性质,掌握有理数的乘法法则、绝对值的性质是解题的关键.52.下列各数中负数是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.(﹣2)3【分析】根据有理数的乘方法则、绝对值的性质计算,判断即可.【解答】解:A、﹣(﹣2)=2,是正数;B、|﹣2|=2,是正数;C、(﹣2)2=4,是正数;D、(﹣2)3=﹣8,是负数;故选:D.【点评】本题考查的是有理数的乘方、相反数的概念和性质、绝对值的性质,掌握有理数的乘方法则是解题的关键.53.在|﹣2|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这四个数中,负数共有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则、绝对值的性质、相反数的定义进行计算,判断即可.【解答】解:|﹣2|=2,(﹣2)3=﹣8,﹣|﹣2|=﹣2,﹣(﹣2)=2,则这四个数中,负数共有2个,故选:B.【点评】本题考查的是有理数的乘方、绝对值的性质、相反数的定义,掌握有理数的乘方的定义、相反数的定义是解题的关键.54.若|x﹣|+(y+2)2=0,则(xy)2017的值为()A.1B.﹣2017C.﹣1D.2017【分析】直接利用偶次方的性质以及绝对值的性质化简得出答案.【解答】解:∵|x﹣|+(y+2)2=0,∴x﹣=0且y+2=0,解得:x=、y=﹣2,∴原式=(﹣2×)2017=(﹣1)2017=﹣1,故选:C.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确把握定义是解题关键.55.下列不等式对任何实数x都成立的是()A.x+1>0B.x2+1>0C.x2+1<0D.|x|+1<0【分析】代入特殊值,对以下选项进行一一验证即可.【解答】解:A、当x=﹣1时,x+1=0,所以该不等式不成立;故本选项错误;B、因为x2≥0,所以无论x取何值都有x2+1>0,所以该不等式成立.故本选项正确;C、因为x2≥0,所以无论x取何值都有x2+1>0,所以该不等式不成立.故本选项错误;D、因为|x|≥0,所以无论x取何值都有|x|+1>0,所以该不等式不成立.故本选项错误.故选:B.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.56.(﹣2)3表示的意义为()A.(﹣2)×(﹣2)×(﹣2)B.﹣2×2×2C.(﹣2)+(﹣2)+(﹣2)D.(﹣2)×3【分析】根据有理数的乘方即可求出答案.【解答】解:原式=(﹣2)×(﹣2)×(﹣2),故选:A.【点评】本题考查有理数的乘方,解题的关键是正确理解乘方的意义,本题属于基础题型.57.下列不等式,一定成立的是()A.a2≥a B.a2≥0C.(a﹣1)2>1D.(a﹣1)2<a2【分析】任意一个数的偶次方都是非负数,据此进行判断即可.【解答】解:A.当|a|≥1时,a2≥a,故A选项不一定成立;B.当a为任意实数时,a2≥0,故B选项一定成立;C.当a>2或a<0时,(a﹣1)2>1,故C选项不一定成立;D.当a>时,(a﹣1)2<a2,故D选项不一定成立;故选:B.【点评】本题主要考查了非负数的性质,解题时注意:任意一个实数的平方都是非负数.58.在有理数(﹣2)2,﹣24,0,﹣|﹣2|,﹣(﹣5),(﹣2)3中正数的个数有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方化简,即可解答.【解答】解:(﹣2)2=4,﹣24=﹣16,﹣|﹣2|=﹣2,﹣(﹣5)=5,(﹣2)3=﹣8,正数的个数有2个,故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是关键有理数的乘方化简.59.计算﹣12018的值为()A.1B.﹣1C.2018D.﹣2018【分析】直接利用有理数的乘方运算法则计算得出答案.【解答】解:﹣12018=﹣1.故选:B.【点评】此题主要考查了有理数的乘方运算,正确掌握运算法则是解题关键.60.若a2=16,|b|=3,则a+b所有可能的值为()A.7B.7或1C.7或﹣1D.±7或±1【分析】利用平方根定义,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:∵a2=16,|b|=3,∴a=±4,b=±3,则a+b所有可能的值为±7或±1,故选:D.【点评】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.。

