(word完整版)七年级数学下册幂的运算

合集下载

七年级下 幂 知识点

七年级下 幂 知识点

七年级下幂知识点幂是初中数学中非常重要的概念,它在各个年级中都有不同程度的涉及。

在七年级下册中,幂作为一个重要的知识点,值得我们认真学习和掌握。

一、幂的概念幂指的是同一数的连乘积。

其中,同一的数称为“底数”,连乘的次数称为“指数”。

幂的表示方法是“a的n次幂”,即aⁿ。

其中a 称为底数,n称为指数。

二、幂运算的基本性质1.同底数幂相乘,底数不变,指数相加。

例如,a² × a³ = a⁵。

2.同底数幂相除,底数不变,指数相减。

例如,a⁵ ÷ a³ = a²。

3.幂的乘方,底数不变,指数相乘。

例如,(a²)³ = a⁶。

4.幂的除法,底数不变,指数相除。

例如,a⁷ ÷ a² = a⁵。

三、幂的应用1.幂在数学中的应用幂在数学中有着非常重要的应用。

例如,在几何中,我们可以通过计算幂来求出各种图形的面积或者体积。

在代数中,我们可以通过幂来求解各种方程。

在实际生活中,幂还有着广泛的应用——例如,电压、电流、功率等等。

2.幂在计算机中的应用计算机科学中,幂同样也有着重要的应用。

例如,在计算机程序中,我们可以通过使用幂运算符“**”来计算幂。

四、幂的习题1.计算下式的值:(2² × 3³) ÷ (2³ × 3²).解析:把底数相同的幂合并,得到:2⁻¹ × 3。

2.化简下面的幂:a⁵ × a⁶.解析:底数相同的幂相乘,指数相加,可得到a¹¹。

3.求解a² = 81的解。

解析:可以通过计算得知,81 = 3⁴。

因此,原式可以变形为a²= 3⁴,进而得到a = 3²或者a = -3²。

因此,方程的解为a = ±9。

总结:通过本文的学习,我们了解了幂的概念、幂运算的基本性质,并掌握了幂在数学、计算机科学、实际生活中的应用。

七年级幂的运算知识点

七年级幂的运算知识点

七年级幂的运算知识点幂是数学中的一种基本运算,它的概念较为简单,但是在运用过程中需要掌握一些重要的知识点。

本文将详细介绍七年级幂的运算知识点。

一、幂的概念幂是指将一个数的几次方表示为该数的形式,其中第一个数字称为“底数”,第二个数字称为“指数”。

例如,2³=8中,2是底数,3是指数,8是幂。

二、幂的符号表示在数学中,幂可以用符号来表示。

将底数和指数用括号括起来,放在上标的位置。

例如:2³可以写为2^3,其中^表示“上角”,即“次方”的意思。

三、幂的性质幂有以下几个重要的性质:(1)相同底数的幂相乘:a^m * a^n = a^(m+n),即相同底数的幂相乘,底数不变,指数相加。

(2)幂的乘方:(a^m)^n = a^(m*n),即幂的乘方,指数相乘。

(3)幂的倒数:a^(-m) = 1/a^m,即求幂的倒数,底数不变,指数变为相反数。

(4)幂的减法:a^m / a^n = a^(m-n),即幂的除法,底数不变,指数相减。

四、幂运算的解题技巧在幂运算中,掌握以下技巧有助于解题:(1)化简式子。

将式子中的幂与其它项结合,简化计算步骤。

(2)运用幂的性质。

例如,对于n为正整数且n是奇数的情况,a^n = a*a^(n-1)。

(3)利用幂与根的关系。

求幂的平方根或立方根时,可以将幂与根的关系转化为幂的乘方。

五、幂中的特殊符号在某些情况下,幂运算中会出现特殊符号,需要注意以下几点:(1)分数指数。

