最新专题5:概率与统计

合集下载

专题五、概率与统计

专题五、概率与统计

4.平均数: 一般地,对于n个数x1,x2,……,xn,我们把 (x1+x2+……+xn)÷n叫做这个数的平均数,简称平均数. 5.中位数: 一般地,n个数据按大小顺序排列,处于最中间位置的一 个数据(或最中间两个数据的平均数)叫做这组数据的中 位数(median). 6.众数: 一组数据中出现次数最多的那个数据叫做这组数据的 众数(mode). 平均数,中位数和众数都是数据的代表,它们刻画了一 组数据的“平均水平”.
4. “配紫色”游戏,投针试验,模拟试验,体现了 概率模型的思想,在大量的偶然之中存在着必然的 规律. 5.模拟试验的方案 6.概率和统计能给我们带来什么? 在日常生活中,通过对统计数据的分析,我们可以 了解某一情况,作出某些决定.
7.概率的计算方法
计随 算机 事 件 概 率 的
简单的随 机事件 具有等可 能性 不具有等 可能性
目 录 一、知识复习例题讲解 二、广安中考怎么考
一、数理统计的基本思想
用样本估计总体. 用样本的平均数、中位数和众数去估 计相应总体的平均水平特性. 用样本的频数、频率、频数分布表、 频数分布直方图和频数分布折线图去 估计相应总体数据的分布情况. 用样本的极差、方差或标准差去估计 相应总体数据的波动情况.
概率定义 树状图 列表 试验法 试验估算 小明的方法: 多次逐个抽查 理论计算
复杂的随 机事件 摸拟试验
有放回摸球 无放回摸球
小亮的方法: 多次抽样调查
考点一 确定事件与不确定事件的有关概念及分类 1.必然事件:一定会发生的事件叫做必然事件. 2.不可能事件:一定不会发生的事件叫做不可能事件. 3.确定事件:必然事件和不可能事件统称为确定事件. 4.不确定事件:可能发生,也可能不发生的事件叫做不确定事件,也叫做随机事件或偶 然事件.

