天津市枫叶国际学校初中校区2017—2018学年第一学期九年级数学期末模拟试卷(无答案)

合集下载

〖汇总3套试卷〗天津市2018年九年级上学期期末学业质量检查模拟数学试题

〖汇总3套试卷〗天津市2018年九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列事件中,属于必然事件的是( )A .方程2230x +=无实数解B .在某交通灯路口,遇到红灯C .若任取一个实数a ,则2(1)0a +>D .买一注福利彩票,没有中奖【答案】A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A 、方程2x 2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x 2+3=0无实数解是必然事件,故本选项正确;B 、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C 、若任取一个实数a ,则(a+1)2>0是随机事件,故本选项错误;D 、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A .【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.2.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A ”的概率相同的是( ) A .抽到“大王”B .抽到“2”C .抽到“小王”D .抽到“红桃” 【答案】B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“A ”的概率是425427=, A. 抽到“大王” 的概率是215427=, B. 抽到“2” 的概率是425427=, C. 抽到“小王”的概率是215427=, D. 抽到“红桃”的概率是1354, 故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.3.若二次函数y =-x 2+px+q 的图像经过A (1m +,n )、B (0,y 1)、C (3m -,n )、D (225m m -+,y 2)、E (225m m --,y 3),则y 1、y 2、y 3的大小关系是( )A .y 3<y 2<y 1B .y 3<y 1<y 2C .y 1<y 2<y 3D .y 2<y 3<y 1【答案】A【分析】利用A 点与C 点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B 、D 、E 离对称轴的远近求解.【详解】∵二次函数y =-x 2+px+q 的图像经过A (1m +,n )、C (3m -,n ),∴抛物线开口向下,对称轴为直线2x =,∵点D (225m m -+,y 2)的横坐标: ()2225144m m m -+=-+≥,离对称轴距离为422≥-,点E (225m m --,y 3)的横坐标: ()2225144m m m -+-=---≤-,离对称轴距离为()246--≥, ∴B (0,y 1)离对称轴最近,点E 离对称轴最远,∴y 3<y 2<y 1.故选:A .【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.4.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m【答案】C 【分析】设与墙相对的边长为(28-2x )m ,根据题意列出方程x (28-2x )=80,求解即可.【详解】设与墙相对的边长为(28-2x )m ,则0<28-2x≤12,解得8≤x <14,根据题意列出方程x (28-2x )=80,解得x 1=4,x 2=10因为8≤x <14∴与墙垂直的边x 为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.5.如图,PA、PB、CD是O的切线,A、B、E是切点,CD分别交PA、PB于C、D两点.如40APB∠=︒,则COD∠的度数为()A.50︒B.60︒C.70︒D.75︒【答案】C【分析】连接OA、OB、OE,由切线的性质可求出∠AOB,再由切线长定理可得出∠COD= 12∠AOB,可求得答案.【详解】解:连接OA、OE、OB,所得图形如下:由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=12∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.6.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CDAB等于()A .tanαB .sinaC .cosαD .1tan α【答案】C 【分析】连接BD 得到∠ADB 是直角,再利用两三角形相似对应边成比例即可求解.【详解】连接BD,由AB 是直径得,∠ADB=90︒.∵∠C=∠A ,∠CPD=∠APB ,∴△CPD ∽△APB ,∴CD:AB=PD:PB=cosα.故选C.7.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10【答案】C 【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C8.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )A .8B .12C .16D .32 【答案】C【分析】如图,根据菱形的性质可得12AO CO AC ==, 12DC BO BD ==,AC BD ⊥,再根据菱形的面积为28,可得228OD AO ⋅=①,由边长结合勾股定理可得2236OD OA +=②,由①②两式利用完全平方公式的变形可求得2()64OD AO +=,进行求得2()16OD AO +=,即可求得答案.【详解】如图所示:四边形ABCD 是菱形, 12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴ 12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=, 8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16,故选C .【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.9.一元二次方程x 2﹣3x ﹣4=0的一次项系数是( )A .1B .﹣3C .3D .﹣4 【答案】B【解析】根据一元二次方程的一般形式是:ax 2+bx+c =0(a ,b ,c 是常数且a ≠0),在一般形式中bx 叫一次项,系数是b ,可直接得到答案.【详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x ,系数是:﹣3,故选:B .【点睛】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.10.如图,半径为5的A 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A.8B.10C.11D.12【答案】A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.11.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣3,1)D.(3,﹣1)【答案】D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=12OB=1,OH=32OB3∴B31),∴点B关于原点O31).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.12.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.42【答案】D【分析】作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【详解】解:如图所示:四边形ABCD 是边长为4cm 的正方形,在Rt △ABC 中,由勾股定理得: AC=2244+=42cm .所以对角线的长:AC=42cm .故选D .二、填空题(本题包括8个小题)13.将二次函数223y x x =-+化成2()y x h k =-+的形式,则y =__________.【答案】()212x -+【分析】利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:223y x x =-+, 22113y x x =-+-+,()212y x =-+. 