人教版八年级数学--15.1.2幂的乘方
《幂的乘方》教案

《幂的乘方》教案教学目标:1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.教学重、难点与关键:1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,要求对性质深入地理解.教学方法:采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程:一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=·(102)3=?(引入课题).【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×1 02×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P143练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.五、布置作业,专题突破课本P148习题15.1第1、2题。
八年级数学上 15.1.2幂的乘方

15.1.2幂的乘方教学目标:1、经历探索幂的乘方与积的乘方的运算性质的过程,发展推理能力和有条理的表达能力。
2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。
教学重点:会进行幂的乘方和积的乘方的运算,教学难点:幂的乘方法则和积的乘方法则的总结及运用。
教学过程:一、知识回顾:1、回顾同底数幂的乘法法则:a m·a n= (m、n都是正整数)2、计算(1)(x+y)2·(x+y)3(2)x2·x2·x+x4·x=(3)x3·x n-1-x n-2·x4=二、新知探究:1、自主探究,感受新知32表示个相乘. (32)3表示个相乘.(32)3= =a2表示个相乘. (a2)3表示个相乘.(a2)3= =a m表示个相乘. (a m)3表示___个___相乘.(a m)3= =2、推广形式,得到结论(a m)n表示_______个________相乘(a m)n =___×___×___×…×___× ___ ( 个a m相 =___即(a m)n= ______________(其中m、n都是正整数)3、归纳结论:幂的乘方,底数__________,指数__________.三、巩固新知:例:计算:(1)(103)5(2)(a4)4(3) (a m)2 (4) -(x4)3(5)[(32)3]4 (6)[(-6)3]4(7)2(x2)n-(x n)2(8)[(x2)3]7随堂练习一、判断题,错误的予以改正。
(1)a5+a5=2a10 ()(2)(x3)3=x6 ()(3)(-3)2·(-3)4=(-3)6=-36 ()(4)x3+y3=(x+y)3()(5)[(m-n)3]4-[(m-n)2]6=0 ()(6)、()52323xxx==+ ( ) (7)、()7632aaaaa=⋅=-⨯ ( ) (8)、()93232xxx==()(9)、9333)(--=mm xx()(10)、532)()()(yxxyyx--=-⋅- ( )二、填空题。
八年级数学上册 15.1.2-15.1.3《幂的乘方和积的乘方》课堂教学实录 新人教版

15.1.2~15.1.3 幂的乘方和积的乘方课堂实录【情境导入】师:同学们好!生:老师好!师:你知道吗?如果甲球的半径是乙球的n 倍,那么甲球的体积是乙球的多少倍?生:n 3倍。
师:(播放投影画面)同学们,我们来看一幅天体图。
上面的三个球体分别代表地球、木星、和太阳。
木星的半径约是地球的10倍,太阳的半径约是地球的210倍,那它们的体积分别约是地球的多少倍?老师先让学生观看一张有关地球、木星、太阳的模拟图,调动学生的积极性。
学生分组讨论,交流问题并发表见解。
小组交流然后汇总。
生:木星的体积是地球体积的103倍。
生:太阳的体积是地球体积的(102)3倍。
师:你们回答的很对!在这里我们遇到了幂的乘方,到底(102)3等于多少呢?通过今天的学习就能有个明确的答案了。
板书课题“幂的乘方和积的乘方”【探索新知】师:回忆有理数乘方的知识,你知道4a 的意义是什么吗?生:4a 表示4个a 相乘。
师:如果把4a 看成底数,则34)(a 的意义是什么? 生:34)(a 表示3个 4a 相乘。
师:回答的很好。
那如何计算34)(a 呢? 生:34)(a =4a ·4a · 4a =a 12 师:你的推理很正确。
同学们你们会吗?生:会。
师:好!下面请你们计算下列各式,看看计算结果有什么规律。
老师利用多媒体出示探究一。
学生分组计算讨论。
教师参与讨论。
小组1:(1)42)6(=68 小组2:(2)32)(a =a 6 小组3: (3)2)(m a =a 2m小组4: (4)n m a )(=a mn学生汇报,教师利用多媒体展示推理过程。
师:你们做的很棒!师:根据上面的结果同学们有没有发现幂的乘方有何规律?生:幂的乘方,底数不变,指数相乘。
老师板书:1、幂的乘方的运算规律幂的乘方,底数不变,指数相乘。
即n m a )(=mn a (n m ,都是正整数)师:接下来我们看这样一个问题“已知一个正方体的棱长为2×103cm ,•你能计算出它的体积是多少吗?”生:它的体积V=(2×103)3cm3。
人教版初中数学八年级上册14.1.2幂的乘方(教案)