华师版七年级数学上册第四章综合检测卷含答案

华师版七年级数学上册第四章综合检测卷含答案

华师版七年级数学上册第四章综合检测卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.【2020·西藏】如图是由五个相同的小正方体组成的几何体,其主视图为()3.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.【2021·兰州】若∠A=40°,则∠A的余角为()A.30°B.40°C.50°D.140°5.如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是()6.【2021·广东广州期末】已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是() A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.【教材P153习题T2拓展】钟表在8:25时,时针与分针夹角的度数是() A.101.5°B.102.5°C.120°D.125°9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的(第9题) (第10题)10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E中的两点为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC =40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD =DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.【2021·辽宁丹东期末】七棱柱有________个顶点.12.【2021·四川甘孜州期末】流星划过天空时留下一道明亮的光线,用数学知识解释为________.13.【教材P155复习题T5变式】三条直线两两相交,最少有________个交点,最多有________个交点.14.【2021·郑州期末】从一个五边形的某个顶点出发,分别连结这个点与其余各个顶点,可以将这个五边形分割成三角形的个数是________.15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.(第15题) (第16题) (第17题) 16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD =________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.三、解答题(19,20,21题每题10分,其余每题12分,共66分)19.已知线段a,b,利用尺规,求作一条线段AB,使AB=a-2b(不写作法,保留作图痕迹).20.【教材P144习题T5改编】点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连结AC,连结BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.21.【教材P144习题T4拓展】如图,已知线段AB=4.8 cm,点M为AB的中点,点P在MB上,N为PB的中点,且NB=0.8 cm,求AP的长.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.23.如图是某种长方体产品的展开图,高为3 cm.(1)求这种产品的体积;(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此包装纸箱的表面积.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C2.C3.A4.C5.D6.D7.B8.B9.D10.B点拨:直线CD上以B,C,D,E中的两点为端点的线段有BC,BD,BE,CE,CD,ED,共6条,故①正确;图中互补的角就是分别以C,D 为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;根据图形,由∠BAE=100°,∠DAC=40°,可以求出∠BAC+∠CAE +∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当点F在线段CD上时,点F到点B,C,D,E的距离之和最小,为FB+FE+FD+FC=2+3+3+3=11,当点F和点E重合时,点F到点B,C,D,E的距离之和最大,为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.二、11.1412.点动成线13.1;314.315.416.155°17.100°12′18.21;42三、19.解:如图,线段AB就是所求作的线段.20.解:(1)(2)(3)如图.21.解法一:因为N为PB的中点,所以PB=2NB.又因为NB=0.8 cm,所以PB=2×0.8=1.6(cm).所以AP=AB-PB=4.8-1.6=3.2(cm).解法二:因为N为PB的中点,所以PB=2NB.而NB=0.8 cm,所以PB=2×0.8=1.6(cm).因为M为AB的中点,所以AM=MB=12AB.而AB=4.8 cm,所以AM=BM=2.4 cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点.(2)线段中点的表达形式有三种,若点C是线段AB的中点,则①AC=BC;②AB=2AC=2BC;③AC=BC=12AB.熟悉它的表达形式对以后学习几何的推理论证有帮助.22.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.23.解:(1)长方体产品的高为3 cm,则宽为12-2×3=6(cm),长为12×(25-3-6)=8(cm).根据题意,可得这种产品的体积为8×6×3=144(cm3).(2)因为该产品的高为3 cm,宽为6 cm,长为8 cm,所以装5件这种产品,纸箱所用材料尽可能少,应该尽量使6×8的面重叠在一起,所以用规格为15×6×8的包装纸箱符合要求,所以此包装纸箱的表面积为2×(8×6+8×15+6×15)=516(cm2).24.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12∠AOB=12α.。

华师大版-数学-七年级上册-华师大七年级2.11有理数的乘方 作业

华师大版-数学-七年级上册-华师大七年级2.11有理数的乘方 作业

华师大版七年级2.11有理数的乘方作业一、积累 整合1、选择题(1)、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加(2)、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×22(3)、两个有理数互为相反数,那么它们的n 次幂的值( )A 、相等B 、不相等C 、绝对值相等D 、没有任何关系(4)、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( ) A 、0 B 、 1 C 、-1 D 、22、计算题(1)、3211⎪⎭⎫ ⎝⎛ (2)、()33131-⨯-- (3)、()2233-÷- (4)、()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (5)、()()()33220132-⨯+-÷--- 答案:1、(1)C (2)B (3)C (4)-1;2、(1)827 (2)2 (3)-1 (4)69 (5)-1 二、拓展 应用3、填空题 (1)、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-343 ,=-433 ; (2)、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ; (3)、如果44a a -=,那么a 是 ;(4)、()()()()=----20022001433221 ;(5)、若032>b a -,则b 04、解答题(1)、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?(2)、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?答案:3、(1)6427- ,6427-, 427- (2) ()572⋅-<()372⋅-<()472⋅- (3)0 (4)-1 (5) < 4、(1) 2小时 (2)1024根三、探索 创新5、你能求出1021018125.0⨯的结果吗?6、比较下面算式结果的大小(在横线上填“>”、“<”或“=” ):(1) 2234+ 342⨯⨯ (2) ()2213+- ()132⨯-⨯ (3) ()()2222-+- ()()222-⨯-⨯ 通过观察归纳,写出能反映这一规律的一般结论。

