华东师大版八年级下数据的整理与初步处理A卷

合集下载

第20章 数据的整理与初步处理 A卷-2020-2021学年华东师大版八年级数学下册单元测试题AB卷

第20章 数据的整理与初步处理 A卷-2020-2021学年华东师大版八年级数学下册单元测试题AB卷

第20章 数据的整理与初步处理A 卷考试时间:90分钟;总分:120分一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共30分) 1.某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李美丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占50%,语言表达成绩占30%,写作能力成绩占20%,则李美丽最终的成绩是( ) A .76分B .78分C .80分D .82分2.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( ) A .最高分B .中位数C .方差D .平均数3.对于两组数据A 、B ,如果2A S >2B S ,A x =B x ,则( )A .这两组数据的波动相同.B .数据B 的波动小一些.C .它们的平均水平不一样D .数据A 的波动小一些.4.已知样本数据1、2、2、3、7,下列说法不正确的是( ) A .平均数是3B .中位数是2C .方差是2D .众数是25.某班在一次数学测试后,成绩统计如下表:该班这次数学测试的平均成绩是( ) A .82B .75C .65D .626.某班30名学生的身高情况如下表:则这30名学生身高的众数和中位数分别是( ) A .7,1.71m mB .1.72,1.70m mC .1.72,1.71m mD .1.72,1.72m m7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙、丙C.甲、乙D.甲、丙8.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是()A.平均数B.中位数C.众数D.方差9.某校随机抽查了10名参加2017年我市初中学业水平考试学生的体育成绩,得到的结果如下表:下列说法中,正确的是()A.这10名学生体育成绩的中位数为58B.这10名学生体育成绩的平均数为58C.这10名学生体育成绩的众数为60D.这10名学生体育成绩的方差为6010.甲、乙、丙、丁四位同学五次数学测验的成绩的平均数相同,五次测验的方差如下表.如果从四位同学中选出一位状态稳定的同学参加全国数学联赛,那么应选择()A.甲B.乙C.丙D.丁二、填空题(将正确答案填在题中横线上,每题3分,共24分)11.五个连续偶数中最大数是248,那么这五个数的平均数是__________.12.一组数据3,5,5,4,5,6的众数是_____.13.某校运动会前夕,要选择256名身高基本相同的女同学组成表演方阵,在这个问题中,最值得关注的是该校所有女生身高的________(填“平均数”、“中位数”或“众数”).14.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是____分.15.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.16.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:2S甲_____2S乙(填“>“或“<”).17.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是_______小时.18.给出下列五个命题:①32、42、52是一组勾股数;②y=3x是正比例函数,但不是一次函数;③对角线互相垂直且相等的四边形是正方形;④无论x为何值,一定都是二次根式;⑤一组数据的中位数有且只有一个,但众数可能不止一个;其中正确的是____(写出所有正确命题的序号)三、解答题(本题共有8小题,共66分)19.(本题6分)为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图.请根据图中信息,解答下列问题.(1)求本次调查获取的样本数据的平均数;(2)如果对该小区的800名居民全面开展这项有奖问卷活动,得10分者设为一等奖,请你根据调查结果,估计需准备多少份一等奖奖品?19题图20.(本题8分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩.数据如下:收集数据:90,91,89,96,90,98,90,97,91,98,99,97,91,88,90,97,95,90,95,88;整理、描述数据:成绩/分88 89 90 91 95 96 97 98 99学生人数 2 1 a 3 2 1 b 2 1数据分析:样本数据的平均数、众数和中位数如下表平均数众数中位数93 c d应用数据(1)由上表填空:a=________,b=________,c=________,d=________,(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为________分.(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号. 请估计评选该荣誉称号的最低分数,并说明理由.21.(本题8分)为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下甲、乙两人射击成绩的折线图:(1)求甲、乙两人射击成绩的中位数;(2)如果规定成绩较稳定者胜出,你认为谁应胜出?请通过计算方差说明理由.22.(本题8分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:年级决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:年级平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.23.(本题8分)甲、乙两名同学进入八年级后某科6次考试成绩如图所示:平均数方差中位数众数甲75 75乙33.3 70(1)请根据图填写上表;(2)从平均数和方差结合看,你认为谁的成绩稳定性更好些?24.(本题8分)有一道满分12分的解答题,按评分标准,所有考生的得分只有四种:0分,4分,8分,12分.老师为了了解学生的得分情况与题目的难易情况,从所有考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=______,b=______,并把条形统计图补全;(2)已知难度系数的计算公式为XLW,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0≤L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L≤1时,此题为容易题.试问此题对于这些考生来说属于哪一类?请说明理由.25.(本题10分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.(1)请根据乙校的数据补全条形统计图:(2)两组样本数据的平均数. 中位数众数如下表所示,写出m、n的值:(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好些,请为他们各写出条可以使用的理由;甲校:____.乙校:________.(4)综合来看,可以推断出________校学生的数学学业水平更好些,理由为________.26.(本题10分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.(1)填表;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?