函数的基本性质同步练习

合集下载

完整版)高三函数的性质练习题及答案

完整版)高三函数的性质练习题及答案

完整版)高三函数的性质练习题及答案高三函数的性质练题一、选择题(基础热身)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A。

y=x^3B。

y=ln|x|C。

y=|x|D。

y=cosx2.已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=()A。

1B。

2C。

3D。

43.函数f(x)=(2x+1)/(x-1)在[1,2]的最大值和最小值分别是()A。

3,1B。

1,0C。

3,3D。

1,34.若函数f(x)=(2x+1)(x-a)为奇函数,则a=()A。

2B。

3C。

4D。

1能力提升5.已知函数f(x)=(a-3)x+5(x≤1),2a(x>1),则a的取值范围是()A。

(0,3)B。

(0,3]C。

(0,2)D。

(0,2]6.函数y=f(x)与y=g(x)有相同的定义域,且都不是常值函数,对于定义域内的任何x,有f(x)+f(-x)=2f(x),g(x)·g(-x)=1,且当x≠0时,g(x)≠1,则F(x)=2f(x)/(g(x)-1)的奇偶性为()A。

奇函数非偶函数B。

偶函数非奇函数C。

既是奇函数又是偶函数D。

非奇非偶函数7.已知函数f(x)=ax+log_a(x)(a>0且a≠1)在[1,2]上的最大值与最小值之和为log_a(2)+6,则a的值为()A。

2B。

4C。

1/2D。

1/48.已知关于x的函数y=log_a(2-ax)在[0,1]上是减函数,则a的取值范围是()A。

(0,1)B。

(1,2)C。

(0,2)D。

[2,+∞)9.已知函数f(x)=sin(πx)(≤x≤1),log_2(x)(x>1),若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A。

(1,2010)B。

(1,2011)C。

(2,2011)D。

[2,2011]二、填空题10.函数f(x)对于任意实数x满足条件f(x+2)=f(x)/(1-f(x)),若f(1)=-5,则f[f(5)]=________.解:f(3)=f(1+2)=f(1)/(1-f(1))=5/6f(5)=f(3+2)=f(3)/(1-f(3))=-5f[f(5)]=f(-5)/(1-f(-5))=-5/611.f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足f(x)=f(x+3)的所有x之和为________.解:因为f(x)是偶函数,所以f(0)=f(3),f(1)=f(2),f(4)=f(7),f(5)=f(6),所以要求的是x使得f(x)=f(x+3)的所有情况下的x之和。

函数的基本性质练习(含答案)

函数的基本性质练习(含答案)

函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。

2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。

3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。

4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。

5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。

6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。

填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。

2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。

3.y=x+1,因此值域为(1,2]。

4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。

5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。

2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。

函数的基本性质练习题(重要)

函数的基本性质练习题(重要)

函数的基本性质练习题(重要)一、选择题1.B2.B3.B4.D5.C6.B二、填空题1.(-∞。

1/2]2.-x-13.f(x) = x/(x^2-a^2)4.-95.k ≤ 1/3三、解答题1.(1) 偶函数,(2) 奇函数2.已知函数 $y=f(x)$ 的定义域为 $R$,且对任意 $a,b\inR$,都有 $f(a+b)=f(a)+f(b)$,且当 $x>0$ 时,$f(x)<0$ 恒成立,证明:(1)函数 $y=f(x)$ 是 $R$ 上的减函数;(2)函数$y=f(x)$ 是奇函数。

改写:已知函数 $y=f(x)$ 的定义域为 $R$,且对任意$a,b\in R$,都有 $f(a+b)=f(a)+f(b)$,且当 $x>0$ 时,$f(x)<0$ 恒成立。

证明:(1)函数 $y=f(x)$ 是 $R$ 上的减函数;(2)函数 $y=f(x)$ 是奇函数。

3.设函数 $f(x)$ 和 $g(x)$ 的定义域是 $x\in R$ 且$x\neq\pm 1$,$f(x)$ 是偶函数,$g(x)$ 是奇函数,且$f(x)+g(x)=2x^2$。

改写:设函数 $f(x)$ 和 $g(x)$ 的定义域是 $x\in R$ 且$x\neq\pm 1$,$f(x)$ 是偶函数,$g(x)$ 是奇函数,且$f(x)+g(x)=2x^2$。

4.设 $a$ 为实数,函数 $f(x)=x+|x-a|+1$,$x\in R$。

1)讨论 $f(x)$ 的奇偶性;2)求 $f(x)$ 的最小值。

改写:设 $a$ 为实数,函数 $f(x)=x+|x-a|+1$,$x\in R$。

1)讨论 $f(x)$ 的奇偶性;2)求 $f(x)$ 的最小值。

同时,求出函数 $f(x)$ 和$g(x)$ 的解析式。

《函数的基本性质》同步练习2 (A组)

《函数的基本性质》同步练习2 (A组)

必修1复习第一章(下)函数的基本性质练习[基础训练A 组]一、选择题1 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )A 1B 2C 3D 42 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A )2()1()23(f f f <-<-B )2()23()1(f f f <-<-C )23()1()2(-<-<f f fD )1()23()2(-<-<f f f3 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A 增函数且最小值是5-B 增函数且最大值是5-C 减函数且最大值是5-D 减函数且最小值是5-4 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 非奇非偶函数5 下列函数中,在区间()0,1上是增函数的是( )A x y =B x y -=3C xy 1= D 42+-=x y 6 函数)11()(+--=x x x x f 是( )A 是奇函数又是减函数B 是奇函数但不是减函数C 是减函数但不是奇函数D 不是奇函数也不是减函数二、填空题1 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是2 函数2y x =________________3 已知[0,1]x ∈,则函数y =的值域是4 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是5 下列四个命题(1)()f x =有意义; (2)函数是其定义域到值域的映射;(3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线, 其中正确的命题个数是____________三、解答题1 判断一次函数,b kx y +=反比例函数xk y =,二次函数c bx ax y ++=2的 单调性2 已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围 3 利用函数的单调性求函数x x y 21++=的值域;4 已知函数[]2()22,5,5f x x ax x =++∈- ① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数参考答案一、选择题1 B 奇次项系数为0,20,2m m -==2 D 3(2)(2),212f f =--<-<- 3 A 奇函数关于原点对称,左右两边有相同的单调性4 A ()()()()F x f x f x F x -=--=-5 A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6 A ()(11)(11)()f x x x x x x x f x -=----+=+--=-为奇函数,而222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩为减函数 二、填空题1 (](2,0)2,5- 奇函数关于原点对称,补足左边的图象2 [2,)-+∞ 1,x y ≥-是x 的增函数,当1x =-时,min 2y =-3该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大4 [)0,+∞ 210,1,()3k k f x x -===-+ 5 1 (1)21x x ≥≤且,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线三、解答题1 解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;当0k >,k y x=在(,0),(0,)-∞+∞是减函数, 当0k <,k y x=在(,0),(0,)-∞+∞是增函数; 当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a-+∞是增函数, 当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a-+∞是减函数 2 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,3 解:1210,2x x +≥≥-,显然y 是x 的增函数,12x =-,min 1,2y =- 4 解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f ===== ∴max m ()37,()1in f x f x ==(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调∴5a ≥或5a ≤-。