故答案为:()212x -+.【点睛】本题考查了二次函数的三种形式:一般式:2y ax bx c =++,顶点式:2()y a x h k =-+;两根式:12()()y a x x x x =--.正确利用配方法把一般式化为顶点式是解题的关键.14.如图,在ABC 与AED 中,AB BC AE ED=,要使ABC 与AED 相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)【答案】∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:【详解】添加条件:∠B=∠E ; ∵AB BC AE ED=,∠B=∠E , ∴△ABC ∽△AED ,故答案为:∠B=∠E (答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.15.若反比例函数4y x =-的图像上有两点12(),A x ,2(,1)B x -, 则1x ____2x .(填“>”或“=”或“<”) 【答案】<【分析】先把A(1x ,2),B(2x ,-1)代入反比例函数4y x =-,求出12x x 、的值并比较出其大小即可. 【详解】∵点A(1x ,2),B(2x ,-1)是反比例函数4y x =-图像上的点, ∴1422x =-=-,2441x =-=-, ∵24-<,∴12x x <,故答案为:<.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式. 16.已知二次函数y =x 2﹣4x+3,当a≤x≤a+5时,函数y 的最小值为﹣1,则a 的取值范围是_______.【答案】﹣3≤a≤1【分析】求得对称轴,然后分三种情况讨论即可求得.【详解】解:∵二次函数y =x 1﹣4x+3=(x ﹣1)1﹣1,∴对称轴为直线x =1,当a <1<a+5时,则在a≤x≤a+5范围内,x =1时有最小值﹣1,当a≥1时,则在a≤x≤a+5范围内,x =a 时有最小值﹣1,∴a 1﹣4a+3=﹣1,解得a =1,当a+5≤1时,则在a≤x≤a+5范围内,x =a+5时有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a =﹣3,∴a 的取值范围是﹣3≤a≤1,故答案为:﹣3≤a≤1.本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.17.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.【答案】1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.【答案】⊙O上或⊙O内【分析】直接利用反证法的基本步骤得出答案.【详解】解:用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设:若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O上或⊙O内.故答案为:在⊙O上或⊙O内.【点睛】此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.三、解答题(本题包括8个小题)19.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?【答案】(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵让顾客获得最大优惠,∴y=22.答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额.【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.20.如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.【答案】1m高【分析】根据相似三角形的性质即可得到结论.【详解】解:由于BF=DB=2m,即∠D=45°,∴DP=OP=灯高.在△CEA与△COP中,∵AE⊥CP,OP⊥CP,∴AE∥OP.∴△CEA∽△COP,∴CA AE CP OP=.设AP=xm,OP=hm,则121x h=+,①,DP=OP=2+4+x=h,②联立①②两式,解得x=4,h=1.∴路灯有1m高.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.21.如图,正三角形ABC内接于⊙O,若AB=43cm,求⊙O的直径及正三角形ABC的面积.【答案】⊙O的直径为8cm,正三角形ABC的面积为3cm2【分析】根据圆内接正三角形的性质即可求解.【详解】解:如图所示:连接CO并延长与AB交于点D,连接AO,∵点O 是正三角形ABC 的外心,∴CD ⊥AB ,∠OAD =30°,设OD =x ,则2AO OC x ==,1232AD AB == 根据勾股定理,得 ()()222223x x -=,解得x =4,则x =2,∴半径OA =4cm ,直径为8cm .∴CD =3x =6,∴112•4361232ABC S AB CD ==⨯⨯=. 答:⊙O 的直径为8cm ;正三角形ABC 的面积为123cm 2【点睛】本题考查了三角形的外接圆与外心、等边三角形的性质,解决本题的关键是掌握圆内接正三角形的性质.22.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.【答案】2 0.3 108 1 6【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【详解】解:(1)∵喜欢篮球的是60人,频率是0.25,∴样本数=60÷0.25=1.∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案为2,0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为108;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是10÷60=16.故答案为(1) 2 ,0.3 (2)108 (3). (3)1 6【点睛】题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.23.在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.【答案】(1)20cm,30cm;(2)用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是6252cm【分析】(1)已知细绳长是1米,则已知围成的矩形的周长是1米,设她围成的矩形的一边长为xcm,则相邻的边长是50-xcm.根据矩形的面积公式,即可列出方程,求解;(2)设围成矩形的一边长为xcm,面积为ycm2,根据矩形面积公式就可以表示成边长x的函数,根据函数的性质即可求解.【详解】解:(1)设矩形的长为x㎝,则宽为10022x=(50-x)㎝根据题意,得x(50-x)=600整理,得x2-50x+600=0解得x1=20,x2 =30∴他围成的矩形的长为30㎝,宽为20㎝.(2)设围成的矩形的一边长为m㎝时,矩形面积为y㎝2,则有y=m(50-m)=50m-m2=-(m2-50m)=-(m2-50m+252-252)=-(m-25)2+625∴当m=25㎝时,y有最大值625㎝.24.解方程:(x+2)(x-5)=1.【答案】x1=7,x2=-2【解析】化为一般形式,利用因式分解法求得方程的解即可.【详解】解:(x+2)(x-5)=1,x2-3x-28=0,(x-7)(x+2)=0∴x-7=0,x+2=0解得:x1=7,x2=-2.【点睛】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.25.(2016山东省聊城市)如图,在直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1.(1)求反比例函数的表达式;(2)将直线12y x=-向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【答案】(1)18yx=-;(2)182y x=-+.【解析】试题分析:(1)根据题意,将y=1代入一次函数的解析式,求出x 的值,得到A 点的坐标,再利用反比例函数的坐标特征求出反比例函数的解析式;(2)根据A 、B 点关于原点对称,可求出B 点的坐标及线段AB 的长度,设出平移后的直线解析式,根据平行线间的距离,由三角形的面积求出关于b 的一元一次方程即可求解.