北师大版七年级数学下1.2幂的乘方与积的乘方(一)课件

合集下载

北师大版数学七年级下册幂的乘方与积的乘方——幂的乘方课件(第一课时20张)

北师大版数学七年级下册幂的乘方与积的乘方——幂的乘方课件(第一课时20张)

拓展与延伸
已知16m=4×22n-2,27n=9×3m+3 ,求 m,n 的值.
解:因为16m=4×22n-2,所以24m =22×22n-2 . 所以24m=22n,即4m=2n,2m=n. ① 因为 27n=9×3m+3 ,所以(33)n=32×3m+3 . 所以33n=3m+5,即3n=m+5. ② 由①②得,m=1,n=2.
解:a4n-a6n = (a2n)2- (a2n)3 = 32-33 = -18 .
把指数是积的情势的幂写成幂的乘方,amn=(am)n (m,n都是正整数),然后整体代入,求出式子的值.
课堂小结
幂 的 乘 方
性质:幂的乘方,底数不变, 指数相乘.
(am)n=amn (m,n为正整数)
当堂小练
1.计算(x3)3的结果是( D )
新课导入
视察计算结果,你能发现什么规律? (1) (x2)2 = x2∙x2 = x2+2= x4 ;
(2) (x2)3 = x2∙x2∙x2 = x2+2+2= x6 .
结 论 (1) (x2)2 = x2∙2= x4 ; (2) (x2)3 = x2∙3= x6 .
新课导入
视察计算结果,你能发现什么规律?(m,n为正整数)
A. x5
B. x6
C. x8
D. x9
2. 下列运算正确的是( B )
A. a2·a3=a6 a5
B. (a2)3=a6
C. a5·a5=a25 a10
D. (3x)3=3x3 27x3
当堂小练
3. (1)若2x+y=3,则4x·2y= 8 . (2)已知3m·9m·27m·81m=330,求m的值. 解:3m·32m·33m·34m=330 310m=330 m=3

2019年春七年级数学下册第一章整式的乘除2幂的乘方与积的乘方同步课件(新版)北师大版

2019年春七年级数学下册第一章整式的乘除2幂的乘方与积的乘方同步课件(新版)北师大版
例1 计算: (1)(102)3;(2)-(a2)4;(3)(x3)5· x3.
分析 进行计算时,一定要注意底数不变,指数相乘. 解析 (1)(102)3=106.(2)-(a2)4=-a8.(3)(x3)5· x3=x15· x3=x18. 知识点二 积的乘方 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 字母表示:(ab)n=an· bn(n为正整数). 注意:(1)三个或三个以上的因式的积的乘方,也具备这一运算法则,如 (abc)n=an· bn· cn(n是正整数).
3.计算: (1)(2×107)3;(2)(-amb6c)2;(3)(-xm+2y2n-1)3.
解析 (1)原式=8×1021.
(2)原式=a2mb12c2. (3)原式=-x3m+6y6n-3.
一、选择题
1.(2018安徽泗县期中,1,★☆☆)下列运算正确的是 (
A.(x4)4=x8 C.(-x1 000)2=x2 000 B.a4-a3=a D.x· x2· x3=x5
1.下列计算正确的是 ( A.x3· x2=2x6 C.(-x2)3=-x6 B.x4· x2=x8 D.(x3)2=x5
)
答案 C A选项的计算结果应为x5,B选项的计算结果应为x6,D选项的
计算结果应为x6.
2.若x3=-8a6b9,则x=
答案 -2a2b3
.
解析 根据积的乘方的逆运算得-8a6b9=(-2a2b3)3,所以x3=(-2a2b3)3,所以x= -2a2b3,故填-2a2b3.
)
答案 D A.-(a-b)=-a+b;B.a2+a2=2a2;C.a2· a3=a5.故选D. 2.(2017福建中考,4,★☆☆)化简(2x)2的结果是 ( A.x4 B.2x2 C.4x2 D.4x )

北师大版七年级数学下册课件:1.2 幂的乘方与积的乘方(共25张PPT)

北师大版七年级数学下册课件:1.2 幂的乘方与积的乘方(共25张PPT)