2023版新教材高中数学第五章统计与概率5-1统计-数据的直观表示课时作业新人教B版必修第二册

2023版新教材高中数学第五章统计与概率5-1统计-数据的直观表示课时作业新人教B版必修第二册

5.1.3 数据的直观表示必备知识基础练进阶训练第一层1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( )2.如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是( )A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大3.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )A.22 B.24C.25 D.274.甲、乙两名同学12次考试中数学成绩的茎叶图如图所示,则下列说法正确的是( )A.甲同学比乙同学发挥稳定,且平均成绩也比乙同学高B.甲同学比乙同学发挥稳定,但平均成绩比乙同学低C.乙同学比甲同学发挥稳定,且平均成绩也比甲同学高D.乙同学比甲同学发挥稳定,但平均成绩比甲同学低5.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组频数频率[80,90)①②[90,100)0.050[100,110)0.200[110,120)360.300[120,130)0.275[130,140)12③[140,150]0.050合计④根据上面的频率分布表,可知①处的数值为________,②处的数值为________.6.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x的值;(2)已知样本中身高小于100厘米的人数是36,求出样本总量N的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.关键能力综合练进阶训练第二层7.(多选)某班数学测试成绩及班级平均分关系的图如下所示.其中说法正确的是( )A.王伟同学的数学学习成绩高于班级平均水平,且较稳定B.张诚同学的数学学习成绩波动最小C.赵磊同学的数学学习成绩低于班级平均水平D.在6次测验中,每一次成绩都是王伟第1,张诚第2,赵磊第38.如图所示的是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图,根据统计图判断下面叙述不正确的是( )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的平均价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门9.(多选)某调查机构对某地互联网行业进行了调查统计,得到整个互联网行业从业者的年龄分布扇形图、90后从事互联网行业的岗位分布条形图如图,则下列结论中一定正确的是( )A.互联网行业从业者中90后占一半以上B.互联网行业从事技术岗位的人数超过总人数的20%C.互联网行业从事运营岗位的人数90后比80前多D.互联网行业从事运营岗位的人数90后比80后多10.已知甲、乙两组数可分别用图(1)、(2)表示,估计这两组数的平均数的相对大小是x甲______x乙,方差的相对大小是s________s(填“>”或“<”或“=”).11.“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有________人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是________;(3)在条形统计图中,“非常了解”所对应的学生有________人;(4)若全校有1 200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有________人.12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数为________,分数在[90,100]内的人数为_ _______.13.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图:分组频数频率一组0≤t<500二组5≤t<10100.10三组10≤t<1510②四组15≤t<20①0.50五组20≤t≤25300.30合计100 1.00解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?核心素养升级练进阶训练第三层14.(多选)给出如图所示的三幅图:则下列说法中,正确的有( )A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢15.随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A 和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图所示.(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数.(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,根据平均数你会选择哪款?说明理由.5.1.3 数据的直观表示1.答案:D解析:用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是柱形统计图.注意B选项中的图不能称为统计图.2.答案:B解析:由条形统计图可知,甲户居民全年总支出为1 200+2 000+1 200+1 600=6 000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.3.答案:B解析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为20,22,22,24,25,26,27,∴中位数是按从小到大排列后第4个数为24.4.答案:C解析:由茎叶图的性质可知乙同学比甲同学发挥稳定,且平均成绩比甲同学高.5.答案:3 0.025解析:由位于[110,120)的频数为36,频率为=0.300,得样本容量n=120,所以[130,140)的频率为=0.100,故②处应为1-0.050-0.200-0.300-0.275-0.100-0.050=0.025,①处应为0.025×120=3.6.解析:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,且频率之和等于1,∴0.050×2+0.100×2+0.125×2+0.150×2+x×2=1,∴x=0.075.(2)样本中身高小于100厘米的频率为(0.050+0.100)×2=0.3.∴样本容量N==120.(3)样本中身高大于或等于98厘米并且小于104厘米的频率为(0.100+0.150+0.125)×2=0.75.∴学生数为120×0.75=90(人).7.答案:AC解析:从图中看出王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张诚同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高,第6次考试张诚没有赵磊的成绩好.8.答案:D解析:由图可知,A、B、C均正确,对于D,涨幅从高到低居于前三位的是天津、西安和南京,所以D错误.9.答案:ABC解析:A中,根据扇形图可知互联网行业从业者中90后占了56%,故正确;B中,互联网行业中从事技术岗位的90后人数占总人数的0.396×0.56≈0.222,故正确;C 中,互联网行业中从事运营岗位的90后人数占总人数的0.17×0.56≈0.095,而80前从事互联网行业的人数才占总人数的0.03,故正确;D中,因为互联网行业中从事运营岗位的80后人数占总人数的比例不能确定,所以无法判断.10.答案:= <解析:x甲=(10×2+20×6+30×6+40×2)=25,x乙=(10×3+20×5+30×5+40×3)=25,s=[(10-25)2×2+(20-25)2×6+(30-25)2×6+(40-25)2×2]=75,s=[(10-25)2×3+(20-25)2×5+(30-25)2×5+(40-25)2×3]=100,故x甲=x乙,s<s.11.答案:(1)400 (2)135° (3)62 (4)790解析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求参与调查的学生及家长总人数是:(16+4)÷5%=400(人).(2)利用360°乘以对应的比例即可求解:基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360°×=135°.(3)利用总人数减去其它的情况的人数即可求解:400-83-77-73-54-31-16-4=62(人).(4)学生人数:62+73+54+16=205(人),“非常了解”和“基本了解”的人数:62+73=135(人).当全校有1 200名学生,“非常了解”和“基本了解”的学生共有:1 200×≈790(人).12.答案:25 2解析:由频率分布直方图知,分数在[90,100]内的频率和[50,60)内的频率相同,所以分数在[90,100]内的人数为2人,总人数为=25人.13.解析:(1)样本容量是100.(2)①50 ②0.10 所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t min,则有≤t<,即15≤t<20.所以旅客购票用时的平均数可能落在第四组.14.答案:AC解析:从折线图能看出世界人口的变化情况,故A正确;从柱形图中可得到:2050年非洲人口大约将达到17亿,故B错误;从扇形图中能够明显地得到结论:2050年亚洲人口比其他各洲人口的总和还要多,故C正确;由题中三幅图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故D错误.15.解析:(1)由已知,使用A款订餐软件的50个商家的“平均送达时间”的众数为55.使用A款订餐软件的50个商家的“平均送达时间”的平均数为15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.11。