一、教学内容
人教版初中数学八年级上册14.1.2幂的乘方:
1.掌握幂的乘方运算法则,即(a^n)^m = a^(n×m);
2.能够运用幂的乘方解决实际问题;
3.通过对幂的乘方的学习,培养学生的逻辑思维能力和数学运算能力;
4.结合实际例子,让学生理解幂的乘方在生活中的应用,提高学生的数学应用意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂的乘方的基本概念。幂的乘方是指将一个数的幂再次乘以相同的底数的幂。它是数学中一个重要的运算法则,可以帮助我们简化多次乘法运算。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算(2^3)^2,我们可以将2^3看作一个整体,其结果为8,然后再将8的平方计算出来,得到64。这个案例展示了幂的乘方在实际中的应用,以及它如何帮助我们解决问题。
-对比讲解,通过表格、图示等方式,将幂的乘方与乘幂的公式进行对比,突出它们之间的差异。
-设计练习题,让学生分别计算幂的乘方和乘幂的结果,加深对两者区别的理解。
-通过具体例子,如2^3×2^2与(2^3)^2的比较,让学生直观感受两者的不同。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《幂的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要多次重复同一个乘法运算的情况?”比如,计算2的三次方的三次方,我们会重复计算2×2×2三次。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索幂的乘方的奥秘。
五、教学反思
今天我们在课堂上学习了幂的乘方这一章节,回顾整个教学过程,我觉得有几个地方值得反思和改进。
导学案15.1.2幂的乘方

时 间 刘晓燕 学 课 科 题 数学 15.1.2 年 课 级 时 八年级 第 2 课时 主备人 教学目标 教学重点
1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义; 2.通过推理得出幂的乘方的运算性质,并且掌握这个性质. 幂的乘方法则.
难点
幂的乘方法则的推导过程及灵活应用
一、情境导入 大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球 半径的 102 倍,太阳的半径是地球半径的 103 倍,假如地球的半径为 r,那么,请同学们计 算一下太阳和木星的体积是多少?(球的体积公式为 V=
4 r3) 3
教学过程
二、探究新知: 探究一: a3 代表什么? (102)3 表示什么意义呢? 探究二:根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律? (1) 4)3= (2 =2( ) (2) 2)3= (a =a( ) (3) n)3= (b =b( ) m n ( ) (4)归纳总结得出结论: ) = a (a . 用语言叙述幂的乘方法则: 三、范例学习 【例 1】计算: (103)5; (2) 3)4; (1) (b (3) n)3; (x (4),底数________,指数_______.用公式表示(am)n=_______(m,n 为正整数) . 1.下面各式中正确的是( ) . 2 3 5 7 A. ) =2 (2 B.m +m7=m14 C.x2·3=x5 x D.a6-a2=a4 4 5 9 45 20 2. (x ) =( ) A.x . B.x C.x D.以上答案都不对 2 2 3 6 3. -a · a+2a· =( ) a . A.a B.-2a C.3a3 D.-a6 4. (1) 5)3=_______, (a2)4=______ (3) (x (2) (-y4)2=______, (4) 2n)3=______. (a 5. (a6)2=______, (-a3)3=_______, (-102)3=_______. 6. a12=( )6=( )4=( )3=( )2. 7. (-a3)5· (-a2)3=_______. 8. 3(a2)3-2(a3)2=_______.
最新人教版初中数学八年级上册 14.1.2 幂的乘方课件