华师大版初一上册数学有理数的乘方练习

华师大版初一上册数学有理数的乘方练习

华师大版初一上册数学有理数的乘方练习
大多数同学认为初中功课比较复杂,学起来比较吃力,还有的同学逻辑思维能力不强,所以就不会解题,查字典数学网的〝七年级上册数学有理数的乘方同步练习〞帮助同学们梳理知识、加强练习,提高成绩!
1.有四个命题:
①假设45°cosa;
②两边及其中一边的对角能作出唯一一个三角形;
③x1,x2是关于x的方程2x2+px+p+1=0的两根,那么
x1+x2+x1x2的值是负数;
④某细菌每半小时分裂一次(每个分裂为两个),那么经过2小时它由1个分裂为16个.
其中正确命题的序号是 _______ (注:把所有正确命题的序号都填上).
2.-(-3)2=()
3.细胞每分裂一次,1个细胞变成2个细胞.洋葱根尖细胞每分裂一次间隔的时间为12时,那么原有2个洋葱根尖细胞经3昼夜变成()
4.假设x,y,z为整数,且|x-y|2019+|z-x|2019=1,那么|z-x|+|x-y|+|y-z|的值为()
5.假设a=25,b=34,c=43,那么a,b,c的大小关系是()
小编为大家提供的七年级上册数学有理数的乘方同步练习大家仔细阅读了吗?最后祝同学们学习进步。

【精品】华师大版初中七年级(上)数学全套训练题(共43页,含答案)

【精品】华师大版初中七年级(上)数学全套训练题(共43页,含答案)

数学精品教学资料华师大版初中七年级(上)数学全套训练题第1单元 走进数学世界课标要求1.能用数学知识解决身边的一些问题.2.学会从数学的角度去思考,用数学支持自己的结论.典型例题例1 按规律填数:2、7、12、17、___、_____.解:分析,题目中给出的四个数后面的数都比前面的数大5,根据这个规律可知后面的空应填数字22和27.例2 甲、乙、丙三人到李老师家里学钢琴,甲每3天去一次,乙每4天去一次,丙每6天去一次,如果8月3日他们三人在李老师家碰面,那么下一次他们在李老师家碰面的时间是_________.解:根据数学知识,取出3、4、6的最小公倍数(12)即可.3+12=15,所以,下一次他们见面的时间是:8月15日.例3 如图,在六边形的顶点出分别标上数1,2,3,4,5,6,使任意三个相邻顶点的三数之和都大于9.解:要使任意三数之和都大于9,那么1相邻的数只能是4和6,其余依此类推可得其顺序为:1,6,3,2,5,4.例4 三阶幻方(九宫图)是流传于我国古代数学中的一种游戏.最简单的九宫图如图,对这样的幻方多做一些钻研和探索,你将获得更多的启示.比如:九宫图中的九个方格是否可以填其他的数?如5,10,15,20,25,30,35,40,45,如果可以又该怎样填写?解:可以从九宫图的填法中得到答案. 相应的数分别是:10、35、30、45、25、5、 20、15、40.例5 五位老朋友a,b,c,d,e 去公园去约会,他们见面后都要和对方握手以示问候,已知a 握了4次,b 握了1次,d 握了3次,e 握了2次,那么到现在为止,c 握了几次?解:a 和 b 、c 、d 、e 都握了共4次,b 只握1次,那他只和a 握过, d 和a,c,e 握了3次,e 和a,d 握2次 ,所以到目前为止,c 握了2次. 强化练习1.运用加、减、乘、除四种运算,如何由三个5和一个1得到24(每个数只能用一次).2.观察已有数的规律,在( )内填入恰当的数.11 11 2 11 3 3 11 4 6 4 11 ( ) ( ) ( ) ( ) 13.现栽树12棵,把它栽成三排,要求每排恰好为5棵,如图所示的就是一种符合条件的栽法,请你再给出三种不同的栽法(画出图形即可).[说明]:动手操作题是让学生在实际操作的基础上设计有关的问题,有利于培养学生的创新能力和实践能力,就本题而言,答案不止三种,不在交点处的点可平移,因此可得到多个答案.(请同学们自己做). 4. 一种圆筒状包装的保鲜膜,如图,其规格为“20cm ×60m ”,经测量这筒保鲜膜的内径ø1,外径ø2的长分别为3.2cm 、4.0cm,则该种保鲜膜的厚度为多少cm ?5. 李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是① ② ③ ④ ( )A. ①②④B. ②③④C. ①③④D. ①②③单元检测一、填空题1. 如图所示,图中共有____个三角形、______个正方形.2. 按规律填数:1,14,2,15,3,16,( ),( ).3. 若a ⊙b=4a-2b+ ab,则 ⊙ =________. 4.如果12345679×27=333333333,那么12345679×9=______.5. 要从一张长为40cm,宽为20cm 的矩形纸片中剪出长为长为18cm,宽为12cm 的矩形制片,最多能剪出____ 张6.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20另一台亏损20%,则本次买卖中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元7. 18º,75º,90º,120º,150º这些角中,不能用一幅三角板拼出来的是_________.8. 观察下列等式;9-1=8;16-4=12;25-9=16;36-16=20,….这些等式反映了自然数之间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律是________.二、选择题9. 某商品的进价是110元,销售价是132元,则此商品的利润率是( )A .15% B.20% C.25% D.10%10. 找出“3,7,15,( ),63”的规律,括号理应填( )A.46B.27C.30D.3111. 把长方形的长去掉4厘米后,余下的是一个面积为64平方厘米的正方形,则原来长方形的面积为( )A.77平方厘米B.80平方厘米C.96平方厘米D. 100平方厘米12. 火车票上的车次号有两个意义:一是数字越小表示车速越快,1∽98次为特快列车,101∽198为直快列车,301∽398为普快列车,401∽ 498为普客列车;二是单数与双数表121512示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A.20B.119C.120D.31913. 将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24第4行 32 30 28 26……根据上面的排列规律,则2000应在( )A.第125行,第1列B. 第125行,第2列C. 第250行,第1列D. 第250行,第2列14. 在一列数1,2,3,4,…,1000中,数字0共出现了( )A.182次B.189次C.192次D.194次15. 将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )A B C D16. 法国的“小九九”从“一一得一” 到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算78和89的两个示例.若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A 、2,3B 、3,3C 、2,4D 、3,4三、解答题17. 在( )内填上“+”或“–”或“÷”或“×”,使等式成立.4( )6( )3( )10 = 2418. 过四边形一个顶点的对角线可以把四边形分成两个三角形,过五边形一个顶点的对角线把它分成_____个三角形,n 边形呢?_____________19. 小明早上起床,叠被用3分,刷牙洗脸用4分,烧开水用10分,吃早饭用7分,洗碗用1分,整理书包用2分,冲牛奶用1分,请帮小明安排一下时间.20. 木匠有一矩形木板,但右上角已缺损一块,尺寸如图所示,你能把它拼成一个正方形桌面吗?11122321. 如果依次用x 1 ,x 2 ,x 3 ,x 4 表示图(1),(2),(3),(4)中三角形的个数,那么x 1 =3,x 2 =8,x 3 =15,x 4 =24.如果按照上述规律继续画图,那么x n 与n 之间的关系如何?22. 如图所示,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部分.(1)用直线分割;(2)每个部分内各有一个景点;(3)各部分的面积相等(可用铅笔画,只要求画图正确,不写画法) 23. 我们与数学交朋友×友=我我我我我我我我我,其中每个汉字代表自然数1∽9中的一个,且互不重复,那么其中的“友”代表的数是什么?.24. 用四块如图(1)所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图2),请你分别在图(3)、图(4)中各画一种与图(2)不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称(1) (2) (3) (4)25.某超市推出如下优惠方案:①一次性购物不超过100元,不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款多少元?26.观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律:①211211-=⨯②322322-=⨯ ③433433-=⨯ ④544544-=⨯ ……⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式.第一单元参考答案强化练习:1.解:5×(5 -1÷5 ) = 24 ; 2.解:经观察可得所填的数应为:5 , 10 ,10 ,5 ;3.略 ; 4. 利用圆筒的体积相等列等式。