(1) (ab4)4 = ab8 ;
(2) (-3pq)2 = –6p2q2
解:(1)错误,结果应为a4b16; (2)错误,结果应为9p2q2
2. 计算:
(1) (- 3n)3 ; (2) (5xy)3 ; (3) –a3 +(–4a)2 a
解 (1)(-3n)3=(-3)3n3=-27n3; (2)(5xy)3=53x3y3=125x3y3; (3)–a3 +(–4a)2 a=–a3+16a2a=–a3+16a3=15a3
运用积的乘方法则时要注意:
公式中的a、b代表任何代数式;每一个因式
都要“乘方”;注意结果的符号、幂指数及 其逆向运用(混合运算要注意运算顺序)
n个a m
=am+m+…+m
n个m
同底数幂的乘法法则
=amn
乘法的定义
幂的乘方的计算公式:
(am)n=amn(m,n都是正整数)
幂的乘方,底数_不__变___,指数__相__乘____.
例1 计算:
(1) (102)3; (2) (b5) 5 ; (3) (an) 3
(4) -(x2)m;(5) (y2)3 • y ; (6)2 (a2)6 - ( a3) 4
3
3
那么,(6×103)3=?这种运算有什么特征?
填空,看看运算过程用到哪些运算律,从运算结果 看能发现什么规律? (1)(ab)2=(ab)·(ab)=(a·a)·(b·b) =a(2)b(2 ). (2)(ab)3=(__a_b_)__·(__a_b_)__·_(__ab)
=(_a_a_a_)__·(_b_b_b_)_ =a( 3 )b( 3 ) .
解:(1) (102)3= 102×3 = 106; (2) (b5)5 = b5×5 = b25 ; (3) (an) 3 = an×3 = a3n ; (4) -(x2)m = -x2×m = -x2m ; (5) (y2)3 • y = y2×3 • y = y7 ;

北师大版数学七年级下册教案:1.2幂的乘方与积的乘方

北师大版数学七年级下册教案:1.2幂的乘方与积的乘方
三、教学难点与重点
1.教学重点
-本节课的核心内容是幂的乘方与积的乘方的运算法则。具体包括:
a.掌握幂的乘方法则,即a的m次幂的n次幂等于a的m×n次幂(a^{m})^{n}=a^{mn};
b.掌握积的乘方法则,即两个数的乘积的幂等于这两个数的幂的乘积,即(ab)^{n}=a^{n}b^{n}(n为正整数)。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂的乘方与积的乘方的基本概念。幂的乘方是指一个数的幂再次取幂,如(a^{m})^{n};积的乘方是指两个或多个数的乘积的幂,如(ab)^{n}。它们在整式的乘除运算中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算(2x^{2}y)^{3},通过积的乘方运算法则,我们可以将其简化为8x^{6}y^{3}。这个案例展示了积的乘方在实际运算中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“幂的乘方与积的乘方在实际运算中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调幂的乘方和积的乘方这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如区分(ab)^{n}和a^{n}b^{n}的不同。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与幂的乘方与积的乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际计算,演示幂的乘方与积的乘方的基本原理。

北师大版数学七年级下册第1课时幂的乘方课件(共14张)

北师大版数学七年级下册第1课时幂的乘方课件(共14张)

解:(1)原式 = 103×3 = 109.
(2)原式 = x12·x2 = x14.
(3)原式 = –x6.
(4)原式 = x5 – x5 = 0.
3.已知 am = 2,an = 3.求: (1) a2m,a3n 的值; (2) am+n 的值; (3) a2m+3n 的值.
解:(1) a2m = (am)2 = 22 = 4, a3n = (an)3 = 33 = 27.
当堂小结 法则
幂的乘方 注意
(am)n = amn (m,n 都是正整数)
幂的乘方,底数不变,指数相乘
幂的乘方与同底数幂的乘法的 区分:(am)n = amn,am﹒an = am+n
幂的乘方法则的逆用: amn = (am)n = (an)m
课堂练习
1. 判断下面计算是否正确,正确的说出理由,不正确 的请改正.
(2) am+n = am . an = 2×3 = 6. (3) a2m+3n = a2m. a3n = (am)2 . (an)3 = 4×27 = 108.
拓展提升 4. 已知 a = 355,b = 444,c = 533,试比较 a,b,c 的大小. 解:a = 355 = (35)11 = 24311,
探究新知
1 幂的乘方
合பைடு நூலகம்探究
1. 计算下列各式,并说明理由.
(1) ( 62 )4; (2) ( a2 )3;
(3) ( am )2; (4) ( am )n.
合作探究 (1) ( 62 )4=62×62×62×62=62+2+2+2=68=62×4; (2) ( a2 )3=a2 ·a2 ·a2=a2+2+2=a6=a2×3; (3) ( am )2=am ·am=am+m=a2m;