当幂的指数为分数时,需要用分数的乘方运算进行计算。

例如,2^(1/2)表示的是2的1/2次方,即根号2。

(2)零次幂。

任何数的0次幂都等于1,即a^0=1。

(3)负数幂。

负数不能直接开根号,但可以进行负数幂运算。

六、七年级幂的应用幂在七年级数学中的应用相对较少,但具体应用还包括以下几个方面:(1)解一元一次方程。

通过幂的乘方和幂的除法等性质,可以将方程式化简,从而求出解的值。

(2)解图形推理题。

七年级下册幂的知识点总结

七年级下册幂的知识点总结

七年级下册幂的知识点总结幂是初中数学中的重要知识点之一,它在解决各类问题时都有极高的实用价值。

本文将详细总结七年级下册幂的知识点,同时附带一些解题技巧和练习题,希望对于初学幂的同学有所帮助。

一、幂的概念及表示方法幂是由底数和指数两个数字组成的一个数学表达式,它表示了底数连乘若干次的结果。

例如,2³表示2连乘3次的结果,即2×2×2,结果为8。

在数学中,我们用“aⁿ”来表示幂,其中a表示底数,n表示指数。

如果指数n为正整数,我们称aⁿ为“a的n次幂”,如果n为零,a⁰ =1,若a不为零,零的幂未定义。

如果n为负整数,则aⁿ还可以表示为“1/a的n次幂”。

二、幂的基本运算1. 幂的乘法:幂的乘法规则是:aⁿ×aᵐ= aⁿ⁺ᵐ。

即,将底数相同的幂相乘时,底数不变,指数相加。

2. 幂的除法:幂的除法规则是:当同底数的幂相除时,保留底数,将指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ。

3. 幂的乘方:幂的乘方规则是:(aⁿ)ᵐ=aⁿᵐ。

即,先将幂底数a 转化为一次幂,再将指数进行运算。

三、幂的运算技巧1. 化幂为指数:如果一个幂的底数和指数都可以 factor,可以尝试将其化为指数形式进行运算。

例如:4⁶×2⁴×4² = (2²)¹²×2⁴×2⁴ = 2²⁴×2⁴ = 2³²2. 化指数为幂:如果运算式中的指数较大,可以尝试将其化为幂的形式进行计算。

例如:27²×81² = (3³)²×(3⁴)² = 3²¹×3²⁸ = 3⁴⁹四、练习题1. 计算:3³×9⁴÷27³2. 计算:8⁵÷4⁵×(2⁴)³3. 若a⁷×a⁶=a¹³,那么a=?5. 计算:(5²)³×(5³)²÷5⁴答案:1. 1解答:3³×9⁴÷27³ = 3³×(3²)⁴÷(3³)³ = 12. 64解答:8⁵÷4⁵×(2⁴)³ = 2³×2¹² = 643. a=1解答:a⁷×a⁶=a¹³,等价于a⁷⁺⁶=a¹³,即a^13=a^13,则a=1。

(word完整版)幂的运算-教师版

(word完整版)幂的运算-教师版

什么叫乘方,乘方的结果叫什么?求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。

注意: ()()221221n n n n a a a a ++-=-=-,,,同底数幂的乘除法则同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即m n m n a a a +⋅=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q +=⋅=⋅+=+幂的乘方法则:幂的乘方,底数不变,指数相乘。