第20章 数据的整理与初步处理A 卷参考答案1.B. 解析:由题意可得:70×50%+90×30%+80×20%=78(分).故选B . 2.B. 解析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛. 故选B .3.B. 解析:∵22A B s s >,A x =B x ,∴数据B 的波动小一些.故答案为:B .4.C. 解析:因为数据1、2、2、3、7,的众数是2,中位数是3,平均数=,方差,所以选项A 、B 、D 正确,C 错误,故选C .5.A. 解析:这次数学测试的平均成绩是10079014801770860250271417822⨯+⨯+⨯+⨯+⨯+⨯+++++=82.故答案为A .6.D. 解析:由表可得出这组数据中1.72m 出现的次数最多,因此,这30名学生身高的众数是1.72m ;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m 、1.72m ,因此,这30名学生身高的中位数是1.72m . 故选:D .7.C. 解析:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1, 乙的总评成绩是:98×50%+90×20%+92×30%=94.6, 丙的总评成绩是:90×50%+88×20%+90×30%=89.6, 则学期总评成绩优秀的有甲、乙二人, 故选:C .8.C. 解析:A.平均数反映的是一组数据的平均水平,故不合题意; B. 中位数反映的是一组数据的中等水平,故不合题意;C.由于众数是数据中出现最多的数,鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最多的鞋号,符合题意.D.方差反映的是一组数据的波动程度,故不合题意;故选:C .9.C. 解析:A. ∵这10名学生体育成绩的中位数为59,故不正确; B. 这10名学生体育成绩的平均数为565725859260458.610+⨯++⨯+⨯= ,故不正确;C. 这10名学生体育成绩的众数为60,故正确;D. 这10名学生体育成绩的方差为()()()()()222225658.65758.625858.65958.626058.641.64810-+-⨯+-+-⨯+-⨯= ,故不正确; 故选C.10.B. 解析:∵2222551942S S S S =>=>=>=丁甲乙丙,∴乙较稳定, ∵甲、乙、丙、丁四位同学五次数学测验的成绩的平均数相同,∴应选择乙; 故选:B .11.244. 解析:248-2=246,246-2=244,244-2=242,242-2=240, 平均数是:(248+246+244+242+240)÷5, =1220÷5, =244, 故答案是:244.12.5.解析:这组数据中出现次数最多的数据为:5.故众数为5.故答案为5. 13.众数. 解析:根据题意:在这个问题中我们最值的关注的是队伍的整齐,身高必须差不多;故应该关注该校所有女生身高的众数. 故答案为:众数.14.93. 解析:根据题意得,95×60%+90×40%=93. 故答案为93. 15.2.8. 解析:∵一组数据5,8,10,x ,9的众数是8,∴x=8, ∴这组数据为5,8,10,8,9,该组数据的平均数为:()158108985++++=. ∴这组数据的方差()()()()()222222114S 58881088898 2.855⎡⎤=-+-+-+-+-==⎣⎦16.<. 解析:由图可得,甲10次跳远成绩离散程度小,而乙10次跳远成绩离散程度大,∴2S 甲<2S 乙,故答案为:<.17.3. 解析:根据题意得:这10名学生周末学习的平均时间=(1×1+2×2+4×3+2×4+1×5)÷10=3(小时), 故答案为:3.18.⑤. 解析:3,4,5是一组勾股数,但32、42、52不是一组勾股数,所以①错误;因为y=3x 是正比例函数,也是一次函数,所以②错误;因为对角线互相垂直平分且相等的四边形是正方形,所以③错误; 因为当x≥0时,是二次根式,所以④错误;因为一组数据的中位数有且只有一个,但众数可能不止一个,所以⑤正确. 故答案为⑤. 19.解:(1)6471081591110108.26410151110x ⨯+⨯+⨯+⨯+⨯==++++分,答:本次调查获取的样本数据的平均数为8.26分;(2)800×1050=160份,答:估计需准备160份一等奖奖品.20.解:(1)由题意得:90分的有5个;97分的有3个; 出现次数最多的是90分,∴众数是90分, 第10,第11个数都是91, ∴中位数是:(91+91)÷2=91, 故答案为5a =,3b =,c =90,d =91; (2)20×50%=10, 如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分; 故答案为91;(3)估计评选该荣誉称号的最低分数为97分;理由如下: ∵20×30%=6, 97分以上含97分的共有:1+2+3=6(人), ∴估计评选该荣誉称号的最低分数为97分.21.(1)由图可知,甲10次射击成绩按从小到大排序为2,6,6,7,7,7,8,9,9,9,故中位数为7; 乙10次射击成绩按从小到大排序为2,4,6,7,7,8,9,9,0,故中位数为787.52+=. (2)甲胜出.理由:甲、乙两人射击成绩的平均数分别是2667778999710x +++++++++==甲24677889910710x +++++++++==乙方差分别是2222(27)(67)(97)410s -+-++-==甲2222(27)(47)(107) 5.410s -+-++-==乙由22s s<甲乙可知,甲的射击成绩更稳定,即甲胜出.22.解:(1)(2)①∵平均数都相同,八年级的众数最高,∴八年级的成绩好一些.②∵平均数都相同,七年级的中位数最高,∴七年级的成绩好一些. ③∵七,八,九各年级前三名学生决赛成绩的平均分分别是93分,91分,94分,∴从各年级参加决赛的选手中分别选出3人参加总决赛,九年级的实力更强一些. 23.解:(1)平均数方差中位数众数甲75 125 75 75乙75 33.3 72.5 70(2)甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅为33.3,所以乙的成绩相对比甲稳定些.24.解:(1)∵被调查的总人数为24÷10%=240(人),∴b%=48240×100%=20%,则a%=1-(10%+20%+45%)=25%,∴4分的人数为240×25%=60(人),补全图形如下:故答案为:25、20;(2)∵X=02446081081248240⨯+⨯+⨯+⨯=7分,∴L=712≈0.5833,则此题对于这些考生来说属于中等难度试题.25.解:(1)由表格可得,乙校,70-79的有5人,60-69的有2人,补全条形统计图,如下图各分数段条形统计图(2)乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94,∴这组数据的中位数是:8587=862m+=,92n=;(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;乙校:我们学校的众数高于甲校,所以我们学校的成绩好;故答案为我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好26.解:(1)一班进球平均数:110(10×1+9×1+8×1+7×4+6×0+5×3)=7(个),一班中位数:第五第六名同学进7个球,故中位数为7(个);一班投中7个球的有4人,人数最多,故众数为7(个);二班方差:S22=110[0×(10-7)2+(9-7)2+2×(8-7)2+5×(7-7)2+0×(6-7)2+2×(5-7)2]=1.4.(2)二班选手水平发挥更稳定,争取夺得总进球数团体第一名,应该选择二班;一班前三名选手的成绩突出,分别进10个、9个、8个球,如果要争取个人进球数进入学校前三名,应该选择一班.。