高一数学复习专题练习5 概率与统计

高一数学复习专题练习5 概率与统计

高一数学复习专题练习专题5 概率与统计一、选择题1.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150【答案】 C【解析】 由于样本容量即样本的个数,故抽取的样本的个数为40×3=120. 2.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是( ) A.3个都是篮球 B.至少有1个是排球 C.3个都是排球D.至少有1个是篮球【答案】 D【解析】 从6个篮球、2个排球中任选3个球,A ,B 是随机事件,C 是不可能事件,D 是必然事件,故选D.3.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( ) A .1对 B .2对 C .3对D .4对【答案】 B【解析】 E 1与E 3,E 1与E 4均为互斥而不对立的事件.4.袋中装有白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12【答案】 B【解析】 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.学-科网5.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成五组:第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30,0.15,0.10,0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是( ) A.50,0.15 B.50,0.75 C.100,0.15D.100,0.75【答案】 C【解析】 由已知得第二小组的频率是1-0.30-0.15-0.10-0.05=0.40,频数为40,设共有参赛学生x 人,则x ×0.4=40,∴x =100. 成绩优秀的概率为0.15,故选C.6.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会地进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )A.12B.14C.316D.16【答案】 C7.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( ) A.65 B.65C. 2D.2 【答案】 D【解析】 ∵样本的平均数为1, 即15×(a +0+1+2+3)=1,∴a =-1. ∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.8.已知集合A ={-5,-3,-1,0,2,4},在平面直角坐标系中,点(x ,y )的坐标满足x ∈A ,y ∈A ,且x ≠y ,则点(x ,y )不在x 轴上的概率( ) A.13B.12C.56D.14【答案】 C【解析】 因为x ∈A ,y ∈A ,且x ≠y ,所以x 有6种可能,y 有5种可能,所以试验的所有结果有6×5=30(种),且每种结果的出现是等可能的.设事件A 为“点(x ,y )不在x 轴上”,那么y ≠0,有5种可能,x 有5种可能,事件A 包含基本事件个数为5×5=25种.因此所求事件的概率为P (A )=2530=56.9.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110B.715C.815D.1315【答案】 C【解析】 根据频率分布直方图,可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品件数在[10,15)内的2人分别是A ,B ,生产产品件数在[15,20)内的4人分别为C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.2位工人不在同一组的结果有(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),共8种.故选取的2位工人不在同一组的概率为815.二、填空题(本大题共4小题,每小题5分,共20分)10.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.【答案】 3【解析】 由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3.11.一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽5件,记A 为“恰有1件次品”,B 为“至少有2件次品”,C 为“至少有1件次品”,D 为“至多有1件次品”.现给出下列结论:①A +B =C ;②B +D 是必然事件;③A +C =B ;④A +D =C .其中正确的结论为________.(写出序号即可) 【答案】 ①②【解析】 由互斥、对立事件的概念得A +B =C ,故③错;A +D 表示“至多有1件次品”,所以④错. 12.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________. 【答案】715三、解答题13.(12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品. (1)求恰好有一件次品的概率; (2)求都是正品的概率; (3)求抽到次品的概率.解 将6件产品编号,abcd (正品),ef (次品),从6件产品中选2件,其包含的基本事件为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.(1)设恰好有一件次品为事件A ,事件A 包含的基本事件为ae ,af ,be ,bf ,ce ,cf ,de ,df ,共有8种, 则P (A )=815.(2)设都是正品为事件B ,事件B 包含的基本事件数为6,则P (B )=615=25.(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,则P (C )=1-P (B )=1-25=35.14.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;解 a ,b 是一枚骰子掷两次所得到的点数,总的基本事件(a ,b )共有36个. 设事件A 表示“方程有两正根”,则∆≥0,a -2>0,16-b 2>0,即a -2 2+b 2≥16,a >2,-4<b <4,则事件A 包含的基本事件有(6,1),(6,2),(6,3),(5,3),共4个,故方程有两正根的概率为P (A )=436=19.15.(12分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b . (1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.解 先后2次抛掷一枚骰子,将得到的点数分别记为a ,b 包含的基本事件:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个. (1)∵直线ax +by +5=0与圆x 2+y 2=1相切,∴5a 2+b2=1,整理得a 2+b 2=25. 由于a ,b ∈{1,2,3,4,5,6},∴满足条件的情况只有a =3,b =4或a =4,b =3两种情况. ∴直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)∵三角形的一条边长为5,三条线段围成等腰三角形,∴当a =1时,b =5,共1个基本事件; 当a =2时,b =5,共1个基本事件; 当a =3时,b =3,5,共2个基本事件; 当a =4时,b =4,5,共2个基本事件; 当a =5时,b =1,2,3,4,5,6,共6个基本事件; 当a =6时,b =5,6,共2个基本事件;∴满足条件的基本事件共有1+1+2+2+6+2=14(个). ∴三条线段能围成等腰三角形的概率为1436=718.学-科网16.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数5010015015050(1)为了调查大众评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.组别 A B C D E人数5010015015050抽取人数 6(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.解 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 A B C D E50[来人数50100150150源:Z*xx*]抽取人数3699 3(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2,共4种,故所求概率P=418=29.。