即()nm mn a a =(m 、n 都是正整数)逆运用()()()q n m p mn m n a a a a mn pq ⎛⎫==== ⎪⎝⎭积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘即()nn n ab a b =(n 为正整数) 逆运用()nn n a b ab = ()2323mm m a b a b ⋅=同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即m n m n a a a -÷=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q -=÷=÷-=-()m a b -,当m 奇数时,()()mm a b b a -=--;当m 偶数时,()()mm a b b a -=-.()m a b +,不论m 为奇数还是偶数,都有()()mm a b b a +=+.幂的运算知识讲解知识回顾【例1】 下列计算是否正确?错误的指出错误的原因,并加以改正.(1)339a a a ⋅=; (2)4482a a a ⋅=; (3)336x x x +=; (4)22y y y ⋅=; (5)34x x x ⋅=; (6)236x x x ⋅=【答案】(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅= (3)不正确,336x x x +=是整式的加法,应改为3332x x x += (4)不正确,y 的指数是1而不是0,应改为23y y y ⋅= (5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=【例2】 100010010⨯⨯的结果是 .【答案】610【变式练习】计算:(1)45371010101010⨯⨯+⨯ (2)32101010010⨯+⨯ 【答案】(1)10210⨯ (2)4210⨯【例3】 计算:(1)231122⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭; (2)102a a a ⋅⋅;(3)()()2322x y y x -⋅- (4)()()()854x y y x x y -⋅-⋅-【答案】(1)511232⎛⎫-=- ⎪⎝⎭; (2)13a ; (3)()52-y x ; (4)()17x y --【例4】 已知:240x y +-=,求:1233x y -的值.【答案】1221333x y x y -+-=∵240x y +-= ∴24x y += ∴2133327x y +-==同步练习【变式练习】已知:2350x y +-=,求:927x y ⋅的值. 【答案】2323927333x y x y x y +⋅=⋅=∵2350x y +-= ∴原式53243==【例5】 在()222m m y y y -+⋅⋅=中,括号中应填的代数式是 .【答案】3m y +【变式练习】已知32131a a x x x x +⋅⋅=,求a 的值. 【答案】9a =【变式练习】若32125a a x x x x +⋅⋅=,则关于y 的方程=28ay a +的解是 . 【答案】7a =,7728355y y =+==,【例6】 已知22380x x y -+-+=,则22y x x y y x ⋅-⋅= .【答案】24x y ==,,原式422224421612192=⨯-⨯=⨯=【例7】 已知2m a =,3n a =,求下列各式的值.(1)1m a +; (2)3n a +; (3)2m n a ++【答案】(1)12m m a a a a +=⋅=(2)3333n n a a a a +=⋅=(3)2222236m n m n a a a a a a ++=⋅⋅=⨯⨯=【变式练习】已知,3n a =,3m b =,则33m n ++的结果是 . 【答案】33333327m n m n ab ++=⋅⋅=【例8】 计算:(1)()10110033+- (2)()()2008200922-+-(3)200520042003252622000-⨯+⨯+【答案】(1)()()10110010010110010010010033=3333331323+--=-⨯=-=-⨯(2)()()()()()()()200820092008200820082008222222122-+-=-+-⋅-=-⋅-=-(3)200520042003220032003200325262200022522622000-⨯+⨯+=⨯-⨯⨯+⨯+()20034106220002000=-+⨯+=【例9】 计算:(1)()54x ; (2)()32a b ⎡⎤+⎣⎦;(3)()435a a ⋅; (4)()()23211n n a a -+⋅【答案】(1)()5420x x =; (2)()()326a b a b ⎡⎤+=+⎣⎦; (3)()43517a a a ⋅=; (4)()()23211423371n n n n n a a a a a -+-++⋅=⋅=【变式练习】计算(1)()()()32233x x x -⋅-⋅- (2)()()21321n n x x ++-【答案】(1)()()()3223315x x x x -⋅-⋅-=(2)()()21321423375n n n n n x x x x x +++++-=-⋅=-【例10】 已知25n x =,求6155n x -的值.【答案】()362115555n n x x -=-,25n x =,∴原式3155205⨯-=【变式练习】已知3x a =,5x b =,你能用含有a 、b 的代数式表示14x 吗? 【答案】()31433535x x x x ⨯+==⋅;将3x a =,5x b =代入,原式3a b =【例11】 已知105a =,106b =,求2310a b +的值.【答案】()()2323231010101010a b a b a b +=⋅=⋅将105a =,106b =代入,原式23565400=⨯=【变式练习】若3m n 32m n +的值为多少?【答案】()()323232m n m n m n a a a a a +=⋅=⋅当3m a =,4n a =时, 原式3234432=⨯=【例12】 若35n x =,求代数式()()322324nn x x -+的值.【答案】原式=()()()22233322422550n n n x x x -+==⨯=【变式练习】已知3332m n a b ==,,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值. 【答案】原式()()2233332232327m n m n a b a b =+-⋅=+-⨯=-【例13】 比较5553,4444,3335的大小.【答案】()111555511133243==;()111444411144256==;()111333311155125==256243125>> 444555333435>>【变式练习】若504030345a b c ===,,,则a b c 、、的大小关系为( )..A .a b c << B .c a b << C .c b a << D .b c a <<【答案】B .