最新华师大版七年级数学上册 有理数单元测试题及答案精华版

最新华师大版七年级数学上册 有理数单元测试题及答案精华版

最新华师大版七年级数学上册有理数单元测试题一. 判断题:1.有理数可分为正有理数与负有理数 . ( ) 2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( ) 3.两个有理数的差一定小于被减数. ( ) 4.任何有理数的绝对值总是不小于它本身. ()5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 . 4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 . 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdba cd p的值是 ( ). A .3 B .2 C .1 D .0 3.若01<<-a ,则2,1,a aa 的大小关系是 ( ).A .21a aa <<B .21a a a<< C .a a a<<21D .aa a 12<<4.下列说法中正确的是 ( ). A. 若,0>+b a 则.0,0>>b a B. 若,0<+b a 则.0,0<<b a C. 若,a b a >+则.b b a >+ D. 若b a =,则b a =或.0=+b a 5.ccb b a a ++的值是 ( ) A .3± B .1± C .3±或1± D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2 四.计算题 1.[]24)3(2611--⨯-- 2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值.六、a 是有理数,试比较2a a 与的大小.七.32-12=8×1 52-32=8×2 72-52=8×3 92-72=8×4…… 观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.有理数单元测试题 参 考 答 案一. 判断题:×√×√√ 二. 填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0和±1; (4)367-,73±;(5)1或5;(6)c <a <b . 三. 选择题:(1)B (2)B (3)B (4)D (5)C (6)C 四.1.61;2.1;3.100; 4.原题应改为223200120003)21(24)32(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-=—34.五.1253六.当a <0或a >1时,a < a 2;0< a <1,a > a 2;当a =0或a =1时,a =a 2. 七.n n n 8)12()12(22=--+,8000.。

华东师大版七年级上册有理数的乘方同步测试(解析版)

华东师大版七年级上册有理数的乘方同步测试(解析版)

华东师大版七年级上册有理数的乘方同步测试(解析版)一、选择题1.〔﹣2〕2=〔〕A. B. - C. 4 D. ﹣42.假定〔x-2〕2与|5+y|互为相反数,那么y x 的值〔〕A. 2B. -10C. 10D. 253.以下各式:-(-5)、-|-5|、-52、(-5)2、,计算结果为正数的有( )A. 4个B. 3个C. 2个D. 1个4.计算的结果是〔〕A. B. C. ﹣ D.5.以下说法中,正确的选项是〔〕A. 假定a≠b,那么a2≠b2B. 假定a>|b|,那么a>bC. 假定|a|=|b|,那么a=bD. 假定|a|>|b|,那么a>b6.假设n是正整数,那么n[1﹣〔﹣1〕n]的值〔〕A. 一定是零B. 一定是偶数C. 一定是奇数D. 是零或偶数7.计算〔﹣3〕11+〔﹣3〕10的值是〔〕A. ﹣3B. 〔﹣3〕21C. 0D. 〔﹣3〕10×〔﹣2〕8.小明做了一下4道计算题:①﹣62=﹣36;②〔﹣〕2= ;③〔﹣4〕3=﹣64;④〔﹣1〕100+〔﹣1〕1000=0请你帮他反省一下,他一共做对了〔〕A. 1道题B. 2道题C. 3道题D. 4道题9.为求1+2+22+23+…+22021的值,可令S=1+2+22+23+…+22021,那么2S=2+22+23+24+…+22020,因此2S-S=22020-1,所以1+2+22+23+…+22021=22020-1.仿照以上推理计算出1+3+32+33+…+32021的值是( )A. 32021-1B. 32021-1C.D.二、填空题10. ……,那么…+ 的个位数字是________.11.为了鼓舞居民浪费用水,某自来水公司采取分段计费,每月每户用水不超越10吨,每吨2.2元;超越10吨的局部,每吨加收1.3元.小明家4月份用水15吨,应交水费________元. 12.假定a 、b 互为相反数,c 、d 互为倒数,m 的相对值为2,那么 ________.13.|a|=5,b 2=16,且ab <0,那么a ﹣b 的值为________.14.看过电视剧«西游记»的同窗,一定很喜欢孙悟空,孙悟空的金箍棒能随意伸缩,假定它最短时只要1厘米,第1次变化后变成3厘米,第2次变化后变成9厘米,第3次变化后变成27厘米……照此规律变化下去,到第5次变化后金箍棒的长是________米. 15.将从1末尾的延续自然数按以下规律陈列: 第1行 1 第2行 2 3 4 第3行 9 8 7 6 5 第4行 10 11 12 13 14 15 16 第5行 25 2423222120191817…那么2021在第________行.16.一商标图案如图阴影局部,长方形ABCD 中AB =6cm ,BC =3cm ,以点A 为圆心,AD 为半径作圆与BA 的延伸线相交于点F ,那么商标图案的面积为________.〔结果保管 π〕三、解答题17.计算: 〔1〕〔﹣1〕3﹣×[2﹣〔﹣3〕2]〔2〕﹣22+|5﹣8|+24÷〔﹣3〕×.18.a 、b 为有理数,且|a +2|+(b -3)2=0,求a b +a(3-b)的值. 19.假定 a 是最大的负整数,求2019201820172016a a a a +++ 的值?20.你喜欢吃拉面吗?拉面馆的徒弟,用一根很粗的面条,把中间捏合在一同拉伸,再捏合、拉伸,重复屡次,就能拉成许多细面条.如下图:〔1〕经过第3次捏合后,可以拉出________根细面条;〔2〕到第________次捏合后可拉出32根细面条.答案解析局部一、选择题1.【答案】C【考点】有理数的乘方【解析】【解答】解:〔﹣2〕2=〔-2〕×〔-2〕=4.故答案为:C【剖析】依据有理数的乘方的定义a2=a·a,失掉〔﹣2〕2=〔-2〕×〔-2〕.2.【答案】D【考点】有理数的乘方,偶次幂的非负性,相对值的非负性【解析】【解答】由题意得:〔x-2〕2+|5+y|=0,∴x-2=0,5+y=0,∴x=2,y=-5,∴y x=25.故答案为:D.【剖析】依据相反数的定义只要符号不同的两个数互为相反数〔0的相反数是0〕,互为相反数的两个数的和等于零;再依据相对值和偶次幂的非负性,失掉x-2=0,5+y=0,再计算乘方即可.3.【答案】B【考点】有理数的乘方【解析】【解答】解:-(-5)=5;;,结果为正数的有3个,故答案为:B.【剖析】依据有理数的乘方的符号法那么正数的奇次幂是正数、偶次幂是正数即可判别求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级______姓名_______座号____
(有理数的乘、除法、乘方及科学记数法)
一、填空题:(每题 2 分,共24 分)
1、(-3)×(+2)的结果的符号是____。