新高考数学复习:概率与统计

新高考数学复习:概率与统计

新高考数学复习:概率与统计随着新高考改革的深入,数学科目的考查范围与难度也在逐年增加。

作为高考复习的重要环节,概率与统计部分的知识点成为了考生们的焦点。

本文将探讨如何有效地进行新高考数学复习,特别是概率与统计部分的知识点。

一、明确考试要求在复习概率与统计之前,首先要了解新高考数学对于这一部分的考试要求。

通常,高考数学对于概率与统计的考查包括以下几个方面:随机事件及其概率、随机变量及其分布、数理统计的基本概念与方法等。

因此,在复习过程中,要着重这些方面的知识点。

二、扎实基础知识概率与统计部分的知识点较为抽象,需要考生具备扎实的数学基础。

在复习过程中,要注重对基础知识点的掌握,例如:集合、不等式、函数等。

只有掌握了这些基础知识,才能更好地理解概率与统计的相关概念与公式。

三、强化解题能力解题能力是高考数学考查的重要方面。

在复习概率与统计时,要注重强化解题能力。

具体而言,可以通过以下几个方面来提高解题能力:1、掌握解题方法对于概率与统计的题目,要掌握常用的解题方法,例如:直接法、排除法、枚举法等。

同时,要了解各类题型的解题步骤与方法,从而在解题时能够迅速找到突破口。

2、多做真题做真题是提高解题能力的有效途径。

通过多做真题,可以了解高考数学对于概率与统计的考查重点与难点,进而有针对性地进行复习。

同时,也可以通过对比历年真题,发现自身的知识盲点,及时查漏补缺。

3、反思与总结在解题过程中,要及时反思与总结。

对于做错的题目,要分析错误原因,并总结出正确的解题方法。

同时,也要总结出各类题型的解题技巧与注意事项,以便在今后的解题中能够更加得心应手。

四、拓展知识面高考数学对于考生知识面的考查也越来越广泛。

在复习概率与统计时,要注重拓展自身的知识面。

具体而言,可以通过以下几个方面来拓展知识面:1、阅读相关书籍可以阅读相关的数学书籍,例如:《概率论与数理统计》、《统计学》等。

通过阅读这些书籍,可以深入了解概率与统计的相关知识点,拓展自身的知识面。

文科高考数学重难点05 概率与统计(解析版)

文科高考数学重难点05  概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。

人教版高中数学高三复习《概率与统计专题》

人教版高中数学高三复习《概率与统计专题》
16
2 x 27,s 35.
s表示10株甲树苗高度的方差,是描述树苗高度 离散程度的量. s越小,表示长得越整齐, s越大,表示长得越参差不齐.
17
考点3 线性相关分析
例3 某农科所对冬季昼夜温差大小与某反季节大豆新品 种发芽量之间的关系进行分析研究,他们分别记录了12 月1日至12月5日的每天昼夜温差与实验室每天每100颗种 子中的发芽数,得到如下资料:
作出散点图后,发现散点在一条直线附近,经计算得到 一些数据:
26
10
x 24.5,y 171.5, (xi x)( yi y) 557.5, i 1 10
(xi x )2 82.5.
i 1
刑侦人员在某案发现场发现一对裸脚印,量得每 个脚印长是26.5 cm,请你估计案发嫌疑人的身高
专题 概率与 统计
考点1 三种抽样方法与概率分布直方图
例1 1有一个容量为200的样本,其频率分
布直方图如图所示,根据样本的频率分布直方图估计,
样本数据落在区间10,12内的频数为( )
A.18
B.36
C.54
D.72
2
2 某高校甲、乙、丙、丁四个专业分别有
150、150、400、300名学生,为了解学生的就业倾向,用分 层抽样的方法从该校这四个专业共抽取40名学生进行调 查,应在丙专业抽取的学生人数为 ________.
600
7
解析 :成绩小于60分的频率为0.002 0.006 0.01210
0.2,所以30000.2 600.
8
考点2 茎叶图与特征数
例2某赛季,甲、乙两名篮球运动员都 参加了7场比赛,他们所有比赛得分的情况用如图所示 的茎叶图表示:
1 求甲、乙两名运动员得分的中位数; 2 你认为哪位运动员的成绩更稳定? 3 如果从甲、乙两位运动员的7场得

_新教材高中数学第五章统计与概率

_新教材高中数学第五章统计与概率

D.10张票中有1 张奖票,10人去摸,无论谁先摸,摸到奖票的概率
都是0.1
【答案】
D
(2)我们知道,每次抛掷硬币的结果出现正、反的概率都为0.5,则连
续抛掷质地均匀的硬币两次,是否一定出现“一次正面向上,一次反
面向上”呢?
【解析】 不一定.这是因为统计规律不同于确定的数学规律,对于具体的一
次试验而言,它带有很大的随机性(即偶然性),通过具体试验可以知道除上述结
状元随笔 (1)正确理解频率与概率之间的关系
随机事件的频率,是指事件发生的次数与试验总次数的比值,它具有一
定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种
摆动的幅度越来越小.我们给这个常数取一个名字,叫做这个随机事件的
概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件
发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个
事件的概率.
(2)概率与频率的区别与联系:
频率
概率
频率反映了一个随机事件发 概率是一个确定的值,它反映
区别
生的频繁程度,是随机的 随机事件发生的可能性的大小
频率是概率的估计值,随着试验次数的增加,频率会越来越
联系
接近概率
基 础 自 测
(2)将“60分~69分”记为事件B,则P(B)≈0.140;
(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.
题型3 频率分布直方图的应用[经典例题]
例3 (1)在某次赛车中,50名参赛选手的成
绩(单位:min)全部介于13到18之间(包括13和
1
,是指试验次数相当
1 000

最新九年级数学锁定核心考点针对性冲刺 统计与概率 (5)

最新九年级数学锁定核心考点针对性冲刺 统计与概率 (5)