【例14】 你能比较68与94的大小吗?【答案】()663188=22=;()99218422==;所以6984=【变式练习】若31416181279a b c ===,,,则a b c 、、的大小关系为( )..A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A .【例15】 求满足2003005n<的最大整数值n .【答案】∵2003005n< ()()100100235n <∴2125n <∴最大整数值n 为11.【变式练习】求满足()507513x -<的x 的最大整数值. 【答案】∵()507513x -< ()()()25252313x -<∴()2127x -< ∴x 的最大整数值6【例16】 已知232122192m m ++-=,求m 的值.【答案】∵232122192m m ++-=∴2322222262192m m m ⨯-⨯=⨯= ∴2232m = 25m = 52m =【变式练习】若x y 、都是正整数,且()22232x y ⋅=,求满足条件的x y 、.【答案】∵()225222322x y x y +⋅===∴25x y += ∴13x y =⎧⎨=⎩或21x y =⎧⎨=⎩【例17】 计算:(1)()4xy - (2)()322ab -(3)()332a b a ⎡⎤--⋅⎢⎥⎣⎦(4)()()35232xy y ---【答案】(1)()()4444441xy x y x y -=-=;(2)()()33233236228ab a b a b -=-=-(3)()()339223219a b a a b a a b ⎡⎤--⋅=--⋅=⎢⎥⎣⎦(4)()()352332128xy y x y ---=-【变式练习】计算:(1)()42234122x yxy z ⎛⎫-⋅ ⎪⎝⎭(2)()()()3222223325a a a a -+⋅+(3)()()4234242a a a a a ⋅⋅+-+- (4)()()()3322337235x x x x x ⋅-+⋅【答案】(1)()42234822411224x yxy z x y z ⎛⎫-⋅= ⎪⎝⎭(2)()()()32222233250a a a a -+⋅+=(3)()()423424826a a a a a a ⋅⋅+-+-=(4)()()()33223372350x x x x x ⋅-+⋅=【例18】 下列各题中,计算正确的是( )..A .()()233266m n m n --= B .()()323321818m n m n ⎡⎤--=-⎢⎥⎣⎦C .()()2322298m n mn m n --=- D .()()332299m n mn m n --=-【答案】B .【例19】 计算:(1)()20042003188⎛⎫-⨯- ⎪⎝⎭(2)2001100021234⎛⎫⎛⎫-⋅ ⎪⎪⎝⎭⎝⎭(3)20012002200311311345⎛⎫⎛⎫⎛⎫⋅-⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)()()()20032004200320032003111111888888888⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(2)原式20011000200120002923234323⎛⎫⎛⎫⎛⎫⎛⎫-⋅=-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)原式2001200120012455339=3445520⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-⋅-= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例20】 已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗?【答案】()222222n n nab b ab ++=, 原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦【例21】 若5n a =,2n b =,则()32na b = .【答案】()()()3232nn n a b a b =⋅,当5n a =,2n b =时,原式3252500=⨯=.【变式练习】已知25n x =,求()()24323n n x x -的值.【答案】()()()()24323222343n n n n x x x x -=-,当25n x =时,原式32453550075425⨯-⨯=-=【变式练习】已知n 是正整数,216nx =,求()2232111616n n x x ⎛⎫- ⎪⎝⎭的值.【答案】原式()()322221101616n n x x =-=【例22】 若()2322350a b a b ++++,化简()()3322221aa ax y bxyx y z a ⎛⎫⋅-⋅ ⎪⎝⎭. 【答案】依题可知:3202350a b a b +=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩原式63246661413618998x y x y x y z x y z =⋅⋅=【例23】 若87a =,78b =,则5656= .【答案】()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =【变式练习】已知227373996y x z ⋅⋅=,求2004(2)x y z -+的值. 【答案】∵2339962337=⨯⨯ ∴211x y z ===,,20042004(2)=1=1x y z -+【例24】 若1122222n n n n x y +--=+=+,,其中n 为正整数,则x 与y 的数量关系为 . 【答案】4x y =【变式练习】若21m x =+,34m y =+,用含x 代数式表示y . 【答案】()()22234=3+23124m m y x x x =+=+-=-+【变式练习】已知23x =,26y =,212z =,试求x y z 、、的关系. 【答案】∵12623222y x x +==⨯=⨯= ∴1y x =+∵2221234222z x x +==⨯=⨯= ∴2z x =+ +1z y =【例25】 化简:(1)()()4322222n n ++-=(2)2231424m m m ++--=【答案】(1)78(2)32【例26】 已知311n m +能被10整除,求证42311n m +++也能被10整除.【答案】4242311=33111181312111n m n m n m +++⨯+⨯=⨯+⨯()()31180312011n m n m =++⨯+⨯ ()()31110831211n m n m =++⨯⨯+⨯∴42311n m +++也能被10整除.