试题解析:(1)令一次函数y=﹣12x 中y=1,则1=﹣12x , 解得:x =﹣6,即点A 的坐标为(﹣6,1). ∵点A (﹣6,1)在反比例函数y=k x 的图象上, ∴k=﹣6×1=﹣12,∴反比例函数的表达式为y=﹣18x. (2)设平移后直线于y 轴交于点F ,连接AF 、BF 如图所示.设平移后的解析式为y=﹣12x+b , ∵该直线平行直线AB ,∴S △ABC =S △ABF ,∵△ABC 的面积为42,∴S △ABF =12OF•(x B ﹣x A )=42, 由对称性可知:x B =﹣x A ,∵x A =﹣6,∴x B =6, ∴12b×12=42, ∴b=2. ∴平移后的直线的表达式为:y=﹣12x+2. 26.如图,四边形ABCD 中,90,ABD BCD DB ∠=∠=平分,//ADC BM CD ∠.(1)求证:2BD AD CD =⋅;(2)求证:点M 是AD 的中点;(3)若6,8CD AD ==,求MN 的长.【答案】(1)见解析;(2)见解析;(3)47MN =【分析】(1)通过证明△ABD ∽△BCD ,可得=AD BD BD CD,可得结论; (2)通过//BM CD 和相似得出∠MBD=∠MDB ,在利用同角的余角相等得出∠A=∠ABM ,由等腰三角形的性质可得结论;(3)由平行线的性质可证∠MBD=∠BDC ,即可证AM=MD=MB=4,由BD 2=A D•CD 和勾股定理可求MC 的长,通过证明△MNB ∽△CND ,可得2=3BM MN CD CN =. 【详解】解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠CDB ,且∠ABD=∠BCD=90°,∴△ABD ∽△BCD , ∴=AD BD BD CD, ∴BD 2=AD•CD(2)证明:∵//BM CD ,∴∠MBD=∠BDC ,∠MBC=90°,∵∠MDB=∠CDB ,∴∠MBD=∠MDB ,∴MB=MD ,∵∠MBD+∠ABM=90°,∴∠ABM=∠CBD ,∵∠CBD=∠A ,∴∠A=∠ABM ,∴MA=MB ,∴MA=MD ,即M 为AD 中点;(3)∵BM ∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12∴MC2=MB2+BC2=28∴MC=27,∵BM∥CD∴△MNB∽△CND∴2=3BM MNCD CN=,且MC=27,∴47 MN=.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.27.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,sinB=45,求DE的长.【答案】(1)见解析;(2)见解析;(3)24 5.【解析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)解直角三角形求得AD,进而根据勾股定理求得BD、CD,据正弦的定义计算即可求得.【详解】(1)证明:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∴∠B=∠C,∵⊙O的半径为5,∴AB=AC=10,∵sinB=ADAB=45,∴AD=8,∴CD=BD=22AB AD=6,∴sinB=sinC=DECD=45,∴DE=245.【点睛】本题考查的是圆周角定理、切线的判定定理以及三角形中位线定理,掌握相关的性质定理和判定定理是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.5【答案】B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.2.如图,在Rt ABC中,590,13,cos13C AB A︒∠===,则AC的长为()A.5 B.8 C.12 D.13 【答案】A【分析】利用余弦的定义可知ACcosA=AB,代入数据即可求出AC.【详解】∵AC5 cosA==AB13∴55AC=AB=13=51313⨯ 故选A.【点睛】本题考查根据余弦值求线段长度,熟练掌握余弦的定义是解题的关键.3.如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒C .62︒D .67︒【答案】D【分析】先说明ABD=∠ADC=∠CBD ,然后再利用三角形内角和180°求出即可∠CBD 度数,最后再用直角三角形的内角和定理解答即可. 【详解】解:∵菱形ABCD ∴AB=AD ∴∠ABD=∠ADC ∴∠ABD=∠CBD 又∵134A ∠=︒∴∠CBD=∠BDC=∠ABD=∠ADB=12(180°-134°)=23° ∴BEC ∠=90°-23°=67° 故答案为D. 【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理. 4.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB 坡比为( ).A 2:4B .22 1C .1:3D .3:1【答案】A【分析】利用勾股定理可求出AC 的长,根据坡比的定义即可得答案.【详解】∵AB=3,BC=1,∠ACB=90°,∴AC=22AB BC-=22,∴斜坡AB坡比为BC:AC=1:22=2:4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键.5.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A.49B.13C.12D.23【答案】D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.6.2sin603︒)A.23B.2 C.3 D.33【答案】A【分析】先计算60度角的正弦值,再计算加减即可.【详解】32sin6032323︒==故选A. 【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键. 7.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外 B .点A 在圆上 C .点A 在圆内 D .不能确定【答案】C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可. 【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm , ∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内, 故选C .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 9.在平面直角坐标系中,点P (1,﹣2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 对应点的坐标为( ) A .(2,﹣4) B .(2,﹣4)或(﹣2,4) C .(12,﹣1) D .(12,﹣1)或(﹣12,1) 【答案】B【分析】根据位似变换的性质计算即可.【详解】点P (1,﹣2)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为(1×2,﹣2×2)或(1×(﹣2),﹣2×(﹣2)),即(2,﹣4)或(﹣2,4), 故选:B . 【点睛】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 10.如果用配方法解方程,那么原方程应变形为( )A .B .C .D .【答案】A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方. 【详解】解:移项得,x 2−2x =3, 配方得,x 2−2x +1=4, 即(x−1)2=4, 故选:A . 【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键. 11.在Rt ABC 中,∠C=90°,如果sin cos A A =,那么A ∠的值是( ) A .90° B .60°C .45°D .30°【答案】C【分析】根据锐角三角函数的定义解得即可. 【详解】解:由已知,sin BCA AB =,cos AC A AB= ∵sin cos A A = ∴BC AC = ∵∠C=90° ∴A ∠=45° 故选:C 【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.12.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( ) A .20米 B .30米C .16米D .15米【答案】B【分析】设此时高为18米的旗杆的影长为xm ,利用“在同一时刻物高与影长的比相等”列出比例式,进。

天津泰达枫叶国际学校九年级上册期末精选试卷检测题

天津泰达枫叶国际学校九年级上册期末精选试卷检测题
∴矩形的对角线长为: m2 n2 m n2 2mn 15 .
【点睛】 本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别 式△的关系:(1)△>0 时,方程有两个不相等的实数根;(2)△=0 时,方程有两个相等 的实数根;(3)△<0 时,方程没有实数根.
3.(本题满分 10 分)如图,在平面直角坐标系中,直线 AB 与 x 轴、y 轴分别交于点 A、
∴ E(3,12). ∴ k=36;
(3)满足条件的点 Q 的个数是 6,
x 轴的下方的 Q1(10,﹣12),Q2(﹣3,6﹣3 ); 方法:如下图
①分别以 CE 为矩形的边,在点 C、E 处设计直角,垂线与两坐标轴相交,得到点 P,进而
得到点 Q;(有三种)②以 CE 为矩形对角线,则以 CE 的中点为圆心做圆,与两坐标轴相
B,直线 CD 与 x 轴、y 轴分别交于点 C、D,AB 与 CD 相交于点 E,线段 OA、OC 的长是一 元二次方程 -18x+72=0 的两根(OA>OC),BE=5,tan∠ ABO= .
(1)求点 A,C 的坐标;
(2)若反比例函数 y= 的图象经过点 E,求 k 的值; (3)若点 P 在坐标轴上,在平面内是否存在一点 Q,使以点 C,E,P,Q 为顶点的四边形 是矩形?若存在,请写出满足条件的点 Q 的个数,并直接写出位于 x 轴下方的点 Q 的坐 标;若不存在,请说明理由. 【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6 个;Q1(10,﹣12),Q2 (﹣3,6﹣3 ). 【解析】 试题分析:(1)、首先求出方程的解,根据 OA>OC 求出两点的坐标;(2)、根据∠ ABO 的正 切值求出 OB 的长度,根据 Rt△ AOB 得出 AB 的长度,作 EM⊥x 轴,根据三角形相似得出 点 E 的坐标,然后求出 k 的值;(3)、分别以 CE 为矩形的边,在点 C、E 处设计直角,垂线 与两坐标轴相交,得到点 P,进而得到点 Q;以 CE 为矩形对角线,则以 CE 的中点为圆心 做圆,与两坐标轴相交,得到点 P,再得点 Q. 试题解析:(1)由题意,解方程得:x1=6,x2=12. ∵ OA>OC, ∴ OA=12,OC=6. ∴ A(12,0),C(﹣6,0);

【期末试卷】2017-2018学年天津市九年级数学上册期末强化练习卷02(含答案)

【期末试卷】2017-2018学年天津市九年级数学上册期末强化练习卷02(含答案)

【期末试卷】2017-2018学年天津市九年级数学上册期末强化练习卷02(含答案)2017-2018学年九年级数学上册期末强化练习卷⼀、选择题1.已知关于x 的⽅程x 2-kx-6=0的⼀个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-22.下列图形是中⼼对称图形的是3.在⼀个不透明的袋⼦中装有4个除颜⾊外完全相同的⼩球,其中⽩球1个,黄球1个,红球2个,摸出⼀个球不放回,再摸出⼀个球,两次都摸到红球的概率是( ). A .21 B .31C .61 D .814.若关于x 的⼀元⼆次⽅程x 2+(2k ﹣1)x+k 2﹣1=0有实数根,则k 取值范围是()A .k ≥1.25B .k >1.25C .k <1.25D .k ≤1.255.如图,在半径为5cm 的⊙O 中,弦AB=6cm ,OC ⊥AB 于点C ,则OC=()A .3cmB .4cmC .5cmD .6cm6.如图,在⊙O 中,OD ⊥BC ,∠BOD=60°,则∠CAD 的度数等于()A .15°B .20°C .25°D .30°7.如图,在⊙O 中,弦AC ∥半径OB ,若∠BOC=50°,则∠B 的⼤⼩为()A.25°B.30°C.50°D.60°8.如图的四个转盘中,C、D转盘分成8等分,若让转盘⾃由转动⼀次,停⽌后,指针落在阴影区域内的概率最⼤的转盘是()A.B.C.D.9.若为⼆次函数的图象上的三点,则的⼤⼩关系是()A.B.C.D.10.⼆次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有⼀个交点,则m的值为()A.1或﹣3 B.5或﹣3 C.﹣5或3 D.以上都不对11.在等边△ABC中,D是边AC上⼀点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三⾓形D.△ADE的周长是912.如图,已知圆锥的母线长6cm,底⾯半径是3cm,在B处有⼀只蚂蚁,在AC中点P处有⼀颗⽶粒,蚂蚁从B爬到P处的最短距离是()A.3cm B.3cm C.9cm D.6cm⼆、填空题13.已知关于x的⼀元⼆次⽅程(1-2k)x2-2x-1=0有实数根,则k的取值范围为________.14.从数﹣2,﹣0.5,0,4中任取⼀个数记为m,再从余下的三个数中,任取⼀个数记为n,若k=mn,则正⽐例函数y=kx的图象经过第三、第⼀象限的概率是.15.如图,在等边三⾓形ABC中,AB=6,D是BC上⼀点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.16.正多边形的⼀个中⼼⾓为36°,那么这个正多边形的⼀个内⾓等于________.17.如图,⼩正⽅形的边长均为1,点B、O都在格点上,以O为圆⼼,OB为半径画弧,如图所⽰,则劣弧BC的长是.18.如图是⼆次函数y=ax2+bx+c的部分图像,在下列四个结论中正确的是___________①不等式ax2+bx+c>0的解集是-10;③b2-4ac>0;④4a+b<0.三、解答题19.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中⼼在原点的另⼀侧画出△ABC放⼤2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.20.解⽅程:(2x﹣1)2=(3﹣x)221.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.22.某校在践⾏“社会主义核⼼价值观”演讲⽐赛中,对名列前20名的选⼿的综合分数m进⾏(1)求a的值;(2)若⽤扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆⼼⾓⼤⼩;(3)将在第⼀组内的两名选⼿记为:A 1、A 2,在第四组内的两名选⼿记为:B 1、B 2,从第⼀组和第四组中随机选取2名选⼿进⾏调研座谈,求第⼀组⾄少有1名选⼿被选中的概率(⽤树状图或列表法列出所有可能结果).23.如图,△ABC 内接与⊙O,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P,OF ∥BC 交AC 于AC 点E,交PC 于点F,连接AF .(1)判断AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为4,AF=3,求AC 的长.24.在⼀次篮球⽐赛中,如图队员甲正在投篮.已知球出⼿时离地⾯920m ,与篮圈中⼼的⽔平距离为7 m ,球出⼿后⽔平距离为4 m 时达到最⼤⾼度4 m ,设篮球运⾏轨迹为抛物线,篮圈距地⾯3 m.(1)建⽴如图所⽰的平⾯直⾓坐标系,问此球能否准确投中?(2)此时,对⽅队员⼄在甲⾯前1 m 处跳起盖帽拦截,已知⼄的最⼤摸⾼为3.1 m ,那么他能否获得成功?25.如图,在矩形ABCD中,AB=6,AD=2,点P是边BC上的动点(点P不与B、C重合),过点P作直线PQ∥BD,交CD边于点Q,再把△CPQ沿着直线PQ对折,点C的对应点是点R.设CP=x,△PQR与矩形ABCD重叠部分的⾯积为y.(1)求∠CPQ的度数;(2)当x取何值时,点R落在矩形ABCD的边AB上?(3)当R在矩形ABCD外部时,求y与x的函数关系式及此时函数值y的取值范围.。

天津市部分区2017-2018学年度第一学期期末考试九年级数学含答案

天津市部分区2017-2018学年度第一学期期末考试九年级数学含答案

九年级数学参考答案 第 1 页(共 5 页)1天津市部分区2017~2018学年度第一学期期末考试九年级数学参考答案一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13. -4 ; 14.(3,-2); 15.12; 16.65 ; 17.20个; 18.1或6或11或26 (注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分) 19.(1) 解:移项,得x 2﹣8x= -1, 配方,得 x 2﹣8x+ 42= -1+42即(x-4)2 =15 . ............................................2分 ∴ x ﹣ ∴ x 1 x 2=4 .............................................4分 (2)解: 因式分解,得(x-3)(x+1)=0............................................1分 于是得 x-3=0 , 或x+1=0 ............................................2分 ∴x 1=3,x 2= -1..............................................4分 20.解:(1)△A′BC′如图所示; .............................................3分 (2)∵BC ′=BC=4,∠CBC ′=90º∴C ′= .............................................5分 (3)点A 经过的路径为以点B 为圆心, AB 为半径的圆弧,路径长即为弧长,∵5=,∠ABA ′=90º .................6分∴¼'AA 的长为:180n r π=90551802ππ⨯⨯=, 即点A 经过的路径长为52π. ...................8分九年级数学参考答案 第 2 页(共 5 页)221.(1)设每公顷水稻产量的年平均增长率为x , ............................................1分 根据题意,得 7200(1+x )2=8712 ............................................4分 解得:x 1=0.1,x 2=﹣2.1(不合题意,舍去) ............................................6分 答:年平均增长率为10%; ............................................7分 (2)由题意,得8712(1+0.1)=9583.2(kg )因为 9583.2<10000 ............................................9分 所以,2016年该村水稻产量不能达到10000kg . ...........................................10分 22.解:如图,连接OD ............................................1分 ∵AB 是⊙O 的直径∴∠ACB=∠ADB= 90°, ............................................3分 在Rt △ABC 中,= ............................................5分∵CD 平分∠ACB , ∴∠ACD=∠BCD, ∴∠AOD=∠BOD.∴AD=BD ...........................................7分 又 在Rt △ABD 中,222AD BD AB +=∴AD=BD=2AB=2×cm ) ............................................10分23.解:(1)同学甲的方案不公平.............................................1分理由如下:开始第一次红1 红2 白蓝第二次红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白............................5分由树状图可以看出,所有可能出现的结果共有12种,即:红1 红1 红1 红2 红2 红2 白白白蓝蓝蓝红2 白蓝红1 白蓝红1 红2 蓝红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种,摸到“一白一蓝”的有2种,故小刚获胜的概率为41=123,小明获胜的概率为21=126............................................7分两人获胜的概率不相同,所以该方案不公平.......................................8分(2)拿出一个红球或放进一个蓝球,其他不变(答案不唯一) ...............................10分24.解:(1)直线DM与⊙O相切............................................1分证明:连接OD , ............................................2分∵OB=OD∴∠B=∠ODB ............................................3分∵AB=AC∴∠B=∠C ............................................4分∴∠ODB =∠C∴OD∥AC ............................................5分又∵DM⊥AC∴DM⊥OD∴DM与OD相切............................................6分(2)连接OE 交AB 于点H ...........................................7分 ∵E 是»AB 的中点,AB=24∴OE ⊥AB, AH=12AB=12 ...........................................8分 连接OA, 设⊙O 的半径为x ...........................................9分 由EH=8,则OH=x-8在RtΔOAH 中,根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2,0),C (0,2)代入y=﹣x 2+mx+n ,得0422m n n =--+⎧⎨=⎩,解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣x+2,则易得B (1,0).∵S △AOM =2S △BOC , ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯ ∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分整理,得x 2+x=0或x 2+x ﹣4=0,解得x=0或 x=﹣1或 .............................6分则符合条件的点M 的坐标为:(0,2)或(-1,2)或(12-,-2)或(12--,-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ,将A (﹣2,0),C (0,2)代入,得202k b b -+=⎧⎨=⎩, 解得12k b =⎧⎨=⎩.即直线AC 的解析式为y=x+2. ............................................8分 设N 点坐标为(x ,x+2),(﹣2≤x≤0),则D 点坐标为(x ,﹣x 2﹣x+2),ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1,∴当x=﹣1时,ND 有最大值1. ...........................................10分。

天津泰达枫叶国际学校初三数学九年级上册期末试卷

天津泰达枫叶国际学校初三数学九年级上册期末试卷

天津泰达枫叶国际学校初三数学九年级上册期末试卷一、选择题1.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<2.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙 B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断5.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .126.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.510.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15 C .15,15.5 D .16,15 11.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 13.二次函数y =()21x ++2的顶点是( ) A .(1,2) B .(1,−2) C .(−1,2) D .(−1,−2) 14.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1B .3C .4D .615.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.18.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)19.抛物线y =3(x+2)2+5的顶点坐标是_____.20.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.23.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.24.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=,则线段OC 的最大值为_____.25.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 26.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.27.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.28.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题31.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.32.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B (0,4),在第一象限内有一点P (m,n),且满足4m+3n=12. (1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.33.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.34.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率. 35.如图,抛物线y =﹣13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .(1)求此抛物线的表达式;(2)求过B 、C 两点的直线的函数表达式;(3)点P 是第一象限内抛物线上的一个动点.过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点P 的坐标,若不存在,请说明理由;四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 39.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.2.C解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C . 【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.B解析:B【解析】试题解析:可能出现的结果的结果有1种,则所求概率1.4 P故选B.点睛:求概率可以用列表法或者画树状图的方法.6.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.D解析:D 【解析】 【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系.. 【详解】解:∵关于x 的方程x 2 -2x+d=0有实根, ∴根的判别式△=(-2) 2 -4×d ≥0, 解得d ≤1, ∵⊙O 的半径为r=1, ∴d ≤r∴点P 在圆内或在圆上. 故选:D. 【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.9.C解析:C 【解析】 【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数. 【详解】解:由题意得:(10×14+15×6)÷20=11.5, 故选:C . 【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..10.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C .【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.11.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.12.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.C解析:C【解析】【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标.【详解】解:∵二次函数y=()21x ++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 14.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.解析:a >0.【解析】试题分析:∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.17.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底面圆的半径为3,则底面周长=6π, ∴侧面面积=12×6π×5=15π; ∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.18.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.19.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.20.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴22221086AC AB BC=-=-=,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.21.【解析】【分析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.22.1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.23.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 24.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:833+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵13sin13B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90 EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC ACBE AB==,∴23OC BE=,在△OEB中,根据三角形三边关系可得:BE OE OB≤+,∵222264213OE AE AO=+=+=,∴2134OE OB+=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 25.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 26.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP ∥AC∴△DC解析:1,83,32【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】 解:如图:当DP ∥AB 时∴△DCP ∽△BCA ∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.27.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.28.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为,根据垂径定理得:=5,∴设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题31.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再做差后可求出A 的值;(2)由方程的系数结合根的判别式可得出方程3x 2﹣x +1=0没有实数根,进而可得出代数式3x 2+1没有不变值;(3)由A =0可得出方程x 2﹣(b +1)x +1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x 2﹣2=x ,即x 2﹣x ﹣2=0,解得:x 1=﹣1,x 2=2,∴A =2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x 2 +1=x ,∴3x 2﹣x +1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x 2+1没有不变值.(3)依题意,得:方程x 2﹣bx +1= x 即x 2﹣(b +1)x +1=0有两个相等的实数根, ∴△=[﹣(b +1)]2﹣4×1×1=0,∴b 1=﹣3,b 2=1.答:b 的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.32.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +,∴134=4 223x x+-+,∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C 的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.33.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.。

【精选3份合集】2017-2018年天津市九年级上学期数学期末学业质量检查模拟试题

【精选3份合集】2017-2018年天津市九年级上学期数学期末学业质量检查模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.函数y =k x 与y =kx 2﹣k (k ≠0)在同一直角坐标系中的图象可能是( ) A . B .C .D .【答案】D【分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k <0时,反比例函数y =k x 在二、四象限,而二次函数y =kx 2﹣k 开口向下,故A 、B 、C 、D 都不符合题意;②当k >0时,反比例函数y =k x 在一、三象限,而二次函数y =kx 2﹣k 开口向上,与y 轴交点在原点下方,故选项D 正确;故选:D .【点睛】本题主要考查反比例函数与二次函数的图象,掌握k 对反比例函数与二次函数的图象的影响是解题的关键.2.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF ①≌;OGE FGC ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( )A .①②③④B .①②③C .①②④D .③④【答案】B【分析】根据全等三角形的判定(ASA )即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案. 【详解】解:①四边形ABCD 是正方形,,OC OD AC BD ∴⊥=,45ODF OCE ∠∠︒==,90MON ∠︒=,COM DOF ∴∠∠=,COE DOF ASA ∴≌(), 故①正确;90EOF ECF ∠∠︒②==,∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC ∽,故②正确;③COE DOF ≌,COE DOF S S ∴=,14OCD ABCDCEOF S SS ∴==正方形四边形, 故③正确; COE DOF ④≌,OE OF ∴=,又90EOF ∠︒=,EOF ∴是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠=,OEG OCE ∴∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF =,=,2•OG AC EF ∴=,,CE DF BC CD ==,BE CF ∴=,又Rt CEF 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.3.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A .图象过点(0,﹣3)B .图象与x 轴的交点为(1,0),(﹣3,0)C .此函数有最小值为﹣6D .当x <1时,y 随x 的增大而减小【答案】D【分析】通过计算自变量x 对应的函数值可对A 进行判断;利用抛物线与x 轴的交点问题,通过解方程2(x+1)(x ﹣3)=0可对B 进行判断;把抛物线的解析式配成顶点式,然后根据二次函数的性质对C 、D 进行判断.【详解】解:A 、当x =0时,y =2(x+1)(x ﹣3)=﹣6,则函数图象经过点(0,﹣6),所以A 选项错误; B 、当y =0时,2(x+1)(x ﹣3)=0,解得x 1=﹣1,x 2=3,则抛物线与x 轴的交点为(﹣1,0),(3,0),所以B 选项错误;C 、y =2(x+1)(x ﹣3)=2(x ﹣1)2﹣8,则函数有最小值为﹣8,所以D 选项错误;D 、抛物线的对称轴为直线x =1,开口向上,则当x <1时,y 随x 的增大而减小,所以D 选项正确. 故选:D .【点睛】本题考查了二次函数的图像和性质,函数的最值,增减性,与坐标轴交点坐标熟练掌握是解题的关键 4.若m 是方程210x x +-=的根,则2222018m m ++的值为( )A .2022B .2020C .2018D .2016 【答案】B【分析】根据一元二次方程的解的定义,将x=m 代入已知方程,即可求得(m 2+m )的值,然后将其整体代入所求的代数式进行求值即可.【详解】依题意得:m 2+m-1=0,则m 2+m=1,所以2m 2+2m+2018=2(m 2+m )+2018=2×1+2018=1.故选:B .【点睛】此题考查一元二次方程的解.解题关键在于能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.二次函数223y x =+的顶点坐标为( )A .()2,0B .()2,3C .()3,0D .()0,3 【答案】D【分析】已知二次函数y =2x 2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】∵y =2x 2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D .【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y =a (x−k )2+h 的顶点坐标为(k ,h ),6.已知P 是△ABC 的重心,且PE ∥BC 交AB 于点E ,BC =PE 的长为( ).A B .3 C .2 D .3 【答案】A【分析】如图,连接AP ,延长AP 交BC 于D ,根据重心的性质可得点D 为BC 中点,AP=2PD ,由PE//BC 可得△AEP ∽△ABD ,根据相似三角形的性质即可求出PE 的长.【详解】如图,连接AP ,延长AP 交BC 于D ,∵点P 为△ABC 的重心,BC=∴BD=12AP=2PD , ∴AP 2AD 3=, ∵PE//BC ,∴△AEP ∽△ABD , ∴AP PE AD BD=,∴PE=APBDAD⨯=23332⨯=3.故选:A.【点睛】本题考查三角形重心的性质及相似三角形的判定与性质,三角形的重心是三角形三条中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1;正确作出辅助线,构造相似三角形是解题关键.7.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形【答案】C【解析】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.8.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:①EFBC=12;②EGFCGBSS=12;③AFAB=GEGB;④GEFAEFSS=13.其中正确的个数有()A.1个B.C.3个D.4个【答案】C【解析】根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.【详解】∵AF =FB ,AE =EC ,∴FE ∥BC ,FE :BC =1:2,∴AF FE GE AB BC GB==,故①③正确. ∵FE ∥BC ,FE :BC =1:2,∴FG :GC=1:2,△FEG ∽△CBG .设S △FGE =S ,则S △EGC =2S ,S △BGC =4s ,∴14EGF CGB S S=,故②错误.∵S △FGE =S ,S △EGC =2S ,∴S △EFC =3S .∵AE=EC ,∴S △AEF =3S ,∴ GEF AEFS S =13,故④正确. 故选C .【点睛】 本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12B .13C .23D .16【答案】B【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键. 10.若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,3 【答案】A【详解】由题意得,根的判别式为△=(-4)2-4×3k ,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .11.如图,正方形ABCD 的边长为2,对角线AC BD 、相交于点O ,将直角三角板的直角顶点放在点O 处,两直角边分别与,OD OC 重叠,当三角板绕点O 顺时针旋转α角(090)α<<时,两直角边与正方形的边, BC CD 交于E F 、两点,则四边形OECF 的周长( )A .先变小再变大B .先变大再变小C .始终不变D .无法确定【答案】A 【分析】由四边形ABCD 是正方形,直角∠FOE,证明△DOF ≌△COE,则可得四边形OECF 的周长与OE 的变化有关.【详解】解:四边形ABCD 是正方形,OC OD ∴=,045ODC CB ∠=∠=,OC OD ⊥即90COD ∠=90EOF COD ∠==∠,又 , 45OC OD ODC OCB =∠=∠=,() OEC OFD ASA ∴∆∆≌, OE OF EC DF ∴==OECF 222C OE EC CF OF OE CD OF OE CD OE =+++=++=+=+四边形OECF C ∴四边形随OE 的变化而变化。

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。

∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。

A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市枫叶国际学校初中校区2017—2018学年第一学期九年级数学期末模拟试卷
本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!
第Ⅰ卷
注意事项:
1. 请用黑色字迹的签字笔,将正确答案的代号填在“答题卡”相应的表格中。

2. 本卷共12题,共36分。

一、选择题(本大题共12 小题,每小题3 分,共36 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)
(1) 抛物线3422-+-=x x y 的对称轴是( )
(A )1-=x (B )1=x (C )2-=x (D )2=x (2) 2cos30︒的值等于( )
(A )
1
2
(B ) 3 (C ) (D ) 32
(3) 下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是( )
(A ) (B ) (C ) (D )
(4) 反比例函数)0(1
≠=-k kx y 的图像经过点(-1,-2)。

当x >1时,函数值的y 的取值范围( )
(A )2>y (B )2<y (C )42<<y (D )20<<y
(5) 如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是( )
第(5)题 (A ) (B ) (C ) (D ) (6) 若方程a x =-2)32(有解,则a 的取值范围是( )
(A ) 0≤a (B ) 0≥a (C ) 0<a (D ) 0>a
(7) 不透明的口袋里有四个完全相同的小球,把它们分别标号为1、2、3、4,不放回地摸出两个小球,则摸出的小球的标号的和等于4的概率( )
(A ) 21 (B ) 31 (C )41 (D ) 6
1
(8)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心O. 若∠B =25°,
则∠C 的大小等于
C
A
B
O
(A ) 20° (B ) 25° (C ) 40° (D ) 50° (9) 如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,则a ,b 的值分别为
(A ) 1,3 (B ) 1,2 (C ) 2,1 (D ) 1,1
(10)已知点A (3-,a )、B (1-,b )、C (2,c )在反比例函数k
y x =(0k >)
的图象上,则且a 、b 、c 的大小关系是
(A )a b c >> (B )b a c >> (C )c b a >> (D )c a b >> (11) 如图,在矩形ABCD 中,BC =6,CD =3,将⊿BCD 沿对角线BD 翻折,点C 落在点C '处,BC '交AD 于点E ,则线段AE 的长为
(A )
94 (B )3 (C )154 (D )152
(12)已知两点A (5-,1y ),B (3,2y )均在抛物线2
y ax bx c =++(0a ≠)上,点C (0x ,0y )是该抛物线的顶点,若120y y y >≥,则0x 的取值范围是
(A ) 05x >- (B ) 01x >- (C )051x -<<- (D ) 023x -<<
第 Ⅱ 卷
二、填空题(本大题共6 小题,每小题3分,共18分)
(13)若方程043222=-+-a x x 有两个不相等的实数根,则a a a 81622
-+--的值等于________. (14)把抛物线)0(2
≠++=a c bx ax y 的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是542
+-=x x y ,则a+b+c= .
(15)如图,四边形ABCD 是矩形,以AD 为直径的⊙O 交BC 边于点E 、F ,AB=4,AD=12.则线段EF 的长 .
(16)同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为 .
(17)如图,在矩形ABCD 中AB 边上有一点E ,且AE/EB=3/2,AD 边上有一点F ,且EF=18,将矩形沿EF 对折A 落在BC 上点G,则AB 为 .
(18)如图,在平行四边形ABCD 中,AE:ED=1:2,S △AEF=6cm ²,则S △ABC .
三、解答题(本大题共7 小题,共66 分. 解答应写出文字说明、演算步骤或推理过程) (19) (本小题8 分)
y
x A 1(3,b)
B 1(a,2)A B O E
C '
C
D
B
A
第(9)题
第(11)题
第(17)题 第(15)题
第(18)题
解方程:(1)1352
+=-x x x (2)x x x -=-2)2(
(20) (本小题8 分)
有A 、B 两个不透明的布袋,A 袋中有两个完全相同的小球,分别标有数字0和﹣2;B 袋中有三个完全相同的小球,分别标有数字﹣2、0和1.小明从A 袋中随机取出一个小球,记录标有的数字为x ,再从B 袋中随机取出一个小球,记录标有的数字为y ,这样确定了点Q 的坐标(x ,y ). (I )求点Q 在x 轴上的概率;
(Ⅱ)在平面直角坐标系xOy 中,⊙O 的半径是2,求过点Q 能作⊙O 切线的概率.
(21) (本小题10 分)
已知AB ,AC 是⊙O 的两条弦,且AB ⊥AC ,AB=AC=6,点D 在⊙O 上,连接AD ,BD ,CD. (I )如图1,若AD 经过圆心O ,求BD ,CD 的长; (II )如图2,若∠BAD=2∠DAC ,求BD ,CD 的长.
图1
O
B
C
D A
图2
O
B
C
D
A
(22) (本小题10 分)
如图,从A 地到B 地的公路需经过C 地,图中AC=50 km ,∠CAB=25°,∠CBA=45°,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路.
(Ⅰ)求改直的公路AB 的长;
(Ⅱ)问公路改直后比原来缩短了多少km ?
(sin25°≈0.42, cos25°≈0.91,tan25°≈0.472取1.414)(结果保留小数点后一位)
B
A
C
(23) (本小题10 分)
已知:如图,一次函数的图象经过第一、二、三象限,且与反比例函数
第(21)题 第(22)题
的图象交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB=10,tan ∠DOB=3
1

(Ⅰ)求反比例函数的解析式;
(Ⅱ)设点A 的横坐标为1,求△ABO 的面积.
(24) (本小题10 分)
如图,点A 是x 轴正半轴上的动点,点B 坐标为(0,4),M 是线段AB 的中点,将点M 绕点A 顺时针方向旋转90°得到点C ,过点C 作x 轴的垂线,垂足为F ,过点B 作y 轴的垂线与直线CF 相交于点E ,连接AC ,BC ,设点A 的横坐标为.
(Ⅰ)当2t =时,求CF 的长;
(Ⅱ)设△BCE 的面积为S ,当点C 在线段EF 上时,求S 与之间的函数关系式,并写出自变量的取值范围;
(25) (本小题10 分)
已知抛物线的解析式为2111
424
y x x =-+,P 是抛物线上的一个动点,(1,1)R 是抛物线对称轴上的一点.
(I )求抛物线的顶点及与y 轴交点的坐标;
(II )是过点(0,—1)且平行于x 轴的直线,与抛物线的对称轴的交点为N ,PM MN ⊥,垂足为
点M ,连接PR ,RM.当△RPM 是等边三角形时,求P 点的坐标.
第(25)题
第(23)题。

相关文档
最新文档