《函数的基本性质》同步练习

《函数的基本性质》同步练习

《函数的基本性质》同步练习1、设函数f(x)=(a-1)x+b 是R 是的减函数,则有( )A 、a≥1B 、a≤1C 、a.>-1D 、a<12、函数f(x)=x-2 +2-x 是( )A 、奇函数B 、偶函数C 、既是奇函数又是偶函数D 、既不是奇函数又不是偶函数3、已知函数f(x)=x 7+ax 5+bx-5,若f(-100)=8,那么f(100)=( )A 、-18B 、-20C 、-8D 、84、函数f(x)=-x 2+2x+3在区间[-2,2]上的最大、最小值分别为( )A 、4,3B 、3,-5C 、4,-5D 、5,-55、函数y=- 1x-2 的单调区间是( )A 、RB 、(-∞,0)C 、(-∞,2),(2,+∞)D 、(-∞,2)(2,+∞)6、函数y=3x+2 (x≠-2)在区间[0,5]上的最大(小)值分别为( )A 、37 ,0B 、32 ,0C 、32 ,37D 、37 ,无最小值7、函数f(x)=-x 2+2(a-1)x+2在区间(-∞,2]上单调递增,则a 的取值范围是( )A、[3,+∞)B、(-∞,3]C、(-∞,-3]D、[-3,+∞)8、下列函数中是偶函数的是()A、y=x4 (x<0)B、y=|x+1|C、y=2x2+1D、y=3x-19、函数f(x)是定义在区间[-5,5]上的偶函数,且f(1)<f(3),则下列各式一定成立的是()A、f(0)>f(5)B、f(3)<f(2)C、f(-1)>f(3)D、f(-2)>f(1)10、已知函数f(x)是奇函数,当x>0时,f(x)=x(1+x);当x<0时,f(x)=( )A、-x(1-x)B、x(1-x)C、-x(1+x)D、x(1+x)二、填空题11、函数y=-|x|在[a,+∞)上是减函数,则a的取值范围是12、函数y=-a2005x2在(0,+∞)上是减函数,则a的取值范围是13、函数f(x)=1-1x的单调递增区间是14、如果奇函数f(x)在[2,5]上是减函数,且最小值是-5,那么f(x)在[-5,-2]上的最大值为参考答案1、D2、D3、A4、C5、D6、C7、B8、C9、D 10、B11、a≥012、a>013、(-∞,0) (0, +∞)14、5。

函数基本性质习题及答案

函数基本性质习题及答案

函数基本性质练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为______;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y = 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x = ⑸21)52()(-=x x f , 52)(2-=x x f 。

(完整版)函数的概念及基本性质练习题

(完整版)函数的概念及基本性质练习题

函数的概念及基本性质练习题1. 下列各图中,不能是函数f (x )图象的是( )2.若f (1x )=11+x ,则f (x )等于( )A.11+x (x ≠-1) B.1+xx (x ≠0)C.x1+x (x ≠0且x ≠-1) D .1+x (x ≠-1)3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=() A .3x +2 B .3x -2C .2x +3D .2x -34.函数f (x )=lg(x -1)+4-x 的定义域为( )A .(1,4]B .(1,4)C .[1,4]D .[1,4)5.已知函数f (x )=⎩⎨⎧ 2x +1,x <1x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12B.45C .2D .96.下列集合A 到集合B 的对应f 是函数的是( )A .A ={-1,0,1},B ={0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值 7.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z8.求下列函数的定义域:(1)y =-x 2x 2-3x -2;(2)y =34x +83x -29.下列命题中,正确的是()A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数10.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为()A.10B.-10C.-15 D.1511.f(x)=x3+1x的图象关于()A.原点对称B.y轴对称C.y=x对称D.y=-x对称12.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________. 13.①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.14.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f(-32)与f(a2+2a+52)的大小关系是()A.f(-32)>f(a2+2a+52) B.f(-32)<f(a2+2a+52)C.f(-32)≥f(a2+2a+52) D.f(-32)≤f(a2+2a+52)15.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.指数的运算及指数函数1.将532写为根式,则正确的是( ) A.352 B.35 C.532 D.53 2.根式 1a 1a (式中a >0)的分数指数幂形式为( ) A .a -43 B .a 43 C .a -34 D .a 343.(a -b )2+5(a -b )5的值是( )A .0B .2(a -b )C .0或2(a -b )D .a -b4.计算:(π)0+2-2×(214)12=________.5.下列各式正确的是( ) A.(-3)2=-3 B.4a 4=a C.22=2 D .a 0=16.若xy ≠0,那么等式 4x 2y 3=-2xy y 成立的条件是( )A .x >0,y >0B .x >0,y <0C .x <0,y >0D .x <0,y <07.计算(2n +1)2·(12)2n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6 D .(12)2n -78.设a 12-a -12=m ,则a 2+1a =( )A .m 2-2B .2-m 2C .m 2+2D .m 29.根式a -a 化成分数指数幂是________. 10.化简求值:0.064-13-(-18)0+1634+0.2512;11.使不等式23x -1>2成立的x 的取值为( )A .(23,+∞)B .(1,+∞)C .(13,+∞)D .(-13,+∞)12.不论a 取何正实数,函数f (x )=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)13.为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度14.在同一坐标系中,函数f (x )=ax 与g (x )=a x (a >0且a ≠1)的图象可能是( )15.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( )A .a >2B .1<a <2C .a >1D .a ∈R16.函数y =a x (a >0且a ≠1)在[0,1]上的最大值与最小值的和为3,a 的值为( )A.12 B .2 C .4 D.1417.函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .A <1C .0<a <1D .a ≠118.方程4x +1-4=0的解是x =________.19.函数y =(12)1-x 的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)20.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.21.方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.22.函数f (x )=⎩⎪⎨⎪⎧a x ,x >1(4-a 2)x +2,x ≤1是R 上的增函数,则a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)23.画出函数y =(12)|x |的图象,根据图象指出其值域和单调区间24.已知-1≤x ≤2,求函数f (x )=3+2·3x +1-9x 的值域.。

专题01 函数的基本性质学霸必刷100题(原卷版)

 专题01  函数的基本性质学霸必刷100题(原卷版)

专题01 函数的基本性质100题1.已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m2.已知函数2(2)2()log xf x ax +=+,若对任意(1,3]t ∈-,任意x ∈R ,不等式()()1f x f x kt +-≥+恒成立,则k 的最大值为 A .1-B .1C .13-D .133.已知函数()()f x g x ,的图象分别如图1,2所示,方程()()()()1f g x g f x =,=-1,1(())2g g x =-的实根个数分别为a 、b 、c ,则( )A .a b c +=B .b c a +=C .b a c =D .ab c =4.已知函数()f x 是定义在R 上的增函数,且其图象关于点()2,0-对称,则关于x 的不等式()()23120f x f x -+-≥的解集为( )A .[)4,-+∞B .[]4,2-C .[]2,4-D .(],2-∞5.已知定义域为()0,∞+的函数()f x 满足:(1)对任意()0,x ∈+∞,恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.给出如下结论:①对任意m Z ∈,有()20mf =;②函数()f x 的值域为[)0,+∞;③若函数()f x 在区间(),a b 上单调递减,则存在k Z ∈,使得()()1,2,2kk a b +⊆.其中所正确结论的序号是( )A .①②B .①③C .②③D .①②③6.已知定义域为R 的函数()f x 满足(1)(1)f x f x -=-+,且函数()f x 在区间()1,+∞上单调递增,如果121x x ,且122x x +>,则()()12f x f x +的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负函数7.已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .188.已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b -的取值范围是( ) A .(0,)+∞B .[1,)-+∞C .(,1)-∞-D .(,0)-∞9.设函数()f x 是定义在R 上的偶函数,()()4f x f x =-,当02x ≤≤时,52x f x,函数112g xx ,则()()()F x f x g x =-零点个数为( ) A .7B .6C .5D .410.给出定义:若11(,]22x m m ∈-+(其中m 为整数),则m 叫做与实数x ”亲密的整数”记作{x }=m ,在此基础上给出下列关于函数()|{}|f x x x =-的四个说法: ①函数()y f x =在(0,1)是增函数; ②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =在1(,)()2k k k Z +∈上单调递增④当(0,2)x ∈时,函数21()()22g x f x x =--有两个零点, 其中说法正确的序号是( ) A .①②③B .②③④C .①②④D .①③④11.已知函数()()2ln 122xxf x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( )A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞12.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21xf f x ex e --+=-,则函数()f x 的零点所在区间为( ) A .210,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .1,1e ⎛⎫⎪⎝⎭D .()1,e13.在平面直角坐标系xOy 中,已知n A ,n B 是圆222x y n +=上两个动点,且满足22n n nOA OB ⋅=-(*N n ∈),设n A ,n B到直线(1)0x n n +++=的距离之和的最大值为n a ,若数列1{}na 的前n 项和n S m <恒成立,则实数m 的取值范围是( )A .3(,)4+∞B .3[,)4+∞C .3(,)2+∞D .3[,)2+∞14.已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数1x ,2x 都有()()2112120x f x x f x x x ->-,记:()0.20.24.14.1f a =,()2.12.10.40.4f b =,()0.24.10.2log4.1logf c =,则( )A .a c b <<B .a b c <<C .c b a <<D .b c a <<15.设函数()2f x ax bx c =++(,,a b c ∈R ,且0a >),则( ) A .若02b f a ⎛⎫-< ⎪⎝⎭,则()()f f x 一定有零点 B .若02b f f a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,则()()f f x 无零点 C .若02b f f a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,且02b f a ⎛⎫-< ⎪⎝⎭,则()()f f x 一定有零点 D .若02b f f a ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,则()()f f x 有两个零点16.对于函数()f x 和()g x ,设(){|0}x f x α∈=,(){|0}x g x β∈=,若存在α,β,使得1αβ-,则称()f x 与()g x 互为“零点相邻函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围为( )A .[]2,4B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[]2,317.设函数()()()1122()sin sin sin n n f x a x a a x a a x a =++++⋅⋅⋅++,其中,i a j a (1,2,,i n =⋅⋅⋅,*n N ∈,2n ≥)为已知实常数,x ∈R ,下列关于函数()f x 的性质判断正确的个数是( )①若(0)02f f π⎛⎫==⎪⎝⎭,则()0f x =对任意实数x 恒成立;②若(0)0f =,则函数()f x 为奇函数;③若02f π⎛⎫= ⎪⎝⎭,则函数()f x 为偶函数;④当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,若()()120f x f x ==,则12()x x k k Z π-=∈;A .4B .3C .2D .118.函数()f x 的定义域为D ,若满足如下两个条件:(1)()f x 在D 内是单调函数;(2)存在,22m n D ⎡⎤⊆⎢⎥⎣⎦,使得()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[],m n ,那么就称函数()f x 为“希望函数”,若函数()()()log 0,1x a f x a t a a =+>≠是“希望函数”,则t 的取值范围是()A .1,04⎛⎫-⎪⎝⎭B .1,04⎡⎤-⎢⎥⎣⎦C .1,02⎛⎫-⎪⎝⎭D .1,02⎡⎤-⎢⎥⎣⎦19.定义在R 上的偶函数()f x 满足:对任意的()()1212,,0x x x x ∈-∞≠,有()()21210f x f x x x -<-,且()20f =,则不等式()()205f x f x x+-<解集是( )A .()(),22-∞-+∞B .()(),20,2-∞-C .()()2,02-+∞D .()()2,00,2-20.已知,0,22m R ππαβπ-≤≤≤≤∈,如果有33sin 0,cos 02m m πααββ⎛⎫++=-++= ⎪⎝⎭,则cos()αβ+的值为( )A .1-B .0C .0.5D .121.设函数()y f x =,()y g x =的定义域、值域均为R ,以下四个命题:①若()y f x =,()y g x =都是奇函数,则(())y f g x =是偶函数;②若()y f x =,()y g x =都是R 上递减函数,则(())y f g x =是R 上递减函数;③若(())y f g x =是周期函数,则()y f x =,()y g x =都是周期函数;④若(())y f g x =存在反函数,则()y f x =,()y g x =都存在反函数其中真命题的个数是( ) A .0B .1C .2D .322.狄利克雷函数为F (x )()10x x R x ⎧=∈⎨⎩,为有理数时,,为无理数时,.有下列四个命题:①此函数为偶函数,且有无数条对称轴;②此函数的值域是[]0,1;③此函数为周期函数,但没有最小正周期;④存在三点()()()()()(),,,,,A a F a B b F b C c F c ,使得△ABC 是等腰直角三角形,以上命题正确的是( )A .①②B .①③C .③④D .②④23.符合以下性质的函数称为“S 函数”:①定义域为R ,②()f x 是奇函数,③()f x a <(常数0a >),④()f x 在0,上单调递增,⑤对任意一个小于a 的正数d ,至少存在一个自变量0x ,使()0f x d >.下列四个函数中()12arctan af x x π=,()221ax x f x x =+,()310001a x x f x x a x x ⎧->⎪⎪==⎨⎪⎪--<⎩,()42121x x f x a ⎛⎫-=⋅ ⎪+⎝⎭中“S 函数”的个数为( ) A .1个B .2个C .3个D .4个24.如果一个函数()y f x =的图像是一个中心对称图形,关于点()P m n ,对称,那么将()y f x =的图像向左平移m 个单位再向下平移n 的单位后得到一个关于原点对称的函数图像.即函数()y f x m n =+-为奇函数.那么下列命题中真命题的个数是( )①二次函数2y ax bx c =++(0a ≠)的图像肯定不是一个中心对称图形;②三次函数32y ax bx cx d =+++(0a ≠)的图像肯定是一个中心对称图形; ③函数1xby c a =++(0a >且1a ≠)的图像肯定是一个中心对称图形. A .0个 B .1个C .2个D .3个25.定义域为R 的函数()f x 满足()()f x f x -=,且对()12,0,x x ∈+∞恒有1212()()0f x f x x x ->-,且305f ⎛⎫= ⎪⎝⎭,则不等式()0f x x<的解集是( ) A .30,5⎛⎫ ⎪⎝⎭B .3,5⎛⎫+∞ ⎪⎝⎭C .33,0,55⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭D .33,0,55⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭26.对于函数()f x ,若存在区间[,]A m n =,使得{|(),}y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数的一个“可等域区间”.给出下列四个函数:①()||f x x =;②2()21f x x =-;③()|12|x f x =-;④2()log (22)f x x =-.其中存在唯一“可等域区间”的“可等域函数”的个数是( )A .1B .2C .3D .427.已知偶函数()2f x π+,当(,)22x ππ∈-时,13()sin f x x x =+. 设(1)a f =,(2)b f =,(3)c f =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<28.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为( ) A .11(,)[,)88-∞-+∞ B .11[,0)(0,]48-C .(0,8]D .11(,][,)48-∞-+∞29.已知函数()()11332cos 1x x x f x --+=+--,则( )A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .()()0.52310.5log 9log2f f f -⎛⎫>> ⎪⎝⎭ C .()()0.53210.5loglog 92f f f -⎛⎫>> ⎪⎝⎭D .()()0.5231log 90.5log2f f f -⎛⎫>> ⎪⎝⎭30.若在直角坐标平面内,A B 两点满足条件:①点,A B 分别在函数()y f x =,()y g x =的图象上;②点,A B 关于原点对称,则称,A B 为函数()y f x =和()y g x =的一个“黄金点对”.那么函数2()22(0)f x x x x =+-<和1()(0)g x x x=>的“黄金点对”的个数是( ) A .0个B .1个C .2个D .3个31.对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k 倍值函数,则实数k 的取值范围是( )A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭32.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]8,10-上所有根的和为( ) A .0B .8C .16D .3233.定义:若整数m 满足:1122m x m -<≤+,称m 为离实数x 最近的整数,记作{}x m =.给出函数(){}f x x x =-的四个命题:①函数()f x 的定义域为R ,值域为11,22⎛⎫- ⎪⎝⎭;②函数()f x 是周期函数,最小正周期为1;③函数()f x 在11,22⎛⎫- ⎪⎝⎭上是增函数;④函数()f x 的图象关于直线()2kx k Z =∈对称. 其中所有的正确命题的序号为() A .①③B .②③C .①②④D .①②③34.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( )A .4B .5C .6D .735.设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[]3,4上的值域为[]2,5-,则()f x 在区间[]10,10-上的值域为( )A .[]16,12-B .[]12,10-C .[]15,11-D .[]18,14-36.已知函数4()()f x x a a R x=+-∈,2()43g x x x =-++,在同一平面直角坐标系里,函数()f x 与()g x 的图像在y 轴右侧有两个交点,则实数a 的取值范围是( ) A .{}3a a <-B .{}3a a >-C .{}3a a =-D .{}34a a -<<37.已知()f x 是定义在R 上的偶函数,且()()+2f x f x =对x R ∈恒成立,当[]0,1x ∈时,()2xf x =,则92f ⎛⎫-= ⎪⎝⎭A .12BC .2D .138.对于函数()f x ,若存在区间[],A m n =,使得(){}|,y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数: ①()sin 2f x x π⎛⎫=⎪⎝⎭;②()221f x x =-; ③()12x f x =-; ④()()2log 22f x x =-. 其中存在唯一“可等域区间”的“可等域函数”为( ) A .①②③B .②③C .①③D .②③④39.若函数()y f x =在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,则称函数()f x 是区间I 上的“H 函数”.对于命题:①函数()f x x =-+()0,1上的“H 函数”; ②函数()221xg x x=-是()0,1上的“H 函数”.下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题 C .①为假命题, ②为真命题D .①为真命题, ②为假命题40.已知函数()14216x x f x +-+=,()()20g x ax a =->.若[]120,log 3x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是( )A .21,3⎡⎤⎢⎥⎣⎦B .2,23⎡⎤-⎢⎥⎣⎦C .4,23⎡⎤⎢⎥⎣⎦D .4,3⎡⎫+∞⎪⎢⎣⎭41.已知函数()|f x =,给出下列四个判断:①函数()f x 的值域是[0,2];②函数()f x 的图像时轴对称图形;③函数()f x 的图像时中心对称图形;④方程3[()]2f f x =有实数解.其中正确的判断有( ) A .1个B .2个C .3个D .4个42.定义在R 上的函数()f x ,满足()()cos22f x f x x +-=+,2()()sin g x f x x =+,若g()x 在R 上的最大值为M ,最小值为m ,则M m +值为( ) A .0B .1C .2D .343.已知定义在R 上的函数()f x 满足()()22f x f x -=+,当2x ≤时,()xf x xe =.若关于x 的方程()()22f x k x =-+有三个不相等的实数根,则实数k 的取值范围是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),00,e e -D .()(),0,e e -+∞44.已知定义在R 上的函数()()522222x x x x f x --=----,则不等式()()2324f x f x ++-≥-的解集为( ) A .()0,1 B .(]0,1 C .(],1-∞ D .[)1,+∞45.已知函数31()2sin 331xf x x x =-++在区间[2,2]-的值域为[,]m n ,则m n +=( ) A .2-B .1-C .0D .146.设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( ) A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,47.已知函数210()(1)0x x f x f x x -⎧-+≤=⎨->⎩,则下列命题中正确命题的个数是( )①函数()f x 在[1,)-+∞上为周期函数②函数()f x 在区间(),1m m +,()m N +∈上单调递增③函数()f x 在1x m =-(m N ∈)取到最大值0,且无最小值④若方程()log (2)a f x x =+(01a <<)有且仅有两个不同的实根,则11[,)32a ∈ A .1个 B .2个C .3个D .4个48.记表示不超过的最大整数,如,设函数,若方程有且仅有个实数根,则正实数的取值范围为( )A .B .C .D .49.已知定义在()0,∞+上的函数()f x 满足:对任意正实数,a b ,都有()()()2f ab f a f b =+-,且当1x >时恒有()2f x <,则下列结论正确的是( )A .()f x 在()0,∞+上是减函数B .()f x 在()0,∞+上是增函数C .()f x 在()0,1上是减函数,在()1,+∞上是增函数D .()f x 在()0,1上是增函数,在()1,+∞上是减函数50.已知函数()f x 是定义在R 上的奇函数,()1y f x =+为偶函数,且()11f =,则()()20182019(f f += )A .2B .1C .0D .1-51.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若存在(],x m ∈-∞,使得()89f x ≥,则m 的最小值是( )A .94B .52C .73D .8352.已知函数()x a x a f x e e --+=+,若33log ab c ==,则( )A .()()()f a f b f c <<B .()()()f b f c f a <<C .()()()f a f c f b <<D .()()()f c f b f a <<53.函数()f x x =,2()3g x x x =-+.若存在129,,...,[0,]2n x x x ∈,使得1()f x +2()...f x ++1()n f x -+()n g x =1()g x +2()...g x ++1()n g x -+()n f x ,则n 的最大值为( )A .5B .6C .7D .854.已知定义在()(),00,-∞⋃+∞上的函数()f x ,且(1)1f =,函数(1)f x +的图象关于点(1,0)-中心对称,对于任意()1212,0,,x x x x ∈+∞≠,都有20192019112212()()0x f x x f x x x ->-成立. 则20191()f x x≤的解集为( ) A .[]1,1- B .(][),11,-∞-+∞C .(](],10,1-∞- D .()2019,2019-55.对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中:①()21f x x x =++;②()f x =()()2sin f x x =;④()sin f x x x =⋅.是“控制增长函数”的有( )个A .1B .2C .3D .456.定义:{}min ,a b 表示a ,b 两数中较小的数.例如{}min 2,42=.已知{}2()min ,2f x x x =---,()2()x g x x m m =++∈R ,若对任意1[2,0]x ∈-,存在2[1,2]x ∈,都有()()12f x g x ≤成立,则m 的取值范围为( ) A .[4,)-+∞ B .[6,)-+∞ C .[7,)-+∞D .[10,)-+∞57.定义在R 上的函数()f x 若满足:①对任意1x ,2x 且12x x ≠,都有()()()21210x x f x f x --<⎡⎤⎣⎦;②对任意x ,都有()()2f a x f a x b ++-=,则称函数()f x 为“中心捺函数”,其中点(),a b 称为函数()f x 的中心.已知函数()1y f x =-是以()1,0为中心的“中心捺函数”,若满足不等式()()2222f m n f n m +≤---,当1,12m ⎡⎤∈⎢⎥⎣⎦时,m m n +的最小值为( )A .2B .18C .14D .1258.给定函数()f x 和()g x ,令()max{(),()}h x f x g x =,对以下三个论断:(1)若()f x 和()g x 都是奇函数,则()h x 也是奇函数;(2)若()f x 和()g x 都是非奇非偶函数,则()h x 也是非奇非偶函数:(3)()f x 和()g x 之一与()h x 有相同的奇偶性;其中正确论断的个数为( ) A .0个B .1个C .2个D .3个59.设函数的定义域是(0,1),且满足:(1)对于任意的(0,1)x ∈,()0f x >;(2)对于任意的12,(0,1)x x ∈,恒有1122()(1)2()(1)f x f x f x f x -+≤-.则下列结论:①对于任意的(0,1)x ∈,()(1)f x f x >-;②()f x y x x=+在(0,1)上单调递减;③()f x 的图象关于直线12x =对称,其中正确结论的个数是( ) A .0B .1C .2D .360.已知函数()f x 满足对于任意实数m ,n ,总有()()()f m n f m f n +=,其中()0f x ≠,()38f =,且当0x >时()1f x >,()()()31111f xg x f x -+=-+,若()()223g x g x ≥-+,则实数x 的取值范围为( ) A .1x ≥B .2x ≥C .3x ≥D .4x ≥61.设函数()12...( 201812...20)18f x x x x x x x x R =+++++++-+-++-∈,下列四个命题中真命题的序号是( )(1)()f x 是偶函数;(2)当且仅当0x =时,()f x 有最小值;(3)()f x 在(0,)+∞上是增函数;(4)方程()()255 2f a a f a -+=-有无数个实根.A .()()14B .()() 12C .()() 12()3D .()()()23462.若直角坐标平面内的两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上;②,P Q 关于原点对称.则称点对[],P Q 是函数()y f x =的一对“友好点对”(点对[],P Q 与[],Q P 看作同一对“友好点对”).已知函数()log 3a x f x x ⎧=⎨+⎩()()040>-≤<x x ()01a a >≠且,若此函数的“友好点对”有且只有一对,则a 的取值范围是( )A .()()011+,,∞ B .()111+4,,⎛⎫∞ ⎪⎝⎭C .114,⎛⎫⎪⎝⎭D .()01,63.狄利克雷函数是高等数学中的一个典型函数,若1,()0,R x Qf x x C Q∈⎧=⎨∈⎩,则称()f x 为狄利克雷函数.对于狄利克雷函数()f x ,给出下面4个命题:①对任意x ∈R ,都有[()]1f f x =;②对任意x ∈R ,都有()()0f x f x ;③对任意1x R ∈,都有2x ∈Q ,121()()f x x f x +=;④对任意,(,0)a b ∈-∞,都有{|()}{|()}x f x a x f x b >=>.其中所有真命题的序号是( )A .①④B .②③C .①②③D .①③④64.已知偶函数()f x 满足(4)(4)f x f x +=-,且当(]0,4x ∈时,ln(2)()x f x x=,关于x 的不等式2()()0f x af x +>在区间[]200,200-上有且只有300个整数解,则实数a 的取值范围是( )A .1(ln 2,ln 6)3--B .1(ln 2,ln 6]3--C .13ln 2(ln 6,)34--D .13ln 2(ln 6,]34-- 65.已知函数()()y f x x =∈R ,给出下列命题:①若()f x 既是奇函数又是偶函数,则()0f x =;②若()f x 是奇函数,且()()11f f -=,则()f x 至少有三个零点; ③若()f x 在R 上不是单调函数,则()f x 不存在反函数;④若()f x 的最大值和最小值分别为M 、()m m M <,则()f x 的值域为[],m M 则其中正确的命题个数是( ) A .1B .2C .3D .466.若曲线C 在顶点为O 的角α内部,A 、B 分别是曲线C 上任意两点,且AOB α≥∠,我们把满足条件的最小角α叫做曲线C 相对点O 的“确界角”,已知O 是坐标原点,曲线C的方程为020x y x ≥=<⎪⎩,那么它相对点O 的“确界角”等于( )A .3πB .512πC .712π D .23π67.函数()f x 对于任意的x ∈R 都有()()1f x f x <+,给出以下命题: ①()f x 在R 上是增函数;②可能存在0M >,使得对任意的()x R f x M ∈≤,恒成立;③可能存在0x ,使得00(2)1f f x x ⎛⎫=+ ⎪⎝⎭成立; ④()f x 没有最大值和最小值. 则正确的命题的个数为( ). A .1个B .2个C .3个D .4个68.已知定义在R 上的函数()f x ,满足()00f =,当0x ≠ 时,()ln f x x =,设函数()()g x f x m =-(m 为常数)的零点个数为n ,则n 的所有可能取值构成的集合为( ) A .{}2,4B .{}3,4C .{}0,2,4D .{}0,3,469.函数()f x 在[,]a b 上有定义,若对任意12,[,]x x a b ∈,有12121()[()()]22x x f f x f x +≤+ 则称()f x 在[,]a b 上具有性质P .设()f x 在[1,3]上具有性质P ,现给出如下题:①()f x 在[1,3]上的图像是连续不断的; ②()f x 在[1,3]上具有性质P ;③若()f x 在2x =处取得最大值1,则()1,[1,3]f x x =∈;④对任意1234,,,[1,3]x x x x ∈,有123412341()[()()()()]44x x x x f f x f x f x f x +++≤+++其中真命题的序号( ) A .①② B .①③C .②④D .②③④70.设函数给出下列四个命题:①c = 0时,是奇函数; ②时,方程只有一个实根;③的图象关于点(0 , c)对称; ④方程至多3个实根.其中正确的命题个数是( ) A .1 B .2 C .3 D .4 71.在研究函数22()41240f x x x x +-+的性质时,某同学受两点间距离公式启发将()f x 变形为,2222()(0)(02)(6)(02)f x x x =-+--+-,并给出关于函数()f x 以下五个描述:①函数()f x 的图像是中心对称图形;②函数()f x 的图像是轴对称图形; ③函数()f x 在[0,6]上是增函数;④函数()f x 没有最大值也没有最小值; ⑤无论m 为何实数,关于x 的方程()0f x m -=都有实数根.其中描述正确的是__________.72.已知函数()2f x x =,()g x 为偶函数,且当0x ≥时,()24g x x x =-.记{},max ,,a a ba b b a b≥⎧=⎨<⎩.给出下列关于函数()()(){}()max ,F x f x g x x R =∈的说法:①当6x ≥时,()24F x xx =-;②函数()F x 为奇函数;③函数()F x 在[]22-,上为增函数;④函数()F x 的最小值为0,无最大值.其中正确的是______.73.若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义域上的任意12,x x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.给出下列四个函数中:①1()f x x x =+; ②()13f x x =; ③()11x x e f x e -=+; ④ ()22,0,0x x f x x x ⎧-≥=⎨<⎩,能被称为“理想函数”的有_____(请将所有正确命题的序号都填上).74.已知定义在R 上的函数()f x ,若函数()1f x +为偶函数,函数()2f x +为奇函数,则()20191i f i =∑=_____.75.已知()()ln 0f x a x x a =+>对于区间11,43⎡⎤⎢⎥⎣⎦内的任意两个相异实数1x ,2x ,恒有()()121211f x f x x x -<-成立,则实数a 的取值范围是______. 76.已知定义在[)1,+∞的函数()f x tx x=+,对满足121x x -≤的任意实数1x ,2x ,都有()()121f x f x -≤,则实数t 的取值范围为__________.77.定义函数()f x 如下:对于实数x ,如果存在整数m ,使得1||2x m -<,则()f x m =.则下列结论:①()f x 是实数R 上的递增函数;②()f x 是周期为1的函数;③()f x 是奇函数;④函数()f x 的图像与直线y x =有且仅有一个交点.则正确结论的序号是______.78.已知函数11()12x k f x x -++=-+,若对任意的实数123,,x x x ,不等式123()()()f x f x f x +≥恒成立,则实数k 的取值范围是________.79.已知,若定义域为[]0,1的函数()f x 同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②()11f =;③当10x ≥,20x ≥,121x x +≤时,()()()1212f x x f x f x +≥+成立,则称函数()f x 为Z函数.以下说法:(1)若函数()f x 为Z 函数,则()00f =;(2)函数()[]()210,1xg x x =-∈是一个Z 函数;(3)若函数()f x 为Z 函数,则函数在区间[]0,1上单调递增;(4)若函数()f x 、()g x 均为Z 函数,则函数()()mf x ng x +(0m >,0n >,且1m n +=)必为Z 函数,正确的有__________(填写序号). 80.关于函数()1x f x x =-,给出以下四个命题,其中真命题的序号是_______.①0x >时,()y f x =单调递减且没有最值; ②方程()()0f x kx b k =+≠一定有解;③如果方程()f x k =有解,则解的个数一定是偶数; ④()y f x =是偶函数且有最小值. 81.方程||||1169x x y y +=-的曲线即为函数()y f x =的图象,对于函数()y f x =,有如下结论:①()f x 在(),-∞+∞上单调递减;②函数()4()3F x f x x =+存在零点;③函数()f x 的值域是R ;④若函数()g x 和()f x 的图象关于原点对称,则函数()y g x =的图象就是||||1169x x y y +=确定的曲线 其中所有正确的命题序号是________.82.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()()0f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”,0x 是它的一个均值点,例如2y x 是[]1,1-上的平均值函数,0就是它的均值点.现有函数()3f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是________.83.已知()f x x x =,若()()()220f x m m f x m -≤>对任意1x ≥恒成立,则实数m 的取值范围为____________.84.已知函数f (x )的定义域为R ,当x >0时满足:①f (x )﹣2f (﹣x )=0;②对任意x 1>0,x 2>0,x 1≠x 2有(x 1﹣x 2)(f (x 1)﹣f (x 2))>0恒成立:③f (4)=2f (2)=2,则不等式x [f (x )﹣1]>0的解集为_____(用区间表示)85.若定义在[,](0)m m m ->上的函数()42cos (0,1)1x xa f x x x a a a ⋅+=+>≠+的最大值和最小值分别是M 、N ,则M N +=_________.86.已知函数()()131log 312xf x abx =++为偶函数,()22x x a b g x +=+为奇函数,其中a 、b 为常数,则()()()()2233100100a b a bab a b ++++++⋅⋅⋅++=___________87.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当(2,2]x ∈-时,2111,02()22,20x x x f x x x x x x ⎧⎛⎫+--<≤⎪ ⎪=⎨⎝⎭⎪---<≤⎩,若函数()()log a g x f x x =-,(1)a 在(0,5)x ∈上有四个零点,则实数a 的取值范围为_____________.88.已知函数()f x ,对任意的[0,)x ∈+∞,恒有(2)()f x f x +=成立,且当[0,2)x ∈时,()2f x x =-.则方程1()f x x n=在区间[0,2)n (其中*n N ∈)上所有根的和为______. 89.已知函数f (x )=(12)|x |,若函数g (x )=f (x ﹣1)+a (e x ﹣1+e ﹣x +1)存在最大值M ,则实数a 的取值范围为_____90.已知函数()f x x =,()2252g x x mx m =-+-(m R ∈),对于任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()12f x g x =成立,则实数m 的取值范围是______.91.若函数()f x 对其定义域内的任意1x ,2x ,当()()12f x f x =时总有12x x =,则称()f x 为紧密函数,例如函数()ln (0)f x x x =>是紧密函数,下列命题:①紧密函数必是单调函数;②函数()22(0)x x a f x x x++=>在0a <时是紧密函数;③函数()3log ,22,2x x f x x x ≥⎧=⎨-<⎩是紧密函数;④若函数()f x 为定义域内的紧密函数,12x x ≠,则()()12f x f x ≠;⑤若函数()f x 是紧密函数且在定义域内存在导数,则其导函数()'f x 在定义域内的值一定不为零.其中的真命题是______.92.已知函数(2)(2)f x f x +=-,且(]1,3x ∈-时,(](]1,1(),12,1,3x f x x x ∈-=--∈⎪⎩若方程()mf x x =恰有5个实数解(其中0m >),则m 的取值范围为______________. 93.已知()f x 是定义在[4,4]-上的奇函数,1()(2)3g x f x =-+.当[)2,0,2]0(x ∈-⋃时,||1()21x g x =-,(0)0g =则方程12()log (1)g x x =+的解的个数为_________.94.某同学在研究函数 f (x )=1xx+(x ∈R ) 时,分别给出下面几个结论:①等式f (-x )=-f (x )在x ∈R 时恒成立; ②函数f (x )的值域为(-1,1); ③若x 1≠x 2,则一定有f (x 1)≠f (x 2); ④方程f (x )=x 在R 上有三个根.其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)95.已知()y f x =是定义在R 上的增函数,且()y f x =的图像关于点(6,0)对称.若实数,x y 满足不等式22(6)(836)0f x x f y y -+-+≤,则22x y +的取值范围是_____.96.已知函数()f x k =的定义域和值域都是[],a b ,则实数k 的取值范围是_________.97.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有0()()0()()f x h x mh x g x m<-<⎧⎨<-<⎩,则称直线:l y kx b =+为曲线()y f x =和()y g x =的“分渐近线”.给出定义域均为{|1}D x x =>的四组函数如下: ①()2f x x =,()g x =②()102xf x -=+,()23x g x x-=; ③21()x f x x+=,ln 1()ln x x g x x +=;④22()1x f x x =+,()()21xg x x e -=-- 其中,曲线()y f x =和()y g x =存在“分渐近线”的是________.98.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.99.定义域为R 的函数()f x 同时满足以下两条性质: ①存在0x ∈R ,使得()00f x ≠; ②对于任意x ∈R ,有(1)2()f x f x +=.根据以下条件,分别写出满足上述性质的一个函数. (i )若()f x 是增函数,则()f x =_______ ; (ⅱ)若()f x 不是单调函数,则()f x =_______ .100.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列有关说法中:①对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数;②函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;③直线()()12110m x m y +-+-=所对应的函数一定是圆()()()222:210O x y R R -+-=>的太极函数;④若函数()()3f x kx kx k R =-∈是圆22:1O x y +=的太极函数,则()2,2.k ∈-所有正确的是__________.101.定义在实数集R 上的偶函数()f x 满足2(1)12()()f x f x f x +=-,则2019()2f =________. 102.设函数()xxxf x a b c =+-,其中0,0c a c b >>>>,若a 、b 、c 是ABC 的三条边长,则下列结论:①对于一切(),1x ∈-∞都有()0f x >;②存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ABC 为钝角三角形,存在()1,2x ∈,使()0f x =,其中正确的个数为______个 A .3 B .2C .1D .0103.若1122m x m -<≤+(其中m 为整数),则称m 是离实数x 最近的整数,记作{}x m =.下列关于函数(){}||f x x x =-的命题中,正确命题的序号是__________.①函数()y f x =的定义域为R ,值域为1[0,]2; ②函数()y f x =是奇函数; ③函数()y f x =的图象关于直线2kx =(k Z ∈)对称; ④函数()y f x =是周期函数,最小正周期为1; ⑤函数()y f x =在区间11[,]22-上是增函数.104.某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以教材第82页第8题的函数1()lg1xf x x-=+为基本素材,研究该函数的相关性质,取得部分研究成果如下: ①同学甲发现:函数()f x 的定义域为(1,1)-;②同学乙发现:函数()f x 是偶函数; ③同学丙发现:对于任意的(1,1)x ∈-都有22()2()1xf f x x =+; ④同学丁发现:对于任意的,(1,1)a b ∈-,都有()()()1a bf a f b f ab++=+; ⑤同学戊发现:对于函数()f x 定义域中任意的两个不同实数12,x x ,总满足1212()()0f x f x x x ->-.其中所有正确研究成果的序号是__________.105.已知函数()3241f x x ax x =-+++在(]0,2上是增函数,函数()ln 2ln g x x a x =--,若312,,x x e e ⎡⎤∀∈⎣⎦(e 为自然对数的底数)时,不等式()()125g x g x -≤恒成立,则实数a 的取值范围是______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3函数的基本性质
一、 选择题
1、函数y ==x 2-6x +10在区间(2,4)上是( ) A 、递减函数
B 、递增函数
C 、先递减再递增
D 、选递增再递减、
2.在区间
上为增函数的是 ( )
A .
B .
C .
D .
3.函数在

都是增函数,若
,且那么( ) A . B .
C .
D .无法确定
4、函数f (x )=-2
x +2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( ) A 、a ≥5
B 、a ≥3
C 、a ≤3
D 、a ≤-5
5、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)
(x f 在区间(a ,c )上( ) A 、必是增函数
B 、必是减函数
C 、是增函数或是减函数
D 、无法确定增减性
6.函数在区间
是增函数,则
的递增区间是( )
A .
B .
C .
D .
7.函数
在实数集上是增函数,则( )
A .
B .
C .
D .
8.定义在R 上的偶函数,满足
,且在区间
上为递增,则( )
A .
B .
C .
D .
9.如果偶函数在
具有最大值,那么该函数在
有( )
A .最大值
B .最小值
C .没有最大值
D . 没有最小值 10. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )
A.)2()1()23(f f f <-<-
B.)
2()23
()1(f f f <-<- C.)23()1()2(-<-<f f f D.)
1()23()2(-<-<f f f
11. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )
A.增函数且最小值是5-
B.增函数且最大值是5-
C.减函数且最大值是5-
D.减函数且最小值是5-
12.已知()f x 是定义(),-∞+∞上的奇函数,且()f x 在[)0,+∞上是减函数.下列关系式中正确的是 ( )
A.()()55f f >- B.()()43f f > C.()()22f f ->
D.()()88f f -≥
13.下列函数中,在区间(0,2)上为增函数的是 ( )
A .1y x =-+
B .y =
C .245y x x =-+
D .2
y x
=
14 已知函数
是定义在
上的奇函数,当
时,
的图象如图所示,则不等式f(x)<0的解集是( ) A .(-3,-1)∪(0,1) B .(-2,-1) ∪(0,2) C .(-1,0) ∪(1,3) D .(-3,3) 二、填空题 1.函数在R 上为奇函数,且
,则当

_____________.
2、函数y =
1
1
+x 的单调区间为___________
3. 设奇函数)(x f 的定义域为
[]5,5-,若当[0,5]x ∈时, )(x f 的图
象如右图,则不等式()0f x <的解是 .
4、若f(x)=x 2-2ax+1在(]1,∞-上是减函数,则a 的取值范围是____________________
5、函数y=x x 22-的单调递增区间是_______________ 三、解答题 1.证明: (1)函数在 是减函数;
(2)函数在
上是增函数。

2.求函数()211y x x x =--≤≤的最大值,最小值.
3.如果二次函数()()215f x x a x =--+在区间1,12⎛⎫ ⎪⎝⎭
上是增函数,求a 的取值范围.
4.已知函数()1
f x x x
=+.判断()f x 在区间(0,1]和[1,+∞)上的单调性,说明理由.
5.函数f(x),g(x)的定义域为R ,且f(x)是奇函数,g(x)为偶函数。

判断下列函数的奇偶性,并写出详细过程。

(1)f(x)g(x) (2)|f(x)|g(x) (3)f(x)|g(x)| (4)|f(x)g(x)|。

相关文档
最新文档