【例27】 是否存在整数a b c 、、满足9101628915abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,若存在,求出a b c 、、的值;若不存在,请说明理由. 【答案】∵()()()()()()233232132322591016235289152353523acb abcb c a b a bc a b c ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴b c = 221a b =+ 331b c a +=+∴32a b c ===,【变式练习】若整数x y z 、、满足10981271615256xyz⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求()y x x y z -+-的值. 【答案】∵()()()()()()233243834322510982351127161523525623532yzxxyzx z y x xyzy x z z ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴23348x z y x z x z y =⎧⎪=+⎨⎪+=-⎩ 解得242x y z =⎧⎪=⎨⎪=⎩()2416y xx y z -+-==【例28】 若3436x y ==,,求2927x y x y --+的值. 【答案】∵()()()()()()24233223927333333x yx yx y x y x y x y ----+=+=÷+÷3436x y ==,,∴原式20027=【习题1】下列计算正确的是( ).A .235a a a +=B .236a a a ⋅=C .()326a a = D .236a a a ⨯=【答案】C【习题2】下列计算正确的是( ).A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 【答案】B【习题3】直接写出结果(1)=-⋅-22)(m m (2)=-⋅-24)2()2(m n n m (3)=+43])[(b a (4)=⋅-6243)2(])2[( (5)=-2)2(x (6)=-232)4(b a【答案】(1)224()m m m -⋅-=-; (2)426(2)(2)(2)m n n m m n -⋅-=-(3)()1234[()]a b a b +=+; (4)342624[(2)](2)2-⋅= (5)22(2)4x x -=; (6)23246(4)16a b a b -=【习题4】计算()2323a a -÷的结果是( ).A .49a -B . 46aC .29aD .49a【答案】D【习题5】若0a >且2x a =,3y a =,则x ya -的值为( ).A .1-B .1C .2D .3 课后练习【答案】C【习题6】计算:(1)1716)8()125.0(-⨯ (2)32236])2[()2()2(a a a -----(3)675)21(6)31(-⨯⨯- (4)232332)(3m m m m m ⋅⋅++-)(【答案】(1)1617(0.125)(8)8⨯-=-(2) 632236(2)(2)[(2)]4a a a a -----=-(3)57611()6()1832-⨯⨯-=-(4)23323263()25m m m m m m -++⋅⋅=-()【习题7】 计算:(1)()()43x y x y +⋅+ (2)()()()43m n n m n m -⋅-⋅-(3)()()132()()n n y x x y x y y x +--+--【答案】(1)()()()437x y x y x y +⋅+=+(2)()()()()438m n n m n m n m -⋅-⋅-=-或()8m n -(3)()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=【习题8】 计算:(1)(.)0125820032004⨯ (2)1320036009n n +⎛⎫⋅ ⎪⎝⎭ 【答案】(1)20032003200420031(0.125)8=8888⎛⎫-⨯-⨯⨯=- ⎪⎝⎭ (2)1131120032003600920032003n n n n ++⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭【习题9】若4)31()9(832=⋅x ,求3x 的值. 【答案】()()32223883111(9)()3()4339x x x ⎡⎤⋅=⋅==⎣⎦,()2336x ∴=,36x ∴=±【习题10】如果12m x =,3n x =,求23m n x +的值. 【答案】()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=【习题11】若2530x y +-=,求432x y ⋅的值. 【答案】()()2525432222x yx y x y +⋅=⋅= 当2530x y +-=时,原式328==【习题12】(1)若31381x +=,则=x (2)若319()x a a a ⋅=,则=x .【答案】(1)∵4813= ∴3141x x +==(2)∵331()x x a a a +⋅= ∴31196x x +==【习题13】如果2111m n n x x x -+=且145m n y y y --=,求m ,n 的值.【答案】∵2111m n n x x x -+=,145m n y y y --=∴2111145m n n m n -++=⎧⎨-+-=⎩ 解之64m n =⎧⎨=⎩【习题14】若2211322323⋅=⋅-⋅++x x x x ,求x 的值.【答案】()()()11323233223232x x x x x x x ++⋅-⋅=⋅⨯-⋅⨯=⨯∵1122323223x x x x ++⋅-⋅=⋅∴2x =【习题15】 已知212448n n ++=,求n 的值.【答案】21222242222348n n n n n ++=⨯+=⨯= 242162n == 24n = 2n =【习题16】若21025x =,则110x +的值为_______.【答案】()2221010255x x === 105x = 110101050x x +=⨯=【习题17】 若()a n 29=,求()()1333222a a n n -的值.【答案】()()3232222211()3()=38138116239n n n n a a a a --=-⨯=-【习题18】比较大小 (1)1625与209 (2)1003与605(3)2100与375(4)101726与31724 【答案】(1)()252541001622== ∴1625>209(2)()()2020100533243==;()()202060355125== ∴ 1006035>(3)()251004252216==;()25753253327== ∴2100<375 (4)226421010171717=⨯;2224423317171717⨯=⨯ ∴101726<31724。

初中幂运算公式大全

初中幂运算公式大全

初中幂运算公式大全1.幂的定义:对于任意的实数a和自然数n,a的n次方(记作a^n)定义为n个a相乘,其中n是指数,a是底数。

例子:2^3=2×2×2=82.幂的性质:(a)任何数的0次方都等于1:a^0=1,其中a≠0。

(b)任何数的1次方都等于该数本身:a^1=a。

(c)相同底数下的幂相乘,指数相加:a^m×a^n=a^(m+n)。

(d)相同底数下的幂相除,指数相减:a^m÷a^n=a^(m-n),其中a≠0。

(e)幂的指数相乘,底数不变:(a^m)^n=a^(m×n)。

(f)任何数的负整数次方等于其倒数的相应正整数次方:a^(-m)=1÷a^m。

3.特殊指数的幂:(a)任何数的2次方称为平方:a^2=a×a。

(b)任何数的3次方称为立方:a^3=a×a×a。

(c)任何数的4次方称为四次方:a^4=a×a×a×a。

4.科学计数法与幂运算的关系:科学计数法是一种表示较大或较小数值的方法,形如a×10^n,其中a是一位数(1≤a<10),n是整数。

科学计数法与幂运算的关系为:a×10^n=a^1×10^n=(a^1)×(10^n)=(a×10)^n。

5.指数函数与对数函数:指数函数和对数函数是幂运算的逆运算。

(a)指数函数:y=a^x,其中a是底数,x是指数,y是幂的值。

(b) 对数函数:y = log_a(x),其中a是底数,x是幂的值,y是指数。

这些是初中幂运算的基本公式。

通过掌握这些公式,可以更好地理解和应用幂运算,解决各种与幂运算相关的数学问题。

(完整版)幂的知识点

(完整版)幂的知识点

幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()pp p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()pp p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=. 【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【答案与解析】解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n ma a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nmn.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n na n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=. 【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)mn m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mmab==,则()()()36322mm m m ab a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m ma a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >) 要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn aa-=(a ≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy-=(0xy ≠),()()551a b a b -+=+(0a b +≠).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷- 【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m-===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数: (1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067 【答案与解析】 解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯; (3)-0.000135=41.3510--⨯; (4)0.00067=46.710-⨯. 【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15c D.8c2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x += B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x xx +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ; 【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=. 4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510. 5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n+==⨯=g . 8. 【答案】6;【解析】3119,3119,6x aa x x +=+==. 9. 【答案】25;【解析】()2632525n n aa===.10.【答案】5;1; 【解析】338,38,5mma a aa m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-; 12.【答案】200; 【解析】()()32322222()8()81000800200n nn n a a aa--=-=-=.三.解答题 13.【解析】 解:(1)×;(2)×;(3)×;(4)× 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4。

初一幂的运算知识点总结

初一幂的运算知识点总结

初一幂的运算知识点总结幂是指一个数的n次方,其中n是一个正整数,表示把这个数连乘n次。

例如,a的n次方可以写作an,其中a是底数,n是指数。

在数学中,幂是一个非常重要的概念,广泛应用在代数、几何、数论等诸多领域。

幂的运算规则1.相同底数的幂相乘时,底数不变,指数相加。

即,am * an = am+n。

例如,2的3次方乘以2的4次方等于2的(3+4)次方,即23 * 24 = 27。

2.相同底数的幂相除时,底数不变,指数相减。

即,am / an = am-n。

例如,2的5次方除以2的3次方等于2的(5-3)次方,即25 / 23 = 22。

3.幂的乘方运算,底数不变,指数相乘。

即,(am)n = amn。

例如,(2的3次方)的4次方等于2的(3*4)次方,即(23)4 = 212。

4.如果一个幂的指数为0,则该幂等于1。

即,a0 = 1。

这是因为任何非零数的0次方都等于1。

5.如果一个幂的指数为负数,则可以取倒数,即a-n = 1 / an。

例如,2的-3次方等于1 / 23,即2-3 = 1 / 8。

6.幂的连乘:当多个幂连乘时,幂的乘积等于各个底数的幂的连乘。

即,a1 * a2 * ... * an = a1 * a2 * ... * an。

例如,2的3次方乘以2的4次方再乘以2的5次方等于2的(3+4+5)次方,即23 * 24 * 25 = 212。

幂的实际应用1.幂在几何中的应用:在几何中,幂常常用于计算面积和体积。

例如,计算正方形的面积可以用边长的2次方,计算立方体的体积可以用边长的3次方。

2.幂在物理学中的应用:在物理学中,幂常常用于计算功、能等物理量。

例如,功等于力乘以位移,因此可以用力的1次方和位移的1次方相乘。

3.幂在金融学中的应用:在金融学中,幂常常用于计算利息和复利。

例如,计算复利时,可以用本金乘以利率的n次方来计算未来的资金。

4.幂在计算机科学中的应用:在计算机科学中,幂常常用于计算算法的时间复杂度和空间复杂度。

(完整版)幂的运算方法总结

(完整版)幂的运算方法总结

•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1、已知a7a m=a3a10,求m的值。

思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了。

问题2、已知x n=2,y n=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。

因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。

方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。

方法原则:逆用公式倒一倒。

当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。

思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。

由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。

简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同学个性化教学设计年 级: 七年级 教 师: 王 科 目: 数学 班 主 任: 日 期: 时 段: 课题 幂的运算教学目标 1.熟记幂的乘法的运算性质,了解法则的推导过程. 2.能熟练地进行幂的乘法运算.3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 4.会逆用公式 重难点透视幂的乘法的运算性质,幂的乘法计算;逆用公式 考点幂的乘法运算;逆用公式知识点剖析序号 知识点预估时间 掌握情况1 同底数幂的乘法 302 幂的乘方 303 积的乘方 30 4综合练习30教学内容一:同底数幂的乘法回顾:na 表示 ,这种运算叫做 , 这种运算的结果叫 ,其中a 叫做 ,n 是 。

问题:一种电子计算机每秒可进行1210次运算,它工作310秒可进行多少次运算?学一学:=⨯4222=•42a a=•m a a 2议一议:通过上面的观察,你发现上述式子的指数和底数是怎样变化的? 【归纳总结】底数不变,指数相加知识点一、 乘方的概念填一填:nm n m a a a a a a a a a a a a +=⋅⋅⋅⋅=⋅⋅⋅⋅•⋅⋅⋅⋅=•)()((m 、n 都是正整数)n m n m a a a +=•( m 、n 都是正整数)同底数幂相乘,底数不变,指数相加【课堂展示】互动探究一:当三个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?s n m s n a a a a ++=⋅⋅m互动探究二:计算互动探究三:计算【当堂检测】: 1.计算55)3(a a •- )2.已知,43 ,52==n m则1332++⋅n m 的值3. 计算机硬盘的容量的最小单位为字节,1个数字占1个字节,1个英文字母占1个字节,1个汉字占2个字节,1个标点符号占1个个字节,计算机硬盘容量的常用单位有K 、M 、G 其中1K=1024个字节,1M =1024K ,1G =1024M 1M 读作“1兆”,1G 读作“1吉”.容易算出 ,102=1024知识点二、 同底数幂的乘法法则 ()5311010⨯()342x x ⨯()()()31a a --()12n n y y +⋅()2341333⨯⨯()242y y y ⋅⋅)1()4(11>-+m x x m m(1)用底数为2的幂表示1M 有多少个字节?1G 有多少个字节?(2)设1K ≈1000,1M ≈1000K ,1G ≈1000M ,用底数为10的幂表示1M 大约有多少个字节?1G 大约有多少个字节?(3)硬盘容量为10G 的计算机,大约能容纳多少亿字节? 总结:(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和. (2)一般性结论:a m ·a n 表示同底数幂的乘法.根据幂的意义可得:a m ·a n =()a a a g gg g g 14243m 个a·()a a a g gg g g 14243n 个a=a a a g gg g g 14243(m+n)个a=a m+na m ·a n =a m+n (m 、n 都是正整数),即为:同底数幂相乘,底数不变,指数相加 (3)分析:底数不变,指数相加。