最新九年级数学锁定核心考点 针对性冲刺概率与统计专题考点1:频率与概率 一、考点讲解:1.频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小. 2.概率的性质:P (必然事件)= 1,P (不可能事件)= 0,0<P (不确定事件)<1. 3.频率、概率的区别与联系:频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率. 二、经典考题剖析:【考题1-1】(成都郸县,3分)某校九年级三班在体育毕业考试中,全班所有学生得分的情况如下表,那么该班共有_______人,随机地抽取l 人,恰好是获得30分的学生的概率是_______,从表中你还能获取的信息是__________________________ ___________ (写出一条即可)解:65;如:随机抽了1人恰好获得24~26分的学生的概率为16【考题1-2】(贵阳,6分)质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1)请采用计算器模拟实验的方法,帮质检员抽取被检产品; (2)如果没有计算器,你能用什么方法抽取被检产品.解:(1)利用计算器模拟产生随机数与这批产品编 号相对应,产生10个号码即可;(3)利用摸球游戏或抽签等.【考题1-3】(鹿泉,2分)如图l -6-l 是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个人球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射人那么该球最后将落人的球袋是()A.1号球袋B.2号球袋C.3号球袋D.4号球袋解:B 点拨:球走的路径如图l-6-l虚线所示.三、针对性训练:1、在对某次实验次数整理过程中,某个事件出现的频率随实验次数变化折线图如图l-6-2,这个图中折线变化的特点是_______,估计该事件发生的概率为__________________.2.(南山,3分) 如图l-6-5的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()3.(南山,3分)掷2枚1元钱的硬币和3枚1角钱的硬币,1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是()4.(汉中,3分)小红、小明、小芳在一起做游戏时需要确定做游戏的先后顺序,他们约定用“剪子、包袱、锤子”的方式确定,问在一个回合中三个人都出包袱的概率是_________________5.(贵阳,3分)口袋中有3只红球和11只黄球,这两种球除颜色外没有任何区别,从口袋中任取一只球,取到黄球的概率是___________.6.(南山,5分)周聪同学有红、黄、蓝三件T恤和黑、白、灰三条长裤,请你帮他搭配一下,看看有几种穿法.考点2:概率的应用与探究一、考点讲解:1.计算简单事件发生的概率:列举法:⎧⎨⎩列表画树状图2.针对实际问题从多角度研究事件发生的概率,从而获给理的猜测 二、经典考题剖析:【考题2-1】(南宁,3分)中央电视台的“幸运5 2”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖.参与这个游戏的观众有3次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ) 1113A . . ..255620B C D 解:C 点拨:由于20个商标中共有5个商标注明奖金,翻2次均获奖金后,只剩下3个注明奖金的商标,又由于翻过的牌不能再翻,所以剩余的商标总数为18个.因此第三次翻牌获奖的概率为16.【考题2-2】(四省区,6分)一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.解:列表如下:答:小亮两次都能摸到白球的概率为19三、针对性训练:1.在100张奖券中,有4张中奖,某人从中任抽1张,则他中奖的概率是( ) A 、125 B 、14 C 、1100 D 、1202.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( ) A .0.8 5 B .0.085 C .0.1 D .8503.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,试利用树状图和列表法,求分别从两只口袋中各取一个球,两个球都是黄球的概率.4.为了估计鱼塘中有多少条鱼,先从塘中捞出100条做上标记,再放回塘中,待有标记的鱼完全混人鱼群后,再捞出200条鱼,其中有标记的有20条,问你能否估计出鱼塘中鱼50010001500200025003000舟山嘉兴宁波湖州绍兴杭州台州亿元5101520舟山嘉兴宁波湖州绍兴杭州台州%图1 (第3题) 图2的数量?若能,鱼塘中有多少条鱼?若不能,请说明理由. 5.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上. ⑴ 随机地抽取一张,求P (奇数)⑵ 随机地抽取一张作为十位上的数字(不放回人再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少? 考点3: 统计初步(一)二、⎡⎢⎢⎢⎣平均数反映集中趋势中 数 中位数一、选择题1.【内江】某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是( )A 、19,20B 、19,19C 、19,20.5D 、20,19 2.【资阳】某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号3.【嘉兴】“长三角”16个城市中浙江省有7个城市。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求甲、乙、丙三名学生在同一个阅览室读书的概率; (2)求甲、乙、丙三名学生中至少有一人在B阅览室读书的 概率.
解:所有可能出现的结 甲 乙 丙
结果
果如右表:
A A A (A,A,A)
(1)甲、乙、丙三名学 A A B (A,A,B)
生在同一个餐厅用餐的概率 A B A (A,B,A)
是1 ;
A B B (A,B,B)
2 4
33
3334×++×44111==13==4333×++45522×2==6=2=833++×663343==×9= 3=3313++772×44==414=2×334++88=355×1==651=5334++×996635==×=2601=8 4×6=24
44 444×++5111==4= 444×++6222==8= 44++×7333==1=2 444++8×44==41=6 44++9455×== 52=044++16604==×62=4
如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀 地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均 匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有 人为甲、乙两人设计了一个游戏,其规则如下:
(1)同时自由转动转盘A、B; (2)转盘停止后,指针各指向一个数字(如果指针恰好指 在分格线上,那么重转一次,直到指针指向某一数字为止), 用所指的两个数字相乘,如果得到的积是偶数,那么甲胜;如 果得到的积是奇数,那么乙胜.
下图是甲、乙两户居民家庭全年各项支出的统计图.
根据统计图,下面对两户教育支出占全年总支出的百分比作
(C) 3 9
(D)3 3
r2
3
1 2 3r 3r 3 3
9
2
2r
r 2r
3r
3r
“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方
每次做“石头”、“剪刀”、“布”三种手势中的一种,规定: “石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”, 同种手势不分胜负须继续比赛.假定甲乙两人每次都是等可能地 做这三种手势,那么一次比赛时两人做同种手势(即不分胜负) 的概解率:是所多有少可?能出下的结果如下:
你认为这样的规则是否公平?请 说明理由;如果不公平,请你设计一 个公平的规则,并说明理由.
新其规则如下:(1)同时自由转动转盘A、B; (2)转盘停止后,指针各指向一个数字(如果指针恰好指在分 格线上,那么重转一次,直到指针指向某一数字为止),用所 指的两个数字相加乘,如果得到的和积是偶数,那么甲胜;如果得 到的和积是奇数,那么乙胜.