2019年春七年级数学下册第一章整式的乘除2幂的乘方与积的乘方同步课件新版北师大版

2019年春七年级数学下册第一章整式的乘除2幂的乘方与积的乘方同步课件新版北师大版
解析 (1)-(a5)2=-a5×2=-a10. (2)(x3)2·(x4)3=x3×2·x4×3=x6·x12=x6+12=x18.
知识点二 积的乘方 6.(2017山东东平期中)计算(-x)3·x2的结果是 ( ) A.x5 B.-x5 C.x6 D.-x6 答案 B (-x)3·x2=-x3·x2=-x3+2=-x5.
一、选择题 1.(2018山东青岛中考,4,★☆☆)计算(a2)3-5a3·a3的结果是 ( ) A.a5-5a6 B.a6-5a9 C.-4a6 D.4a6
答案 C 原式=a2×3-5a3+3=a6-5a6=-4a6.
2.(2017湖南怀化中考,2,★☆☆)下列运算正确的是 ( )
A.3m-2m=1
1.若3×9m×27m=311,则m的值为 ( ) A.2 B.3 C.4 D.5 答案 A 3×9m×27m=3×32m×33m=31+2m+3m=311,所以1+2m+3m=11,解得m=2.
2.已知23×83=2n,则n的值是 ( ) A.18 B.7 C.8 D.12 答案 D 23×83=23×(23)3=23×29=212=2n,所以n=12.
解析 (1)因为4×8x×16x=22×(23)x×(24)x=22×23x×24x=22+3x+4x=223,所以2+3x+4x =23,解得x=3.
(2)因为(9x)3=(32x)3=36x=39,所以6x=9,解得x= 3 .
2
点拨 解此类题一般先将方程两边适当变形,使其变形为两个幂相等的 形式.由左右两边幂的底数相同,得出指数相等,从而列出方程,进而求解.
3.计算: (1)(2×107)3;(2)(-amb6c)2;(3)(-xm+2y2n-1)3.

幂的乘方与积的乘方课件数学北师大版七年级下册

幂的乘方与积的乘方课件数学北师大版七年级下册
(3)(-a2)3=-a2×3=-a6;
(4)x2·x4+(x2)3=x6+x6=2x6.
当出现混合运算时,先算乘
方,再算乘法,最后算加法.
感悟新知
知1-练
1-1. 下列式子正确的是( D )
A. a2·a2=(2a)2
B. (a3)2=a9
C. a12=(a5)7
D. (a8)2=(a2)8
感悟新知
·(a6)2=
12
a ;

(4)(-a2b3)3=(-1)3·(a2)3·(b3)3=-a6b9.
系数乘方时,要带前面的符号,特别是系
数为-1 时,不要漏掉.
感悟新知
知2-练
3-1. 计算:
(1)(2ab)3;
(2)

- 4;

解:原式=8a3b3;


原式= x4;
(3)(xmyn)2;
别乘方,不要漏掉任何一个.
感悟新知
知2-讲
2. 法则的拓展运用
(1)积的乘方法则的推广:(abc)n=anbncn(n为正
整数);
(2)积的乘方法则也可以逆用,逆用时anbn=
(ab)n(n为正整数).
感悟新知
知2-练
例 3 计算:
(1)(x·y3)2;
(3)
(2)(-3×102)3;
2
原式=x2my2n
(4)(-3×102)4.
原式=8.1×109
感悟新知
知2-练
例4 计算:
(1)48×0.258
; (2)
2 024

×

2 024

.