2、3÷(-2)=3×(____)
3、-的倒数是_______。

4、化简:=_____。

5、(-2)·(-2)·(-2)·(-2)写成乘方的形式为___________。

6、(-3)2 的底数是_____,指数是_____。

7、地球半径大约是6370 千米,用科学记数法表示为______米。

8、计算-32-1=_____。

9、计算:(--+)×12=_____。

10、若a、b 互为倒数,则2-3ab=_____。

11、已知+(y+3)2=0,则y x=_____。

12、如果N=5.34×105,那么N 是一个_____位整数。

二、选择题:(每题3分,共18分)
1、下列各式中,计算正确的是()
A、(-3)×(-2)=-6
B、0×(-1)=1
C、(-)÷=-2
D、(-4)÷=-2
2、(-3)2表示()
A、2 个-3 的积
B、-3与 2 的积
C、2 个-3 的和
D、3 个-2 的积3、一个数和它的相反数之积是()
A、负数
B、正数
C、零
D、零或负数
4、用科学记录法表示3080000,正确的是()
A、308×104
B、30.8×105
C、3.08×106
D、3.8×106
5、下列各组数中相等的是()
A、23和32
B、-32与(-3)2
C、-23和(-2)3
D、-32和326、-22,(-1)2,(-1)3的大小顺序是()
A、-22<(-1)2<(-1)3
B、-22<(-1)3<(-1)2
C、(-1)3<(-1)2<-22
D、(-1)2<(-1)3<-22
三、计算:(每题4 分,共24 分)
1、0.8×(-1)2、(-)÷(-)
3、(-4)÷(-12)×4、4×(-2)3-(-3)2
5、(-3)×(+2)÷(-3)6、(-)2·(-2)3÷(-1)5
四、用简便方法计算:(每题5分,共15分)
1、71×(-8)
2、(-2)3×(-4)×1.25
3、(-75%)×(-21)+(-125)×-75×(-0.24)
五、(6分)地球离太阳约有一亿五千万千米,用科学记数法怎样表示?已知光每秒走的路程是3×108米,
那么你能否算出太阳光到达地球需要多长时间?
六、(7分)已知:a 与b 互为相反数,c 与 d 互为倒数,且(y+1)2=0,
求y3+(a+b)2005-(-cd)2006的值。

(四)
初中数学试卷
桑水出品。

相关文档
最新文档