石头
开始 剪刀


石头
剪刀 布 石头
剪刀 布 石头 剪刀 布
结果
(石头,石头) (石头,剪刀) (石头,布)
(剪刀,石头) (剪刀,剪刀) (剪刀,布)
(布,石头) (布,剪刀) (布,布)
所有机会均等的结 果有9个, 其中的 3个做同种手势 (即不分胜负),
所以P(同种手势)
31 93
从-2,-1,1,2这四个数中,任取两个不同的数作为 一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象 不经过第四象限的概率是________.
kk bb -2 -1 1 2
-2
(-1,-2) (1,-2) (2,-2)
y
-1 (-2,-1)
(1,-1) (2,-1)
1 (-2, 1) (-1, 1)
(2, 1)
2 (-2, 2) (-1, 2) (1, 2)
k>0,b>0 (+,+)
O
x
P 2 1 12 6
某校有A、B两个阅览室,甲、乙、丙三名学生各自随机选择 其中的一个阅览室读书.
4 (2)甲、乙、丙三餐厅用
B B
A B
B A
(B,A,B) (B,B,A)
8
B
B
B
(B,B,B)
中考概率试题特点分析
一、考查对概率意义的理解以及频率和概率 关系的认识.
二、考查利用列举法计算事件发生的概率.
三、考查运用概率的知识和方法分析、说理, 解决一些简单的实际问题.
1×6=6 2×6=12
,P(偶)= 1 ; P(奇) = P(偶) , 223 2223×++×33111==12==3222×++34422×2==4=2=622++×55333==36=×322=2++966×44==438=×224++77=255×1==251=0223++×886625==×=1651=2 3×6=18
专题5:概率与统计
概率与统计
事件
数据
计算 概率
设计概 率模型
列举法
包括:列 表、画树 状图
大量重复实 验时频率可作为 事件发生概率的 估计值
收集整理 描述 分析 决策
小明随机地在如图所示的正三角形及其内部区域投 针,则针扎到其内切圆(阴影)区域的概率为( C ).
(A)1 2
(B) 3 6
中考统计试题特点分析
一、在现实问题中考查收集、整理和描述数 据的知识和方法.
二、在具体问题中能选择合适的统计量表示 数据的集中程度、离散程度.
三、考查样本估计总体的统计思想,考查运 用统计知识作出合理决策.
刘强同学为了调查全市初中生人数,他对自己所在城区 人口和城区初中生人数作了调查:城区人口约3万,初中生人 数约1200.全市人口实际约300万,为此他推断全市初中生人 数为12万.但市教育局提供的全市初中生人数约8万,与估计 数据有很大偏差.请你用所学的统计知识,找出其中错误的 原因 样本在总体中所占比例太小;或样本不具代表性、. 广 泛性、随机性 .
你认为这样的规则是否公平?请说 明理由;如果不公平,请你设计一 个公平的规则,并说明理由.
1





.因3 4

P(奇
)

,111 1 P(偶222 2)=3333
3;44 4P(奇455 )5<66P5(6偶) ,6
1 4
所以不公平.
理由:因为P(奇) = 所以公平.
1 2
4 4 111
2
11112×++× ×22111==111===21111×++123322× ×2==2=22==2411++×44333==123=× ×3311==1++6355×44==44=12××11++4466155==×==48 55=1121++××776615==5×==15606=
相关文档
最新文档