解题秘方:紧扣“两底数互为倒数(或负倒数),

七年级数学北师大版下册初一数学--第一单元 1.2 幂的乘方与积的乘方课件

七年级数学北师大版下册初一数学--第一单元 1.2 幂的乘方与积的乘方课件
(3)(-3a3 )2=-9a6;( ) (4)(-x3 y)3=-x6 y3 .( )
易错点:对积的乘方的运算法则理解不透而导致出错
解: (1)× 改正:原式=a2b4. (2)× 改正:原式=27c3d3. (3)× 改正:原式=9a6. (4)× 改正:原式=-x9y3.
2 易错小结
知1-练
1 计算: (1)(-3n)3; (2) (5xy)3; (3) -a3+(-4a2) a.
解: (1)(-3n)3=(-3)3·n3=-27n3. (2)(5xy)3=53·x3·y3=125x3y3. (3)-a3+(-4a)2a=-a3+(-4)2·a2·a =-a3+16a3=15a3.
=(__a_a_a)__·_(_b_b_b_) =a( 3 )b( 3 ) .
? 思考:积的乘方(ab)n =?
n个ab (ab) n= (ab)·(ab)·····(ab)
n个a
n个b
= (a·a·····a) ·(b·b·····b)
=anbn 即:(ab)n=anbn (n为正整数)
知1-导

5 7
6
44
;
(2)0.125 2015×(-8 2016).
知2-讲
知2-讲
导引:本例如果按照常规方法进行运算,(1)题比较 麻烦,(2)题无法算出结果,因此需采用非常 规方法进行计算.(1)观察该式的特点可知, 需利用乘法的交换律和结合律,并逆用积的乘 方法则计算;(2)82016=8 2015×8,故该式应逆 用同底数幂的乘法和积的乘方法则计算.
解:(1)

1
2 5
6

0.254


5 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
个m
(a ) a
m n
mn
=am+m+ … +m =amn
幂的乘方法则 (am)n=amn (m,n都是正整数) 幂的乘方,底数 不变 ,指数 相乘 .
例1 计算:
(1)(102)3 ; (3)(an)3;
(5) (y2)3 · y;
(2) (b5)5 ; (4) -(x2)m ; (6) 2(a2)6 - (a3)4 .
⑴ a12 =(a3)( ) =(a2)(
(2) y3n =3, y9n = .
)
=a3 a( )=( )3 =( )4
(3) (a2)m+1 =
(4) 32﹒9m =3(
)
.
1.
a a a
m n
mn
m, n都是正整数
同底数幂相乘,底数不变,指数相加. 2. (am)n=amn (m,n都是正整数) 幂的乘方,底数不变,指数相乘.
103倍
V球=
4 3 — πr 3

(102)3倍
其中V是பைடு நூலகம்积、r 是球的半径
你知道(102)3等于多少吗?
(102)3
=102×102×102 =102+2+2 (根据 幂的意义 ).
(根据 同底数幂的乘法 ).
=106 =102×3
做一做:计算下列各式,并说明理由 .
(1) (62)4 ; (2) (a2)3 ; (3) (am)2 ; (4) (am)n .
完成课本习题1.2中1、2
拓展作业:
你能尝试运用今天所学的知识解决下面 的问题吗
(1)填空: [(a-b)3 ]2=(b-a )( (2)若4﹒8m﹒16m =29 , 求m的值
)
随堂练习: 1. 判断下面计算是否正确?如果有错误 请改正: (1) (x3)3 = x6 ; (2)a6 · a4 = a24 .
2. 计算: (1) (103)3 ; (2) -(a2)5 ; (3) (x3)4 · x2 ; (4) [(-x)2 ]3 ; (5) (-a)2(a2)2; (6) x· x4 – x2 · x3 .
解:(1) (62)4 = 62· 62· 62· 62 =62+2+2+2 =68 =62×4 ;
(2) (a2)3 = a2· a2· a2 =a2+2+2 =a6 =a2×3 ; (3) (am)2 =am· am =am+m =a2m ;
n
个 am
…· (4) (am)n =am· am· am
正方体的体积之比= 边长比的 立方 乙正方体的棱长是 2 cm, 则乙正方体的体积 V乙= 8 cm3 甲正方体的棱长是乙正方体的 5 倍,则甲正方 体的体积 V甲= 1000 cm3 可以看出,V甲 是 V乙 的 125 倍
即 53 倍
地球、木星、太阳可以近似地看做是 球体 .木星、太阳的半径分别约是地球的 10倍和102倍,它们的体积分别约是地球的 多少倍?
2 幂的乘方与积的乘方(第1课时)
n个 a 幂的意义:
…· a· a· a = an
an= am+n 同底数幂乘法的运算性质: am·
am · an
…· …· =(a· a· a) ·(a· a· a)

m个a
(m+n)个a
n个 a
…· = a· a· a = am+n
同底数幂相乘,底数不变,指数相加.
相关文档
最新文档