一二
1.幂的乘方法则
【例 1】 下列计算正确的是( ).
A.a·a7=a7 C.a5+a5=a10
B.a2·a3=a6 D.(a2)3=a6
关闭
选项 A 是同底数幂的乘法,a·a7=a1+7=a8;选项 B 是同底数幂的乘法,a2·a3=a2+3=a5;选项 C 是 合并同类项,应是系数相加,字母和字母的指数不变,a5+a5=2a5;选项 D 是幂的乘方,底数不 变,指数相乘,结果为(a2)3=a6.
14.1.2 幂的乘方
最新人教版初中数学精品课
学前温故 新课早知
同底数幂的乘法法则公式: am·an=am+n(m,n 都是正整数) . 用语言叙述: 同底数幂相乘,底数不变,指数相加 .
最新人教版初中数学精品课
学前温故 新课早知
1.幂的乘方公式:(am)n= amn (m,n 都是正整数). 2.幂的乘方法则:幂的乘方,底数不变 ,指数相乘 . 3.a12=( a2 )6=( a3 )4=( a4 )3=( a6 )2.
关闭
B
最新人教版初中数学精品课
解析 答案
4.(a3)5·(a2)3=
.
1
2
3
4
5
6
7
关闭
(a3)5·(a2)3=(a15)·(a6)=a21.
关闭
a21
最新人教版初中数学精品课
解析 答案
5.-(xn)3=
.
1
2
3
4
5
6
7
关闭
-x3n
最新人教版初中数学精品课
答案
6.计算: (1)(x2)4·x3; (2)(an+1)2·an-2; (3)a·a3·a4+(a2)4; (4)2(a2)6-(a3)4.
新人教版八年级数学上册15.1.2幂的乘方课后练习题和答案

新人教版八年级数学上册《15.1.2幂的乘方》课后练习题和答案新人教版八年级数学上册《15.1.2幂的乘方》课后练习题和答案§15.1.2幂的乘方“堂堂清”试题命题人:肖家二中邢德国审题人:姜延魁一填空题1.幂的乘方,底数________,指数________,用字母表示那个性质是_________.2.(103)5= ;(b3)4= ;[(-a)3]4 = ;[(-6)3]4 = ;-(a2)7 =3.假设(x2)n=x8,那么n=_____________.4.假设[(x3)m]2=x12,那么m=_____________。
二选择题5.计算(-a2)5+(-a5)2的结果是()A.0 B.2a10 C.-2a10 D.2a76.以下计算的结果正确的选项是()A.a3•a3=a9 B.(a3)2=a5 C.a2+a3=a5 D.(a2)3=a6 7.计算(x2)8•(x4)4的结果为()A.X18 B.X24 C.X28 D.X328.已知22×162 =2n ,那么n等于()A.6 B.8 C.10 D.16三、判定题,错误的予以更正。
9.a5+a5=2a10 ()10.(x3)3=x6 ()11. (-3)2•(-3)4=(-3)6=-36 ()12.x3+y3=(x+y)3 ()13.[(m-n)3]4-[(m-n)2]6=0 ()四解答题14.①5(a3)4-13(a6)2 ②7x4•x5(-x)7+5(x4)4-(x8)2③[(x+y)3]6+[(x+y)9]2 ④[(b-3a)2]n+1•[(3a-b)2n+1]3(n为正整数)15.①假设xm•x2m=2,求x9m的值。
②假设a2n=3,求(a3n)4的值。
③已知am=2,an=3,求a2m+3n的值.参考答案一填空题1.不变,相乘。
(am )n =amn (a≠0,m.n均为正整数)2. 1015 b12 a12 612 -a143. 44. 2二选择题三判定9.× 10.× 11.× 12.× 13.√四解答题14.①-8a12 ② -3x16 ③ 2(x+y)18④ (3a-b)8n+515.①8②36③108新人教版八年级数学上册《15.1.2幂的乘方》课后练习题和答案§15.1.2幂的乘方“堂堂清”试题命题人:肖家二中邢德国审题人:姜延魁一填空题1.幂的乘方,底数________,指数________,用字母表示那个性质是_________.2.(103)5= ;(b3)4= ;[(-a)3]4 = ;[(-6)3]4 = ;-(a2)7 =3.假设(x2)n=x8,那么n=_____________.4.假设[(x3)m]2=x12,那么m=_____________。
新人教版初中数学八年级上册精品教案14.1.2 幂的乘方2