八年级数学下册数据的整理与初步处理A卷华东师大版

八年级数学下册数据的整理与初步处理A卷华东师大版

数据的整理与初步处理(A卷)一、填空题(每小题6分,本题满分30分)1.我们进入中学以来,已经学习过不少有关数据的统计量,例如等,它们分别从不同的侧面描述了一组数据的特征.2.甲、乙两人进行投篮比赛,共进行了五次,每次每人投10个球.比赛结果投进个数分别为3.右图是某班学生在体检中测得每分钟心率频数的直方图,据此可知道该班参加体检学生的人数是,心率在范围的学生最多,占统计人数的比例是 .4.已知一组数据的一个样本x1,x2,x3,…x n的平均数是0.24,方差是1.02,那么估计这组数据的总体平均数是,方差是 .5.以6为分母,从0到22这23个自然数中任意取一个为分子写出分数,则所得分数不可约的机会是,得到整数的机会是 .二、选择题(每小题5分,本题满分25分)6.下列语句中错误的是( ).(A)一组数据的极差一定是正数(B)同一组数据的标准差不一定小于方差(C)如果一组数据的极差不是正数,那么这组数据的极差、方差、标准差都相等(D)气象预报:“受这次冷空气影响,我省南部地区将普遍降温10°C左右”中的10°C既是平均数,也可以看作某组数据的极差7.在学校开展的小制作评比活动中,二年级六个班都参加了比赛,根据他们上交作品的件数,绘制直方图如右.已知从左至右各长方形高的比为2∶3∶4∶2∶3∶1,小制作件数最多的三班上交了16件.经评选各班获奖件数如下表:在这次评选中,获奖率最高的两个班级依次是( ).(A)5班、3班 (B)3班、4班 (C)5班、6班 (D)6班、5班8.数据21,22,23,24,25,…,40的标准差是S1,数据302,303,304,304,305,…,321的标准差是S2,则( ).(A)S1<S2 (B)S1=S2 (C)S1>S2 (D)不能确定S1、S2的大小9.两组数据如下图,设图(1)中数据的平均数为、方差为,图(2)中数据的平均数为、方差为,则下列关系成立的是( ).10.甲乙两人一起玩游戏,甲先抛掷一枚硬币,如果正面向上,则甲胜;如果反面向上,则由乙抛掷,如果反面向上,则乙胜,否则甲胜.那么在这个游戏中( ).(A)甲乙两人获胜的机会是相等的(B)甲获胜的机会大(C)乙获胜的机会大(D)不能确定两人获胜机会的大小三、解答题(每小题9分,本题满分45分)11.据劳动和社会保障部在5省10市的抽样调查统计:下岗职工按技术素质分,初级技工及没有技术等级的人员占52.6%,中级技工占38.9%,高级技工及技师只占8.5%.根据上述数据绘制扇形统计图表示下岗职工的技术素质.12.下表给出了我国运动员在第23届至第27届奥运会上获得奖牌情况,请据此解答下列问题:(1) 制作一个新的统计表,表示出我国运动员在这五届奥运会上获得的奖牌总数;(2) 请你用恰当的统计图表示你所作出的新的统计表内容;(3) 从制作的统计图中你能得到哪些信息?(4) 分别从金牌数和奖牌总数两个方面比较我国运动员在五届奥运会上的成绩.13.从分别写有1,2,3,4,5五个数字的五张卡片中随意抽出两张,将下列事件按发生的机会从小到大的顺序排列,并写出简要的根据:(1)和是偶数;(2)积是偶数;(3)和是奇数;(4)积是奇数.14.要在甲乙两名学生中选拔一人参加国家数学冬令营集训.经统计,两人近期的8次测试成绩分别制作成统计图、表如下.如果让你选拔,打算让谁参加?两种统计表示中,哪一种较能直观地反映出两者的差异?15.现在发行的体育彩票,购买时号码允许重复,开奖时通过摇号得出特等奖号码.若与该号码相同的奖券只有一张,则独得特等奖奖金总额;若与该号码相同的奖券有几张,则每张券平分特等奖奖金总额.小李和老王各买了两张奖券,小李的两张号码完全相同,老王的两张则号码不同,试问:(1)谁中特等奖的可能性大一些,为什么?(2)若小李或老王中了特等奖,在奖金总额相同的情况下,谁得的奖金多一些?能说明理由吗?数据的整理与初步处理(A卷) 答案1.平均数、众数、中位数、极差、方差、标准差.2.3,1.04,1.0198; 6,4,2.3.43;67.5-75;41.9%.;1.02.6.A.7.D.8.B.9.B. 10.B.11.图略.12.(1)略;(2)采用直方图或折线图较适当,图略;(3)略;(4) 略.13.机会从小到大依次是(4)、(1)、(3)、(2)(提示:各自出现的可能种数分别为3,4,6,7).14.由发展趋势一般宜选拔乙参加,折线图反映两者差异比较明显.15.(1) 老王;(2)当只有一人中特等奖时,两人中奖后所得奖金数额相同;当不止一人中特等奖时,小李得到的奖金多一些.。

华师大版八年级下册数学第20章 数据的整理与初步处理含答案(各地真题)

华师大版八年级下册数学第20章 数据的整理与初步处理含答案(各地真题)

华师大版八年级下册数学第20章数据的整理与初步处理含答案一、单选题(共15题,共计45分)1、甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是()A.甲射击成绩比乙稳定B.乙射击成绩的波动比甲较大C.甲、乙射击成绩的众数相同D.甲、乙射中的总环数相同2、如果一个样本的方差是S=[(x1﹣20)2+(x2﹣20)2+…+(x12﹣20)2],将这组数据中的数字9去掉,所得新数据的平均数是()A.12B.15C.18D.213、下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳. C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩. D.一组数据:3,2,5,5,4,6的众数是5.4、1月,南开中学举行了欢乐环校跑比赛,用奔跑的脚步画出了最美南开.甲、乙、丙、丁四名同学赛前几次跑步测试成绩的平均用时(分钟)及方差如下表:甲乙丙丁平均用时(分钟)7.0 7.2 6.9 6.9方差 1.5 1.5 1.2 1.3老师想从中选派一名成绩较好且状态稳定的同学参加,那么应选()A. 甲B.乙C.丙D.丁5、如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.中位数是52.5B.众数是8C.众数是52D.中位数是536、某市近五年国民消费指数增长率分别为8.5%,9.2%,9.9%,l0.2%,11.2%.业内人士评论说:“这五年消费指数增长率相当平稳”,从统计角度看,“增长率相当平稳”说明下列()个统计量比较小。

A.方差B.平均数C.众数D.中位数7、下列说法正确的是()A.一组数据2,5,5,3,4的众数和中位数都是5B.“掷一次骰子,向上一面的点数是1”是必然事件C.掷一枚硬币正面朝上的概率是表示每抛硬币2次就有1次正面朝上D.计算甲组和乙组数据,得知= =10,=0.1,=0.2,则甲组数据比乙组数据稳定8、关于数据-4,1,2,-1,2,下面结果中,错误的是()A.中位数为1B.方差为26C.众数为2D.平均数为09、表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?()成绩(分)50 70 90男生(人)10 10 10女生(人) 5 15 5合计(人)15 25 15B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数 D.男生成绩的平均数小于女生成绩的平均数10、新型冠状病毒疫情期间,根据某地2月1日至5日这5天确诊病例增加数目得到一组数据:3,5,3,0,7,下列说法正确的是()A.众数是2B.平均数是3.5C.中位数是3D.方差是1311、牛牛同学10个周综合素质评价成绩统计如下:成绩(分)94 95 97 98 100周数(个) 1 2 2 4 1下列说法错误的是()A.这10个周的综合素质评价成绩的中位数是98B.这10个周的综合素质评价成绩的平均数是97C.这10个周的综合素质评价成绩的方差是3 D.这10个周的综合素质评价成绩的众数是9812、在一次艺术作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7、9、8、9、8、10、9、7,下列说法不正确的是()A.中位数是8.5B.平均数是8.4C.众数是9D.极差是313、用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图14、数据0,1,1,3,3,4的中位数和平均数分别是()A.2和2B.2和2.4C.1和2D.3和215、一组数据:a-1,a,a, a+1,若添加一个数据a,下列说法错误的是( )A.平均数不变B.中位数不变C.众数不变D.方差不变二、填空题(共10题,共计30分)16、甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是________.(填“甲”或“乙”)17、若一组数据6,9,11,13,11,7,10,8,12的中位数是m,众数是n,则关于x,y的方程组的解是________.18、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均成绩都是环,方差分别是则射击成绩最稳定的是________(填“甲”“乙”“丙”或“丁”).19、一组数据1,2,3,x,5的平均数是3,则该组数据的方差是________.20、有一组数据:3,5,5,6,8,这组数据的众数为________.21、若样本1,2,3,x的平均数为5,又知样本1,2,3,x,y的平均数为6,那么样本1,2,3,x,y的方差是________.22、中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是________分.23、七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体重的中位数为________ kg.24、某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g)如右表,若甲、乙两个样本数据的方差分别为、,则________ (填“>"、“=”、“<”)25、一组数2、a、4、6、8的平均数是5,这组数的中位数是________.三、解答题(共6题,共计25分)26、某校准备选出甲、乙两人中的一人参加县里的射击比赛,他们在相同条件下各射靶5次,成绩统计如下:命中环数/环7 8 9 10甲命中的频数/次 1 1 0 3乙命中的频数/次0 1 3 1(1)求甲、乙两人射击成绩的方差分别是多少?(2)已知该校选手前三年都取得了县射击比赛的第一名,请问应选择谁去参加比赛?27、康山村有村民300人,其中年收入800元的有150人,1500元的有100人,2000元的有45人,还有5人年收入100万元.根据这些数据计算该村人收入的平均数,中位数,众数.你认为这个数据中哪一个代表村民年收入的“平均水平”更合适?28、一组数据从小到大顺序排列后为:1,4,6,x,其中位数和平均数相等,求x的值.29、农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:)进行了测量.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为▲ ,图①中m的值为▲ ;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.30、已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2=[x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])参考答案一、单选题(共15题,共计45分)2、D3、D4、C5、C6、A7、D8、B9、A10、C11、A12、B13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。

精品试题华东师大版八年级数学下册第二十章数据的整理与初步处理专题练习试卷(精选)

精品试题华东师大版八年级数学下册第二十章数据的整理与初步处理专题练习试卷(精选)

八年级数学下册第二十章数据的整理与初步处理专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一组样本数据为1、2、3、3、6,下列说法错误的是()A.平均数是3 B.中位数是3 C.方差是3 D.众数是32、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的()A.最高分B.中位数C.极差D.平均分3、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.84、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是()A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名5、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.36、一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是()A.82B.77C.79.5D.807、数据2,5,5,7,x,3的平均数是4,则中位数是()A.6 B.5 C.4.5 D.48、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.929、一组数据1,2,a,3的平均数是3,则该组数据的方差为()A.32B.72C.6 D.1410、为迎接建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C .中位数,众数D .平均数,众数第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是2S 甲=0.01,2S 乙=0.009,2S 丙=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.2、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).3、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是2 1.4S =甲,20.85S =乙,则在本次训练中,运动员__________的成绩更稳定.4、一般地,若n 个数x 1,x 2,…,xn 的权分别是w 1,w 2,…,wn ,则:112212n n n x w x w x w w w w ++++++叫做这n 个数的_____.当一组数据中各个数据重要程度不同时,_____能更好地反映这组数据的平均水平.______反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.5、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为 13x =甲, 13x =乙,2 4s =甲,2 3.8s =乙则小麦长势比较整齐的试验田是__________. 6、将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是______,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的__________为这组数据的中位数.7、为了庆祝中国共产党成立100周年,某校举行“歌唱祖国”班级合唱比赛,评委将从“舞台造型、合唱音准和进退场秩序”这三项进行打分,各项成绩均按百分制计算,然后再按舞台造型占40%,合唱音准占40%,进退场秩序占20%计算班级的综合成锁.七(1)班三项成绩依次是95分、90分、95分,则七(1)班的综合成绩为________.8、某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动,为了了解全校学生的植树情况,学校随机抽查了100名学生的植树数量情况,将调查数据整理如表:则这100名同学植树棵数的中位数为_____棵.9、数据25,23,25,27,30,25的众数是 _____.10、数据6,3,9,7,1的极差是_________.三、解答题(5小题,每小题6分,共计30分)1、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息: 20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.抽取的20名男生的测试成绩扇形统计图如下:其中,抽取的20名男生的测试成绩中,D 组的成绩如下:47,48,48,47,48,48.抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:(1)根据以上信息可以求出:=a ______,b =______,c =______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.2、某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程.甲同学五次体育模拟测试成绩统计表:小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:2222221(2628)(2828)(2728)(2928)(3028)25S ⎡⎤=-+-+-+-+-=⎣⎦乙(分2) 根据上述信息,完成下列问题:(1)a 的值是______;(2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由;(3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将______.(填“变大”“变小”或“不变”)3、甲、乙两支篮球队进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表:(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩?4、计算从甲厂抽取的20只鸡腿质量的方差,它们的质量(单位:g)如下:整理数据:甲厂:75,74,74,76,73,76,75,77,77,74,74,75,75,76,73,76,73,78,77,725、至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?-参考答案-一、单选题1、C【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】A 、平均数为1233+6=35+++,故此选项不符合题意; B 、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;C 、方差为222221[(13)(23)(33)(33)(63)] 2.85⨯-+-+-+-+-=,故此选项符合题意; D 、众数为3,故此选项不符合题意.故选:C .【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.2、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.3、D【解析】【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.4、D【解析】【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.5、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.6、D【解析】【分析】将数据排序,进而根据中位数的定义,可得答案.【详解】解:数据79、81、77、82、75、82从小到大排列后可得:75、77、79、81、82、82,排在中间的两个数是79,81,所以,其中位数为79+81=802,故选:D.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、D【解析】【分析】先计算出x 的值,再根据中位数的定义解答.【详解】解:∵2,5,5,7,x ,3的平均数是4,∴2557346x +++++=⨯,∴x =2,数据有小到大排列为2,2,3,5,5,7, ∴中位数是3542+=, 故选:D .【点睛】此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.8、D【解析】【分析】根据加权平均数计算.【详解】 解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分, 故选:D .【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.9、B【解析】根据平均数的定义先求出a的值,再根据方差公式进行计算即可.【详解】解:∵数据1,2,a,3的平均数是3,∴(1+2+a+3)÷4=3,∴a=6,∴这组数据的方差为14[(1−3)2+(2−3)2+(6−3)2+(3−3)2]=72.故选:B.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(xn−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10、C【解析】【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.二、填空题1、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、甲【解析】【分析】根据题意可得:22S S <甲乙,即可求解.【详解】 解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.∴22S S <甲乙,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.3、乙【解析】【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵2 1.4S =甲,20.85S =乙, ∴22S S >甲乙,∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、 加权平均数 加权平均数 权【解析】略5、乙【解析】【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】 解:∵13x =甲,13x =乙, ∴x x =甲乙,∵3.8<4,∴S 乙2<S 甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.6、 奇数 平均数【解析】略7、93【解析】【分析】根据题意求这组数据的加权平均数即可.解:七(1)班的综合成绩为9540%9040%9520%93⨯+⨯+⨯=分故答案为:93【点睛】 本题考查了求加权平均数,掌握加权平均数的计算是解题的关键,加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 8、5【解析】【分析】利用中位数的定义求得中位数即可.【详解】解:因为共有100个数,把这组数据从小到大排列,最中间两个数的平均数是第50个数和第51个数的平均数,所以中位数是(55)25+÷=.故答案为:5.【点睛】本题考查了确定一组数据的中位数的能力,解题的关键是掌握注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9、25【解析】【分析】根据众数的定义分析即可,众数:在一组数据中出现次数最多的数.解:数据25,23,25,27,30,25的众数是25故答案为:25【点睛】本题考查了众数的定义,理解众数的定义是解题的关键.10、8【解析】【分析】根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.【详解】-=解:数据6,3,9,7,1的极差是918故答案为:8【点睛】本题考查了极差定义,理解极差的定义是解题的关键.三、解答题1、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.【解析】【分析】(1)由扇形统计图,可求出a的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;(2)通过比较平均数、中位数、众数的大小即可解答;(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.解:(1)1-5%-5%-45%-30%=15%,15a ∴=由扇形统计图中,可知,男生成绩的中位数位于D 组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,4848482b +∴== 女生成绩出现次数最多的是50,因此众数是50,50c ∴=故答案为:15,48,50;(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.(3)2045%=9⨯(人)1097009003504057552020⨯+⨯=+=(人) 答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.【点睛】本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.2、 (1)29(2)乙的体育成绩更好,理由见解析(3)变小【解析】【分析】(1)根据平均分相同,根据乙的方差公式可得乙的平均分为28,则甲的平均分也为28,进而求得a(2)根据甲的成绩计算甲的方差,比较甲乙的方差,方差小的体育成绩更好;(3)根据第六次的成绩等于平均数,根据方差公式可知方差将变小.(1) 解:甲、乙两位同学五次模拟测试成绩的均分相同, 乙的方差为:2222221(2628)(2828)(2728)(2928)(3028)25S ⎡⎤=-+-+-+-+-=⎣⎦乙 则平均分为28所以甲的平均分为28则25292730528a ++++=⨯解得29a =故答案为:29(2)乙的成绩更好,理由如下,2222221(2528)(2928)(2728)(2928)(3028) 3.25S ⎡⎤=-+-+-+-+-=⎣⎦甲 ∴2S 乙<2S 甲 ∴乙的成绩较稳定,则乙的体育成绩更好 (3)222222218(2528)(2928)(2728)(2928)(3028)(2828) 2.763S +⎡⎤=-+-+-+-+--=≈⎣⎦甲 2.7 3.2< ∴甲6次模拟测试成绩的方差将变小故答案为:变小【点睛】本题考查了求方差,平均数,根据方差判断稳定性,掌握求方差的公式是解题的关键.3、(1)90,28.4,87;(2)选派甲球队参赛更能取得好成绩【解析】【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2],进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可.【详解】解:(1)甲的平均数是:15×(82+86+95+91+96)=90;甲队的方差是:15×[(82﹣90)2+(86﹣90)2+(95﹣90)2+(91﹣90)2+(96﹣90)2]=28.4;把乙队的数从小到大排列,中位数是87;故答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩.【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(xn ﹣x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 4、2.5【解析】【分析】先求出平均数,再利用方差公式求解即可.【详解】解:甲厂20只鸡腿的平均质量:()727337447547647737875g 20x +⨯+⨯+⨯+⨯+⨯+==甲 甲厂20只鸡腿质量的方差:()()()()22222727573753777537875 2.520s -+-⨯+⋅⋅⋅+-⨯+-==甲 【点睛】本题考查了方差,解题的关键是掌握方差的公式.5、(1) 2.75-;(2)最高分116,最低分52;(3)83.25分;(4)没有达到,低15分【解析】【分析】(1)用小丽的数学成绩减去平均分即可得出小丽的离均差;(2)①用班平均分加上离均差得出数学成绩,即可得出数学成绩的最高分与最低分; ②把这组同学的离均差相加除以8,再加上班平均分即可得出这组同学的平均分;③用班平均分与组平均分作比较,作差即可得出答案.【详解】(1)小丽数学成绩的离均差为:8284.75 2.75-=-;(2)①这组同学数学成绩的最高分为:84.7531.25116+=,+-=;最低分为:84.75(32.75)52+-+++-+-+-+-÷+②[10.25(8.75)31.2515.25( 3.75)(12.75)(10.75)(32.75)]884.75 =(分),83.25∴这组同学数学成绩的平均分为83.25;③∵83.2584.75<,∴该组数学成绩的平均分没有达到班平均分,-=,84.7583.25 1.5∴低了1.5分.【点睛】本题考查有理数的加减运算,掌握运算法则是解题的关键.。

华师大版初中八年级数学下册第二十一章数据的整理与初步处理考试卷测试题

华师大版初中八年级数学下册第二十一章数据的整理与初步处理考试卷测试题

华师大版初中八年级数学下册第二十一章数据的整理与初步处理考试卷测试题这套华师大版初中八年级数学下册第二十一章数据的整理与初步处理考试卷测试题免费下载为绿色圃中小学教育网整理,所有试卷与中学教材大纲同步,本站试卷供大家免费使用下载打印。

因为试卷复制时一些内容如图片之类无法显示,需要下载的老师、家长可以到本帖子底部下载WORD 编辑的DOC附件使用!试卷内容预览:第21章《数据的整理与初步处理》测试题一、选择题(每小题3分,共30分)1.数据1,2,3,4,5的平均数是()A.1 B.2 C.3 D.42.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是()A.4 B.5 C.6 D.103.体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数和极差分别是()A.2.1,0.6 B.1.6,1.2 C.1.8,1.2 D.1.7,1.24.某校篮球班21名同学的身高如下表:身高(cm) 180 186 188 192 208人数(个) 4 6 5 4 2则该校篮球班21名同学身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.186,188 D.208,1885.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶) 12 32 13 43建议学校商店进货数量最多的品牌是()A.甲品牌 B.乙品牌 C.丙品牌 D.丁品牌6.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是,,,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁7.刘翔在田径测试赛中获得了110m栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的()A.众数 B.方差 C.平均数D.中位数8.某住宅小区六月份1日至5日每天用水量变化情况如图1所示,那么这5天平均每天的用水量是()A.30吨 B.31吨 C.32吨 D.33吨9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图2所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是()A.6小时、6小时 B.6小时、4小时 C.4小时、4小时 D.4小时、6小时10.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据. 你认为应选()A.甲苗圃的树苗 B.乙苗圃的树苗C.丙苗圃的树苗 D.丁苗圃的树苗树苗平均高度标准差甲苗圃 1.8 0.2乙苗圃 1.8 0.6丙苗圃 2.0 0.6丁苗圃 2.0 0.2二、填空题(每小题4分,共32分)1.一组数据:-3,5,9,12,6的极差是 .2.某校艺术节演出中,5位评委给某个节目打分如下: 9分,9.3分,8.9分,8.7分,9.1分,则该节目的平均得分是分.3.数据9.30,9.05,9.10,9.40,9.20,9.10的众数是;中位数是.4.甲、乙、丙三位选手各10次射击成绩的平均数和方差.统计如下表:选手甲乙丙平均数 9.3 9.3 9.3方差 0.026 0.015 0.032则射击成绩最稳定的选手是(填“甲”、“乙”、“丙”中的一个).5.若一组数据 1,1,2,3,的平均数是3,则这组数据的众数是.6.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是.7.某初中学校的男生、女生以及教师人数的扇形统计图如图3所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有___________人.8.小明同学六次英语测验的平均成绩为75分.图4是根据小明同学六次英语测验的成绩情况绘制的. 请你将缺少的一点补在虚线恰当的位置上.三、解答题(共38分)1.某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)2526211728262025263020212026302521192826(1)请根据以上信息完成下表:(4分)销售额(万元) 17 19 20 21 25 26 28 30频数(人数) 1 1 3 3(2)上述数据中,众数是万元,中位数是万元,平均数是万元;(6分)(3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.(4分)2.王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如拆线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲乙两山杨梅的产量总和;(6分)(2)试通过计算说明,哪个山上的杨梅产量较稳定?(4分)3.三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:表一A B C笔试 85 95 90口试 80 85(1)请将表一和图一中的空缺部分补充完整.(4分)(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(6分)(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.(4分)这套华师大版初中八年级数学下册第二十一章数据的整理与初步处理考试卷测试题免费下载为绿色圃中小学教育网整理,所有试卷与中学教材大纲同步,本站试卷供大家免费使用下载打印。

华师大版八年级数学初二下册:第20章 数据的整理与初步处理测试卷及参考答案

华师大版八年级数学初二下册:第20章 数据的整理与初步处理测试卷及参考答案

第4题图55%25%20%4元3元2元③②①③②①八年级数学第20章 数据的整理与初步处理测试题班级 姓名 得分一、 选择题(本大题共分12小题,每小题3分共30分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( )A. 2B. 4C. 4.5D. 5 2.数据2、4、4、5、5、3、3、4的众数是( )A. 2B. 3C. 4D. 5 3.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是( )A. 2B. 2.75C. 3D. 5 4.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A. 2.95元,3元 B. 3元,3元 C. 3元,4元 D. 2.95元,4元 5.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( )A. 2B. 3C. 4D. 5 6.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则( )A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a ,4,2的平均数是4,则这个样本的方差是( ) A. 2 B. C. 3 D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则的值为( )A. 1B. 2C. 3D. 4 9.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为18,方差为2,则对于样本x 1+2,x 2+2,x 3+2,…,x n +2,下列结论正确的是( ) A.平均数为18,方差为2 B.平均数为19,方差为3 C.平均数为19,方差为2 D.平均数为20,方差为4 10.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ) 分数 20 21 22 23 24 25 26 27 28 人数2438109631A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分歧D.该组数据的极差是8分 二、填空题(本大题共8小题,每小题3分,共24分)11.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .12.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+5,x 3+4的平均数为 . 13.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是 . 14. 五个数1,2,4,5,a 的平均数是3,则a = ,这五个数的方差为 . 15.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .16.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是23862人数108642714163锻炼时间小时()学生人数人()10987201510517. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是 .18.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x = ,y = .三、 解答题(本大题共46分) 19.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42.求它们的中位数.20.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?21.(本小题12分)如图是某中学乒乓球队队员年龄分布的条形图. ⑴计算这些队员的平均年龄; ⑵大多数队员的年龄是多少? ⑶中间的队员的年龄是多少?22.(本小题12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示: 年级 决赛成绩(单位:分) 七年级 80 86 88 80 88 99 80 74 91 89 八年级 85 85 87 97 85 76 88 77 87 88 九年级82807878819697888986⑴ 请你填写下表:⑵ 请从以下两个不 同的角度对三个年级 的决赛成绩进行分析: ① 从平均数和众数相结合看(分析哪个年级成绩好些);② 从平均数和中位数相结合看(分析哪个年级成绩好些)③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.年级 平均数 众数中位数 七年级 85.5 87八年级 85.585九年级84参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.A;8.D;9.C;10.B;二、11.14;12.10;13.5;14.3,2;15.30,40;16.75分;17.12;18.98,100;三、19. ⑴由=3 得 a=6;由=5 得 b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为 a,b,c,d,e,f,g, a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得 e+f+g=7×38-33×4 ④,将④代入③得d=34.20.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.21. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁22.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.。

华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章数据的整理与初步处理含答案一、单选题(共15题,共计45分)1、甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:则这四人中成绩最稳定的是()A.甲B.乙C.丙D.丁2、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生的成绩平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③3、如图是甲、乙两位同学5次数学考试成绩的折线统计图,你认为成绩较稳定的是( ).A.甲B.乙C.甲、乙的成绩一样稳定D.无法确定4、五个正整数2、4、5、m、n的平均数是3,且m≠n,则这五个数的中位数是()A.5B.4C.3.5D.35、某工厂六台机床第一天和第二天生产的零件数分别如图7-1和图7-2所示,则与第一天相比,这六台机床第二天生产零件数的平均数与方差的变化是()A.平均数变大,方差不变B.平均数变小,方差变大C.平均数不变,方差变小D.平均数不变,方差变大6、某共享单车前公里1元,超过公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,应该要取什么数()A.平均数B.中位数C.众数D.方差7、在一次数学测试后,随机抽取八(1)班5名学生的成绩(单位:分)如下:80,98,98,83,91,关于这组数据的说法错误的是( )A.众数是98B.平均数是90C.中位数是91D.方差是568、在学校开展的环保主题实践活动中,某小组的位同学捡拾废弃塑料袋的个数分别为: .这组数据的众数、中位数分别为()A. B. C. D.9、临近中招,老师将小华同学“考前五套卷”数学分数统计如下:101,98,103,101,99.老师判断小华成绩还算比较稳定.老师判断的依据是()A.众数B.平均数C.中位数D.方差10、下列说法正确的是()A.要调查现在人们在数字化时代的生活方式,宜采用全面调查方式;B.要调查某品牌圆珠笔芯的使用寿命,宜采用抽样调查方式;C.一组数据2=0.128,乙3,4,4,6,8,5的中位数是5; D.若甲组数据的方差s甲2=0.036,则甲组数据更稳定.组数据的方差s乙11、学习组织“超强大脑”答题赛,参赛的12名选手得分情况如表所示,那么这12名选手得分的中位数和众数分别是()60 80 90 95分数(分)人数3 2 3 4(人)和90 D.90和9012、下表是我市七个县(区)今年某日最高气温(℃)的统计结果:县(区)平山区明山区溪湖区南芬区高新区本溪县桓仁县气温(℃)26 26 25 25 25 23 22则该日最高气温(℃)的众数和中位数分别是()A. B. C. D.13、工厂欲招收一名技工,下表是对两名应聘者加工相同数量同一种零件的数据进行分析所得的结果,你认为录用哪位较好?()A.录用甲B.录用乙C.录用甲、乙都一样D.无法判断录用甲、乙14、某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变15、某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610kg,=608kg,亩产量的方差分别是=29.6,=2.7. 则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙二、填空题(共10题,共计30分)16、一组数据101,98,99,100,102的平均数为100,则=________;17、用计算器进行统计计算时,在输入数据的过程中,如果发现刚输入的数据有错误可按键________将它清除,再重新输入正确数据.18、2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,你会选择________选手(填A或B),理由是________.19、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=13,=13,S甲2=7.5,S乙2=21.6,则小麦长势比较整齐的试验田是________(填“甲”或“乙”).20、学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是________.21、一组数据2、4、5、6、8的中位数是________.22、已知一组数据x1, x2, x3, x4, x5的平均数是2,方差是5,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是________ 、________ .23、有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是________24、数据3,2,1,5,﹣1,1的众数和中位数之和是________25、某篮球兴趣小组五位同学的身高(单位:cm)如下:175、175、177、x、173,已知这组数据的平均数是175,则这组数据的方差是________ .三、解答题(共6题,共计25分)26、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:(1)根据上表数据,完成下列分析表:(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?27、一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:A B C D E 平均分方差数学71 72 69 68 70 2 英语88 82 94 85 76 85(公式:方差s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],其中是平均数.)(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的方差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=.(说明:标准差为方差的算术平方根)从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?28、我市今年体育中考于5月18日开始,考试前,九(2)班的王茜和夏洁两位同学进行了8次50m短跑训练测试,她们的成绩分别如下:(单位:秒)第1次第2次第3次第4次第5次第6次第7次第8次王茜8.4 8.7 8.0 8.4 8.2 8.3 8.1 8.3夏洁8.7 8.3 8.6 7.9 8.0 8.4 8.2 8.3(1)王茜和夏洁这8次训练的平均成绩分别是多少?(2)按规定,女同学50m短跑达到8.3秒就可得到该项目满分15分,如果按她们目前的水平参加考试,你认为王茜和夏洁在该项目上谁得15分的可能性更大些?请说明理由.29、为了从甲、乙两名学生中选拔出一人参加今年6月份的全市中学生数学竞赛,学校每个月对他们的学习水平进行一次测验,下表是两人赛前5次的测验成绩(单位:分).(1)如果甲、乙两名同学5次测验成绩的平均分相等,那么甲同学二月的成绩x等于多少?两人的平均成绩为多少?(2)如果你是他们的辅导教师,在它们的平均分相同的情况下你应选派哪位学生参加这次数学竞赛呢?请说明理由.30、某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试.他们的成绩(百分制)如表所示:若公司分别赋予面试成绩和笔试成绩5和3的权,平均成绩高的被录取,判断谁将被录取,并说明理由.参考答案一、单选题(共15题,共计45分)1、D2、D3、A5、D6、B7、D8、D9、D10、B11、B12、A13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、。

完整版华师大版八年级下册数学第20章 数据的整理与初步处理含答案

完整版华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章数据的整理与初步处理含答案一、单选题(共15题,共计45分)1、如图是某市一周以来新冠肺炎疑似病例数的统计图,则这七天疑似病例数的中位数和众数分别是()A.中位数是25,众数是23B.中位数是33,众数是23C.中位数是25,众数是33D.中位数是33,众数是332、下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁 13 14 15 16频数 5 15 x 10- xC.平均数、方差D.众数、中位数3、一组数据17,35,18,50,36,99的中位数为()A.18B.35C.35.5D.504、已知一组数据1,3,2,5,x 的众数是3,则这组数据的中位数是()A.2.8B.2C.3D.55、学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:写作能力普通话水平计算机水平小亮90分75分51分小丽60分84分72分将写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定6、小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李D.无法确定7、某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.平均数是80B.极差是15C.中位数是80D.标准差是258、一组数据1,3,a,5,7的众数为7,则这组数据的中位数为()A.1B.3C.5D.79、某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):,关于这组数据,下列结论不正确的是()A.平均数是-2B.中位数是-2C.众数是-2D.方差是710、每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3B.3,2C.2,3D.2,211、某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定12、下列说法不正确的是()A.了解全市中学生对泰州“三个名城”含义的知晓度的情况,适合用抽样调查 B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定 C.某种彩票中奖的概率是,买100张该种彩票一定会中奖 D.数据﹣1、1.5、2、2、4的中位数是2.13、一组数据2,3,5,5,4的众数、中位数分别是()A.5,4B.5,5C.5,4.5D.5,3.814、一组数据:6,3,4,5,7的平均数和中位数分别是()A.5,5B.5,6C.6,5D.6,615、某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是().A.直接观察B.查阅文献资料C.互联网查询D.测量二、填空题(共10题,共计30分)16、“植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是________17、某班一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人.则本次测验的中位数是________.18、武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是________19、数字2018、 2019 、2020 、2021 、2022的方差是________;20、某区10名学生参加实际汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么10名学生所得分数的中位数是________.21、为了解学生跳绳情况,对慧泉中学九(7)班某10位男生进行了1分钟跳绳测试,测试成绩(单位:个)如下:120,130,115,125,140,125,130,150,155,130,则这组数据的众数为________.22、一个样本为1,3,2,2,a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为________23、一组数据2、﹣2、4、1、0的方差是________.24、一组数据:1,2,3,4,5的方差为________.25、在某次知识竞赛中,10名学生的成绩统计如表:则这10名学生成绩的平均数为________.三、解答题(共6题,共计25分)26、某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:A班:88,91,92,93,93,93,94,98,98,100B班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中a、b、c的值;(2)依据数据分析表,有人说:“最高分在A班,A班的成绩比B班好”,但也有人说B班的成绩要好,请给出两条支持B班成绩好的理由.27、下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?28、2011年3月,胡润研究院发布“2010胡润艺术榜”,艺术榜是依据度公开拍卖市场作品的总成交额排名,其中排名前10位的国宝国画艺术家的情况如下表:(1)请你根据表中提供的艺术家的年龄情况填写下列表格(2)请你算出排名前10位的国宝国画艺术家的平均年龄及年龄的中位数.(3)请你根据题意从不同的角度写出两条信息.29、某校九年级甲班学生中,有5人13岁,30人14岁,5人15岁,求这个班级学生的平均年龄.30、某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:七年级 88 94 90 94 84 94 9994 99 100八年级 84 93 88 94 93 98 9398 97 99整理数据:按如下分段整理样本数据并补全表格:分析数据:补全下列表格中的统计量:得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、B6、A7、D8、C9、D10、B11、A13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版八年级下《数据的整理与初步处理》A卷
一、选择题(每题4分,共16分)
1.对某班
A.扇形统计图
B.频数直方图C折线统计图D.以上三种均可以2.下图刻画了小李、小王、小张、小刘、小扬五位同学每个月的平均花费情况.
则下列说法错误的是()
A.小张的每月花费大约是小王的20%,大约是小扬的33.3%
B.小刘的每月花费占这五位同学每月总花费的35%
C.这五位同学每月花费钱数之比依次是4:5:1:7:3
D.小王的每月花费是另外四位同学每月总花费的1/4
3.一枚图钉抛掷后落地时针尖朝上的概率是3/5,一枚骰子各面上标有l~6六个数字,同时抛出一枚骰子和一枚图钉,得到偶数与针尖着地的概率是()
A. 1/5
B. 2/5
C. 3/5
D.不确定
4.超市里有甲、乙、丙、丁四种牌子的酱油,标准质量都是500克,从中各抽出5袋测的质量如下,根据下列数据(单位:克)判断,质量稳定的是()A 甲:501 500 506 510 509 B 乙:493 494 511 494 508
C 丙:503 504 499 501 500
D 丁:497 502 495 507 501
二、填空题(每空2分,共20分)
5.小明任意抛一枚硬币,连续掷了三次,每次都朝上的概率是
6.暗箱内放有大小、形状、质地相同的4个球,分别标上1、2、3、4四个号码,有放回的连续摸两次,都大于2的概率是,都是奇数的概率是第一次是奇数第二次是偶数的概率是
7.2001年某中学少年队员的“小主人文具店”开业后第一季度的收人与支出情况如下图:
根据统计图填空:
月份的收入最多,
是元;月份的支
出最多,是元;第一
季度盈利大约
8.甲、乙两名跳水运动员
在三米跳板跳水中平均分
都是9.5分,甲的方差为0.62,乙的方差为0.45,则的成绩稳定。

三、简答题(第9题4分,其余每题8分,共36分)
9.到医院看病注射青霉素药水,医生都要给你做皮试,极少数人对青霉素药水过敏,大约也就是一千个人里有一个,即发生过敏的概率大约是0.1%,医生为什么一定要这么做呢?
10.下面的频数直方图表示的是一所菜园农场种植的几种作物的面积.你能根据这幅图,绘制扇形统计图吗?如果
能请画出扇形统计图;如果不能,
请说明理由.
11.下表列出了中国、美国、印度、澳大利亚1996年的国土面积和国家级保护区
12.小刚和小华做投掷硬币的游戏,任意投掷一枚均匀的硬币三次,如果至少有两次正面朝上,那么小刚获胜;如果至少有两次反面朝上,那么小华获胜.请问,这个游戏公平吗?为什么?
13.在分别写着数字。

、1、2、3的四张卡片中任意取出2张组成一个两位数,求这个两位数能被2整除的概率.
四、分析题(每题14分,共28分)
14.有甲、乙两个新品种的水稻进行杂交配系,要比较出产量较高、稳定性
kg)
(2)哪一种品种稳定性较好?
(3)据统计,应选哪一种品种做杂交配系?
15.以下统计图是浙江华盛和日尔曼公司2003年某月上旬的收盘价,分别计算它们的平均值、极差和方差,并比较这两种股票在这段时间内的涨跌情况.。

相关文档
最新文档