底数不相同时,不能用此法则。

二:幂的乘方知识回顾1.32中,底数是___,指数是___,a n 表示___________,那么29=________,(-2)9=________,52×53=________,32×34=________.2.幂的乘方(1)根据幂的意义解答:①(32)3=____________________(幂的意义)= _____________________(同底数幂相乘的法则) = 32×3;②(a m )2=________= ________(根据a n ·a m =a n +m );③(a m )n = (幂的意义)个 = ______________(同底数幂相乘的法则) = ________(乘法的意义).(2)总结法则:(a m )n =________(m ,n 都是正整数).幂的乘方,底数________,指数________.(1)(m 2)m =________; (2)(a 2)3=________.探究点一幂的乘方例1计算下列各题:(1)(-a2)3;(2)(-a3)2;(3)(-a3)4·a12;(4)(-a3)2+a6.规律总结:运用幂的乘方计算时,找准底数和指数很重要,然后底数不变,指数相乘.●跟踪训练1.(宿迁中考)计算(-a3)2的结果是()A.-a5B.a5C.a6D.-a62.下列运算中正确的是()A.(x4)4=x8B.x·(x2)3=x7C.(x·x2)3=x6D.(x10)10=x203.(102)3=________,-(b2)5=________,[(-n)2]3=________,(x3)4·x2=________.4.计算:(1)(102)3;(2)(a n-2)3;(3)(43)3;(4)(-x3)5;(5)[(-x)2]3;(6)[(x-y)3]4.究点二幂的乘方的逆用例2已知a x=2,a y=3(x,y为正整数),求a3x+2y的值.规律总结:考查幂的乘方公式的逆用的题目有很多种形式,关键是将指数进行合理的拆分,再结合同底数幂的乘法公式进行计算或化简.●跟踪训练5.x12=()6=()4=()3=()2.6.填空:(1)108=()2;(2)b27=(b3)();(3)(y m)3=()m;(4)p2n+2=()2.7.若x m·x2m=2,求x9m的值.1.下列运算正确的是( ) A .a 2·a 3=a 4 B. (-a 4)2=a 4 C .a 2+a 3=a 5 D .(a 2)3=a 6 2.下列各式错误的是( )A .(a 3)m =a 3+mB .[(a +b )2n ]m =(a +b )2mnC .(a m )3=a 3mD .(a +b )m (a +b )n =(a +b )m +n3.a 48=( )6=( )3=( )2.*4.若x n =3,则x 3n =________. 5.(1)计算:①(106)2; ②(a m )4(m 为正整数); ③-(y 3)2; ④ (-x 3)3.(2)计算: ①x 2·x 4+(x 3)2; ② (a 3)3·(a 4)3. **6.若2a =3,4b =6,8c =12,试确定a ,b ,c 之间的数量关系式.探究:可以发现3×12=36=62,所以2a ·8c =(4b )2,这是一个有关幂相等的式子,所以尝试化为同底数幂.因为8=23,4=22,所以2a ·8c =2a ·(23)c =2a ·23c =2a +3c ,(4b )2=42b =(22)2b =24b , 所以2a +3c =________,于是________=________, 结果:___________.总结:1、幂的乘方的底数是指幂的底数,而不是乘方的底数。

2、幂的乘方中是“指数相乘”,而同底数幂相乘中是“指数相加”。

3、公式逆用:a mn =(a m )n = (a n )m三:积的乘方 知识回顾⑴=34)(x =•5a a =••3297)(x x x ⑵同底数幂的乘法以及幂的乘方法则二.探究新知填空,看看运算过程用到哪些运算律?运算结果有什么规律? ⑴=•⨯=•=))(22()2()2()2(333323a a a a a ⑵=2)(ab = =⑶=332)(b a = =⒊对于任意底数b a ,与任意正整数n ,n ab )(= = =一般地, =n ab )( (n 为正整数)文字语言:积的乘方,等于 .推广得到:=n abc )(三、课堂检测⒈计算⑴3)2(a ⑵3)(b - ⑶22)(xy ⑷43)2(x -⑸232)2(c ab - ⑹3372323)5()()3(a a a a a -•-+•-⑺322232)()()(8)2(y x x y x -•-•--⑻)()()2()3()(454272332x x x x x x x x ---•+•-•⒉计算下列各题(公式逆用) 即n a nb =nab )(⑴66)21(2⨯ ⑵20082008)20091()2009(⨯(3)23×53 ; (4) 28×58⑸20052004)125.0()8(--总结:1、积的乘方法则:积的乘方等于每一个因式乘方的积。

即()n n n ab a b =g (n 是正整数)2、三个或三个以上的因式的积的乘方也具有这一性质。

如()n n n n abc a b c =g g (n 是正整数)3、积的乘方法则也可以逆用。

即()n n n a b ab =g ,()n n n n a b c abc =g g (n 为正整数)课堂总结 课后作业课堂反馈: ○ 非常满意 ○ 满意 ○ 一般 ○ 差 学生签字:校长签字: ___________ 日期。

相关文档
最新文档