14.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,•请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=·(102)3=?(引入课题).教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P143练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式. 3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.五、布置作业,专题突破课本习题板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2
6
(a ) a a a a
m 3
m
m
m
3m
探究新知
根据乘方的意义及同底数幂的乘法 法则填空,看看计算结果有什么规律:
(a ) a a a n个m
m n
n个 a
m
m
m
m
a a
m m m
mn
归纳总结
幂的乘方公式:
(a ) a
m n
mn
(x-y)100· (y-x)101 =(y-x)201
探究新知
我们知道:
5 5 5 5
3
问题:
5 5 5 (5 )
2 2 2
2
3
探究新知
根据乘方的意义及同底数幂的乘法 法则填空,看看计算结果有什么规律:
(3 ) 3 3 3 3
2 3
2
2
2
m
6
(4)(a ) a
5
例题精讲
例2 计算:
(y ) y(y ) y
3 2 2 2
3
运算顺序该怎样? 先幂的乘方,再同底数幂相乘, 后加减。
巩固练习
4.计算:
(x ) (x ) x (x ) x
4 2 2 4 2 2
3
例题精讲
例3 若a
m
3, a 5 ,求 a 怎样理解 a ?
2 3
5
a a a
2 3
6
注意区分“同底数幂的乘法法则” 和“幂的乘方法则”
例题精讲
例1 计算:
(1)(10 )
3
5
( 2)(a )
4
4
4
(3)(a )
m
2
( 4) ( x )
3
注意符号的处理
巩固练习
3.计算:
(1)(10)
3
3
( 2)( x )
3 2 3
2
( 3) ( x )
(m,n都是正整数)
幂的乘方法则:
幂的乘方,底数不变,指数相乘。
深入理解
1.计算( x ) 的结果为( C )
5 2
A.
x C. x
7
B. x
D. x
52
10
25
深入理解
2. 下列等式成立的是( A )
) (a ) C. (a ) a
A. (a
2 3 3 2 3 9
2
B.
D.
(a ) a
八 年 级 数 学
第十五章 第一节
整式的乘法
——幂的乘方
湖南师大附中博才实验中学
温故知新
同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加。 同底数幂的乘法公式:
a a a
m n
mn
(m,n都是正整数)
温故知新
1、已知2 =4,2 =16,求2
m
n
m+n
的值.
2、化简,结果用幂表示:
a (a ) (m,n都是正整数)
mn m n
巩固练习
5.已知 2
m
2 2 ,求 2 3,
n 2
2 m n
的值。
课堂小结
1、幂的乘方法则
2、运算顺序 3、幂的乘方逆用
n
3 m 2 n
的值。
3 m 2 n
a
3 m 2 n
a a
3m
2n
逆用同底数幂的乘法:
a
m n
a a
m
n
例题精讲
例3 若a
m
3, a 5 ,求 a
n
3 m 2 n
的值。
怎样理解 a 和 a ?
3m 2n
a (a )
3m m
3
a (a )
2n n
2
逆用幂的乘方法则: